src/HOL/Tools/Meson/meson.ML
author blanchet
Tue Jan 03 18:33:18 2012 +0100 (2012-01-03)
changeset 46093 4bf24b90703c
parent 46071 1613933e412c
child 46503 186f4cab2ba0
permissions -rw-r--r--
tuning
blanchet@39941
     1
(*  Title:      HOL/Tools/Meson/meson.ML
paulson@9840
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
blanchet@39941
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@9840
     4
wenzelm@9869
     5
The MESON resolution proof procedure for HOL.
wenzelm@29267
     6
When making clauses, avoids using the rewriter -- instead uses RS recursively.
paulson@9840
     7
*)
paulson@9840
     8
wenzelm@24300
     9
signature MESON =
paulson@15579
    10
sig
blanchet@39979
    11
  val trace : bool Config.T
blanchet@39979
    12
  val max_clauses : int Config.T
wenzelm@24300
    13
  val term_pair_of: indexname * (typ * 'a) -> term * 'a
blanchet@45567
    14
  val first_order_resolve : thm -> thm -> thm
wenzelm@24300
    15
  val size_of_subgoals: thm -> int
blanchet@39269
    16
  val has_too_many_clauses: Proof.context -> term -> bool
blanchet@43964
    17
  val make_cnf:
blanchet@43964
    18
    thm list -> thm -> Proof.context
blanchet@43964
    19
    -> Proof.context -> thm list * Proof.context
wenzelm@24300
    20
  val finish_cnf: thm list -> thm list
blanchet@46093
    21
  val presimplified_consts : string list
blanchet@46093
    22
  val presimplify: thm -> thm
wenzelm@32262
    23
  val make_nnf: Proof.context -> thm -> thm
blanchet@39950
    24
  val choice_theorems : theory -> thm list
blanchet@39950
    25
  val skolemize_with_choice_theorems : Proof.context -> thm list -> thm -> thm
blanchet@39904
    26
  val skolemize : Proof.context -> thm -> thm
blanchet@42747
    27
  val extensionalize_conv : Proof.context -> conv
blanchet@42747
    28
  val extensionalize_theorem : Proof.context -> thm -> thm
wenzelm@24300
    29
  val is_fol_term: theory -> term -> bool
blanchet@43964
    30
  val make_clauses_unsorted: Proof.context -> thm list -> thm list
blanchet@43964
    31
  val make_clauses: Proof.context -> thm list -> thm list
wenzelm@24300
    32
  val make_horns: thm list -> thm list
wenzelm@24300
    33
  val best_prolog_tac: (thm -> int) -> thm list -> tactic
wenzelm@24300
    34
  val depth_prolog_tac: thm list -> tactic
wenzelm@24300
    35
  val gocls: thm list -> thm list
blanchet@39900
    36
  val skolemize_prems_tac : Proof.context -> thm list -> int -> tactic
blanchet@39037
    37
  val MESON:
blanchet@39269
    38
    tactic -> (thm list -> thm list) -> (thm list -> tactic) -> Proof.context
blanchet@39269
    39
    -> int -> tactic
wenzelm@32262
    40
  val best_meson_tac: (thm -> int) -> Proof.context -> int -> tactic
wenzelm@32262
    41
  val safe_best_meson_tac: Proof.context -> int -> tactic
wenzelm@32262
    42
  val depth_meson_tac: Proof.context -> int -> tactic
wenzelm@24300
    43
  val prolog_step_tac': thm list -> int -> tactic
wenzelm@24300
    44
  val iter_deepen_prolog_tac: thm list -> tactic
wenzelm@32262
    45
  val iter_deepen_meson_tac: Proof.context -> thm list -> int -> tactic
wenzelm@24300
    46
  val make_meta_clause: thm -> thm
wenzelm@24300
    47
  val make_meta_clauses: thm list -> thm list
wenzelm@32262
    48
  val meson_tac: Proof.context -> thm list -> int -> tactic
paulson@15579
    49
end
paulson@9840
    50
blanchet@39901
    51
structure Meson : MESON =
paulson@15579
    52
struct
paulson@9840
    53
wenzelm@42616
    54
val trace = Attrib.setup_config_bool @{binding meson_trace} (K false)
blanchet@39979
    55
blanchet@39979
    56
fun trace_msg ctxt msg = if Config.get ctxt trace then tracing (msg ()) else ()
wenzelm@32955
    57
blanchet@42739
    58
val max_clauses = Attrib.setup_config_int @{binding meson_max_clauses} (K 60)
paulson@26562
    59
wenzelm@38802
    60
(*No known example (on 1-5-2007) needs even thirty*)
wenzelm@38802
    61
val iter_deepen_limit = 50;
wenzelm@38802
    62
haftmann@31454
    63
val disj_forward = @{thm disj_forward};
haftmann@31454
    64
val disj_forward2 = @{thm disj_forward2};
haftmann@31454
    65
val make_pos_rule = @{thm make_pos_rule};
haftmann@31454
    66
val make_pos_rule' = @{thm make_pos_rule'};
haftmann@31454
    67
val make_pos_goal = @{thm make_pos_goal};
haftmann@31454
    68
val make_neg_rule = @{thm make_neg_rule};
haftmann@31454
    69
val make_neg_rule' = @{thm make_neg_rule'};
haftmann@31454
    70
val make_neg_goal = @{thm make_neg_goal};
haftmann@31454
    71
val conj_forward = @{thm conj_forward};
haftmann@31454
    72
val all_forward = @{thm all_forward};
haftmann@31454
    73
val ex_forward = @{thm ex_forward};
haftmann@31454
    74
blanchet@39953
    75
val not_conjD = @{thm not_conjD};
blanchet@39953
    76
val not_disjD = @{thm not_disjD};
blanchet@39953
    77
val not_notD = @{thm not_notD};
blanchet@39953
    78
val not_allD = @{thm not_allD};
blanchet@39953
    79
val not_exD = @{thm not_exD};
blanchet@39953
    80
val imp_to_disjD = @{thm imp_to_disjD};
blanchet@39953
    81
val not_impD = @{thm not_impD};
blanchet@39953
    82
val iff_to_disjD = @{thm iff_to_disjD};
blanchet@39953
    83
val not_iffD = @{thm not_iffD};
blanchet@39953
    84
val conj_exD1 = @{thm conj_exD1};
blanchet@39953
    85
val conj_exD2 = @{thm conj_exD2};
blanchet@39953
    86
val disj_exD = @{thm disj_exD};
blanchet@39953
    87
val disj_exD1 = @{thm disj_exD1};
blanchet@39953
    88
val disj_exD2 = @{thm disj_exD2};
blanchet@39953
    89
val disj_assoc = @{thm disj_assoc};
blanchet@39953
    90
val disj_comm = @{thm disj_comm};
blanchet@39953
    91
val disj_FalseD1 = @{thm disj_FalseD1};
blanchet@39953
    92
val disj_FalseD2 = @{thm disj_FalseD2};
paulson@9840
    93
paulson@9840
    94
paulson@15579
    95
(**** Operators for forward proof ****)
paulson@15579
    96
paulson@20417
    97
paulson@20417
    98
(** First-order Resolution **)
paulson@20417
    99
paulson@20417
   100
fun term_pair_of (ix, (ty,t)) = (Var (ix,ty), t);
paulson@20417
   101
paulson@20417
   102
(*FIXME: currently does not "rename variables apart"*)
paulson@20417
   103
fun first_order_resolve thA thB =
wenzelm@32262
   104
  (case
wenzelm@32262
   105
    try (fn () =>
wenzelm@32262
   106
      let val thy = theory_of_thm thA
wenzelm@32262
   107
          val tmA = concl_of thA
wenzelm@32262
   108
          val Const("==>",_) $ tmB $ _ = prop_of thB
blanchet@37398
   109
          val tenv =
blanchet@37410
   110
            Pattern.first_order_match thy (tmB, tmA)
blanchet@37410
   111
                                          (Vartab.empty, Vartab.empty) |> snd
wenzelm@32262
   112
          val ct_pairs = map (pairself (cterm_of thy) o term_pair_of) (Vartab.dest tenv)
wenzelm@32262
   113
      in  thA RS (cterm_instantiate ct_pairs thB)  end) () of
wenzelm@32262
   114
    SOME th => th
blanchet@37398
   115
  | NONE => raise THM ("first_order_resolve", 0, [thA, thB]))
paulson@18175
   116
blanchet@40262
   117
(* Hack to make it less likely that we lose our precious bound variable names in
blanchet@40262
   118
   "rename_bound_vars_RS" below, because of a clash. *)
blanchet@40262
   119
val protect_prefix = "Meson_xyzzy"
blanchet@40262
   120
blanchet@40262
   121
fun protect_bound_var_names (t $ u) =
blanchet@40262
   122
    protect_bound_var_names t $ protect_bound_var_names u
blanchet@40262
   123
  | protect_bound_var_names (Abs (s, T, t')) =
blanchet@40262
   124
    Abs (protect_prefix ^ s, T, protect_bound_var_names t')
blanchet@40262
   125
  | protect_bound_var_names t = t
blanchet@39930
   126
blanchet@40262
   127
fun fix_bound_var_names old_t new_t =
blanchet@40262
   128
  let
blanchet@40262
   129
    fun quant_of @{const_name All} = SOME true
blanchet@40262
   130
      | quant_of @{const_name Ball} = SOME true
blanchet@40262
   131
      | quant_of @{const_name Ex} = SOME false
blanchet@40262
   132
      | quant_of @{const_name Bex} = SOME false
blanchet@40262
   133
      | quant_of _ = NONE
blanchet@40262
   134
    val flip_quant = Option.map not
blanchet@40262
   135
    fun some_eq (SOME x) (SOME y) = x = y
blanchet@40262
   136
      | some_eq _ _ = false
blanchet@40262
   137
    fun add_names quant (Const (quant_s, _) $ Abs (s, _, t')) =
blanchet@40262
   138
        add_names quant t' #> some_eq quant (quant_of quant_s) ? cons s
blanchet@40262
   139
      | add_names quant (@{const Not} $ t) = add_names (flip_quant quant) t
blanchet@40262
   140
      | add_names quant (@{const implies} $ t1 $ t2) =
blanchet@40262
   141
        add_names (flip_quant quant) t1 #> add_names quant t2
blanchet@40262
   142
      | add_names quant (t1 $ t2) = fold (add_names quant) [t1, t2]
blanchet@40262
   143
      | add_names _ _ = I
blanchet@40262
   144
    fun lost_names quant =
blanchet@40262
   145
      subtract (op =) (add_names quant new_t []) (add_names quant old_t [])
blanchet@40262
   146
    fun aux ((t1 as Const (quant_s, _)) $ (Abs (s, T, t'))) =
blanchet@40262
   147
      t1 $ Abs (s |> String.isPrefix protect_prefix s
blanchet@40262
   148
                   ? perhaps (try (fn _ => hd (lost_names (quant_of quant_s)))),
blanchet@40262
   149
                T, aux t')
blanchet@40262
   150
      | aux (t1 $ t2) = aux t1 $ aux t2
blanchet@40262
   151
      | aux t = t
blanchet@40262
   152
  in aux new_t end
blanchet@39930
   153
blanchet@40262
   154
(* Forward proof while preserving bound variables names *)
blanchet@40262
   155
fun rename_bound_vars_RS th rl =
blanchet@39904
   156
  let
blanchet@39904
   157
    val t = concl_of th
blanchet@39930
   158
    val r = concl_of rl
blanchet@40262
   159
    val th' = th RS Thm.rename_boundvars r (protect_bound_var_names r) rl
blanchet@39904
   160
    val t' = concl_of th'
blanchet@40262
   161
  in Thm.rename_boundvars t' (fix_bound_var_names t t') th' end
paulson@24937
   162
paulson@24937
   163
(*raises exception if no rules apply*)
wenzelm@24300
   164
fun tryres (th, rls) =
paulson@18141
   165
  let fun tryall [] = raise THM("tryres", 0, th::rls)
blanchet@40262
   166
        | tryall (rl::rls) =
blanchet@40262
   167
          (rename_bound_vars_RS th rl handle THM _ => tryall rls)
paulson@18141
   168
  in  tryall rls  end;
wenzelm@24300
   169
paulson@21050
   170
(*Permits forward proof from rules that discharge assumptions. The supplied proof state st,
paulson@21050
   171
  e.g. from conj_forward, should have the form
paulson@21050
   172
    "[| P' ==> ?P; Q' ==> ?Q |] ==> ?P & ?Q"
paulson@21050
   173
  and the effect should be to instantiate ?P and ?Q with normalized versions of P' and Q'.*)
wenzelm@32262
   174
fun forward_res ctxt nf st =
paulson@21050
   175
  let fun forward_tacf [prem] = rtac (nf prem) 1
wenzelm@24300
   176
        | forward_tacf prems =
wenzelm@32091
   177
            error (cat_lines
wenzelm@32091
   178
              ("Bad proof state in forward_res, please inform lcp@cl.cam.ac.uk:" ::
wenzelm@32262
   179
                Display.string_of_thm ctxt st ::
wenzelm@32262
   180
                "Premises:" :: map (Display.string_of_thm ctxt) prems))
paulson@21050
   181
  in
wenzelm@37781
   182
    case Seq.pull (ALLGOALS (Misc_Legacy.METAHYPS forward_tacf) st)
paulson@21050
   183
    of SOME(th,_) => th
paulson@21050
   184
     | NONE => raise THM("forward_res", 0, [st])
paulson@21050
   185
  end;
paulson@15579
   186
paulson@20134
   187
(*Are any of the logical connectives in "bs" present in the term?*)
paulson@20134
   188
fun has_conns bs =
blanchet@39328
   189
  let fun has (Const _) = false
haftmann@38557
   190
        | has (Const(@{const_name Trueprop},_) $ p) = has p
haftmann@38557
   191
        | has (Const(@{const_name Not},_) $ p) = has p
haftmann@38795
   192
        | has (Const(@{const_name HOL.disj},_) $ p $ q) = member (op =) bs @{const_name HOL.disj} orelse has p orelse has q
haftmann@38795
   193
        | has (Const(@{const_name HOL.conj},_) $ p $ q) = member (op =) bs @{const_name HOL.conj} orelse has p orelse has q
haftmann@38557
   194
        | has (Const(@{const_name All},_) $ Abs(_,_,p)) = member (op =) bs @{const_name All} orelse has p
haftmann@38557
   195
        | has (Const(@{const_name Ex},_) $ Abs(_,_,p)) = member (op =) bs @{const_name Ex} orelse has p
wenzelm@24300
   196
        | has _ = false
paulson@15579
   197
  in  has  end;
wenzelm@24300
   198
paulson@9840
   199
paulson@15579
   200
(**** Clause handling ****)
paulson@9840
   201
haftmann@38557
   202
fun literals (Const(@{const_name Trueprop},_) $ P) = literals P
haftmann@38795
   203
  | literals (Const(@{const_name HOL.disj},_) $ P $ Q) = literals P @ literals Q
haftmann@38557
   204
  | literals (Const(@{const_name Not},_) $ P) = [(false,P)]
paulson@15579
   205
  | literals P = [(true,P)];
paulson@9840
   206
paulson@15579
   207
(*number of literals in a term*)
paulson@15579
   208
val nliterals = length o literals;
paulson@9840
   209
paulson@18389
   210
paulson@18389
   211
(*** Tautology Checking ***)
paulson@18389
   212
haftmann@38795
   213
fun signed_lits_aux (Const (@{const_name HOL.disj}, _) $ P $ Q) (poslits, neglits) =
paulson@18389
   214
      signed_lits_aux Q (signed_lits_aux P (poslits, neglits))
haftmann@38557
   215
  | signed_lits_aux (Const(@{const_name Not},_) $ P) (poslits, neglits) = (poslits, P::neglits)
paulson@18389
   216
  | signed_lits_aux P (poslits, neglits) = (P::poslits, neglits);
wenzelm@24300
   217
paulson@18389
   218
fun signed_lits th = signed_lits_aux (HOLogic.dest_Trueprop (concl_of th)) ([],[]);
paulson@18389
   219
paulson@18389
   220
(*Literals like X=X are tautologous*)
haftmann@38864
   221
fun taut_poslit (Const(@{const_name HOL.eq},_) $ t $ u) = t aconv u
haftmann@38557
   222
  | taut_poslit (Const(@{const_name True},_)) = true
paulson@18389
   223
  | taut_poslit _ = false;
paulson@18389
   224
paulson@18389
   225
fun is_taut th =
paulson@18389
   226
  let val (poslits,neglits) = signed_lits th
paulson@18389
   227
  in  exists taut_poslit poslits
paulson@18389
   228
      orelse
wenzelm@45740
   229
      exists (member (op aconv) neglits) (@{term False} :: poslits)
paulson@19894
   230
  end
wenzelm@24300
   231
  handle TERM _ => false;       (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   232
paulson@18389
   233
paulson@18389
   234
(*** To remove trivial negated equality literals from clauses ***)
paulson@18389
   235
paulson@18389
   236
(*They are typically functional reflexivity axioms and are the converses of
paulson@18389
   237
  injectivity equivalences*)
wenzelm@24300
   238
blanchet@39953
   239
val not_refl_disj_D = @{thm not_refl_disj_D};
paulson@18389
   240
paulson@20119
   241
(*Is either term a Var that does not properly occur in the other term?*)
paulson@20119
   242
fun eliminable (t as Var _, u) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   243
  | eliminable (u, t as Var _) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   244
  | eliminable _ = false;
paulson@20119
   245
paulson@18389
   246
fun refl_clause_aux 0 th = th
paulson@18389
   247
  | refl_clause_aux n th =
paulson@18389
   248
       case HOLogic.dest_Trueprop (concl_of th) of
haftmann@38795
   249
          (Const (@{const_name HOL.disj}, _) $ (Const (@{const_name HOL.disj}, _) $ _ $ _) $ _) =>
paulson@18389
   250
            refl_clause_aux n (th RS disj_assoc)    (*isolate an atom as first disjunct*)
haftmann@38864
   251
        | (Const (@{const_name HOL.disj}, _) $ (Const(@{const_name Not},_) $ (Const(@{const_name HOL.eq},_) $ t $ u)) $ _) =>
wenzelm@24300
   252
            if eliminable(t,u)
wenzelm@24300
   253
            then refl_clause_aux (n-1) (th RS not_refl_disj_D)  (*Var inequation: delete*)
wenzelm@24300
   254
            else refl_clause_aux (n-1) (th RS disj_comm)  (*not between Vars: ignore*)
haftmann@38795
   255
        | (Const (@{const_name HOL.disj}, _) $ _ $ _) => refl_clause_aux n (th RS disj_comm)
wenzelm@24300
   256
        | _ => (*not a disjunction*) th;
paulson@18389
   257
haftmann@38795
   258
fun notequal_lits_count (Const (@{const_name HOL.disj}, _) $ P $ Q) =
paulson@18389
   259
      notequal_lits_count P + notequal_lits_count Q
haftmann@38864
   260
  | notequal_lits_count (Const(@{const_name Not},_) $ (Const(@{const_name HOL.eq},_) $ _ $ _)) = 1
paulson@18389
   261
  | notequal_lits_count _ = 0;
paulson@18389
   262
paulson@18389
   263
(*Simplify a clause by applying reflexivity to its negated equality literals*)
wenzelm@24300
   264
fun refl_clause th =
paulson@18389
   265
  let val neqs = notequal_lits_count (HOLogic.dest_Trueprop (concl_of th))
paulson@19894
   266
  in  zero_var_indexes (refl_clause_aux neqs th)  end
wenzelm@24300
   267
  handle TERM _ => th;  (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   268
paulson@18389
   269
paulson@24937
   270
(*** Removal of duplicate literals ***)
paulson@24937
   271
paulson@24937
   272
(*Forward proof, passing extra assumptions as theorems to the tactic*)
blanchet@39328
   273
fun forward_res2 nf hyps st =
paulson@24937
   274
  case Seq.pull
paulson@24937
   275
        (REPEAT
wenzelm@37781
   276
         (Misc_Legacy.METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
paulson@24937
   277
         st)
paulson@24937
   278
  of SOME(th,_) => th
paulson@24937
   279
   | NONE => raise THM("forward_res2", 0, [st]);
paulson@24937
   280
paulson@24937
   281
(*Remove duplicates in P|Q by assuming ~P in Q
paulson@24937
   282
  rls (initially []) accumulates assumptions of the form P==>False*)
wenzelm@32262
   283
fun nodups_aux ctxt rls th = nodups_aux ctxt rls (th RS disj_assoc)
paulson@24937
   284
    handle THM _ => tryres(th,rls)
blanchet@39328
   285
    handle THM _ => tryres(forward_res2 (nodups_aux ctxt) rls (th RS disj_forward2),
paulson@24937
   286
                           [disj_FalseD1, disj_FalseD2, asm_rl])
paulson@24937
   287
    handle THM _ => th;
paulson@24937
   288
paulson@24937
   289
(*Remove duplicate literals, if there are any*)
wenzelm@32262
   290
fun nodups ctxt th =
paulson@24937
   291
  if has_duplicates (op =) (literals (prop_of th))
wenzelm@32262
   292
    then nodups_aux ctxt [] th
paulson@24937
   293
    else th;
paulson@24937
   294
paulson@24937
   295
paulson@18389
   296
(*** The basic CNF transformation ***)
paulson@18389
   297
blanchet@39328
   298
fun estimated_num_clauses bound t =
paulson@26562
   299
 let
blanchet@39269
   300
  fun sum x y = if x < bound andalso y < bound then x+y else bound
blanchet@39269
   301
  fun prod x y = if x < bound andalso y < bound then x*y else bound
paulson@26562
   302
  
paulson@26562
   303
  (*Estimate the number of clauses in order to detect infeasible theorems*)
haftmann@38557
   304
  fun signed_nclauses b (Const(@{const_name Trueprop},_) $ t) = signed_nclauses b t
haftmann@38557
   305
    | signed_nclauses b (Const(@{const_name Not},_) $ t) = signed_nclauses (not b) t
haftmann@38795
   306
    | signed_nclauses b (Const(@{const_name HOL.conj},_) $ t $ u) =
wenzelm@32960
   307
        if b then sum (signed_nclauses b t) (signed_nclauses b u)
wenzelm@32960
   308
             else prod (signed_nclauses b t) (signed_nclauses b u)
haftmann@38795
   309
    | signed_nclauses b (Const(@{const_name HOL.disj},_) $ t $ u) =
wenzelm@32960
   310
        if b then prod (signed_nclauses b t) (signed_nclauses b u)
wenzelm@32960
   311
             else sum (signed_nclauses b t) (signed_nclauses b u)
haftmann@38786
   312
    | signed_nclauses b (Const(@{const_name HOL.implies},_) $ t $ u) =
wenzelm@32960
   313
        if b then prod (signed_nclauses (not b) t) (signed_nclauses b u)
wenzelm@32960
   314
             else sum (signed_nclauses (not b) t) (signed_nclauses b u)
haftmann@38864
   315
    | signed_nclauses b (Const(@{const_name HOL.eq}, Type ("fun", [T, _])) $ t $ u) =
wenzelm@32960
   316
        if T = HOLogic.boolT then (*Boolean equality is if-and-only-if*)
wenzelm@32960
   317
            if b then sum (prod (signed_nclauses (not b) t) (signed_nclauses b u))
wenzelm@32960
   318
                          (prod (signed_nclauses (not b) u) (signed_nclauses b t))
wenzelm@32960
   319
                 else sum (prod (signed_nclauses b t) (signed_nclauses b u))
wenzelm@32960
   320
                          (prod (signed_nclauses (not b) t) (signed_nclauses (not b) u))
wenzelm@32960
   321
        else 1
haftmann@38557
   322
    | signed_nclauses b (Const(@{const_name Ex}, _) $ Abs (_,_,t)) = signed_nclauses b t
haftmann@38557
   323
    | signed_nclauses b (Const(@{const_name All},_) $ Abs (_,_,t)) = signed_nclauses b t
paulson@26562
   324
    | signed_nclauses _ _ = 1; (* literal *)
blanchet@39269
   325
 in signed_nclauses true t end
blanchet@39269
   326
blanchet@39269
   327
fun has_too_many_clauses ctxt t =
blanchet@39269
   328
  let val max_cl = Config.get ctxt max_clauses in
blanchet@39328
   329
    estimated_num_clauses (max_cl + 1) t > max_cl
blanchet@39269
   330
  end
paulson@19894
   331
paulson@15579
   332
(*Replaces universally quantified variables by FREE variables -- because
paulson@24937
   333
  assumptions may not contain scheme variables.  Later, generalize using Variable.export. *)
paulson@24937
   334
local  
paulson@24937
   335
  val spec_var = Thm.dest_arg (Thm.dest_arg (#2 (Thm.dest_implies (Thm.cprop_of spec))));
paulson@24937
   336
  val spec_varT = #T (Thm.rep_cterm spec_var);
haftmann@38557
   337
  fun name_of (Const (@{const_name All}, _) $ Abs(x,_,_)) = x | name_of _ = Name.uu;
paulson@24937
   338
in  
paulson@24937
   339
  fun freeze_spec th ctxt =
paulson@24937
   340
    let
wenzelm@42361
   341
      val cert = Thm.cterm_of (Proof_Context.theory_of ctxt);
paulson@24937
   342
      val ([x], ctxt') = Variable.variant_fixes [name_of (HOLogic.dest_Trueprop (concl_of th))] ctxt;
paulson@24937
   343
      val spec' = Thm.instantiate ([], [(spec_var, cert (Free (x, spec_varT)))]) spec;
paulson@24937
   344
    in (th RS spec', ctxt') end
paulson@24937
   345
end;
paulson@9840
   346
paulson@15998
   347
(*Used with METAHYPS below. There is one assumption, which gets bound to prem
paulson@15998
   348
  and then normalized via function nf. The normal form is given to resolve_tac,
paulson@22515
   349
  instantiate a Boolean variable created by resolution with disj_forward. Since
paulson@22515
   350
  (nf prem) returns a LIST of theorems, we can backtrack to get all combinations.*)
paulson@15579
   351
fun resop nf [prem] = resolve_tac (nf prem) 1;
paulson@9840
   352
blanchet@39037
   353
(* Any need to extend this list with "HOL.type_class", "HOL.eq_class",
blanchet@39037
   354
   and "Pure.term"? *)
haftmann@38557
   355
val has_meta_conn = exists_Const (member (op =) ["==", "==>", "=simp=>", "all", "prop"] o #1);
paulson@20417
   356
blanchet@37410
   357
fun apply_skolem_theorem (th, rls) =
blanchet@37398
   358
  let
blanchet@37410
   359
    fun tryall [] = raise THM ("apply_skolem_theorem", 0, th::rls)
blanchet@37398
   360
      | tryall (rl :: rls) =
blanchet@37398
   361
        first_order_resolve th rl handle THM _ => tryall rls
blanchet@37398
   362
  in tryall rls end
paulson@22515
   363
blanchet@37410
   364
(* Conjunctive normal form, adding clauses from th in front of ths (for foldr).
blanchet@37410
   365
   Strips universal quantifiers and breaks up conjunctions.
blanchet@37410
   366
   Eliminates existential quantifiers using Skolemization theorems. *)
blanchet@43964
   367
fun cnf old_skolem_ths ctxt ctxt0 (th, ths) =
blanchet@43964
   368
  let val ctxt0r = Unsynchronized.ref ctxt0   (* FIXME ??? *)
paulson@24937
   369
      fun cnf_aux (th,ths) =
wenzelm@24300
   370
        if not (can HOLogic.dest_Trueprop (prop_of th)) then ths (*meta-level: ignore*)
haftmann@38795
   371
        else if not (has_conns [@{const_name All}, @{const_name Ex}, @{const_name HOL.conj}] (prop_of th))
blanchet@43964
   372
        then nodups ctxt0 th :: ths (*no work to do, terminate*)
wenzelm@24300
   373
        else case head_of (HOLogic.dest_Trueprop (concl_of th)) of
haftmann@38795
   374
            Const (@{const_name HOL.conj}, _) => (*conjunction*)
wenzelm@24300
   375
                cnf_aux (th RS conjunct1, cnf_aux (th RS conjunct2, ths))
haftmann@38557
   376
          | Const (@{const_name All}, _) => (*universal quantifier*)
blanchet@43964
   377
                let val (th',ctxt0') = freeze_spec th (!ctxt0r)
blanchet@43964
   378
                in  ctxt0r := ctxt0'; cnf_aux (th', ths) end
haftmann@38557
   379
          | Const (@{const_name Ex}, _) =>
wenzelm@24300
   380
              (*existential quantifier: Insert Skolem functions*)
blanchet@39886
   381
              cnf_aux (apply_skolem_theorem (th, old_skolem_ths), ths)
haftmann@38795
   382
          | Const (@{const_name HOL.disj}, _) =>
wenzelm@24300
   383
              (*Disjunction of P, Q: Create new goal of proving ?P | ?Q and solve it using
wenzelm@24300
   384
                all combinations of converting P, Q to CNF.*)
wenzelm@24300
   385
              let val tac =
wenzelm@37781
   386
                  Misc_Legacy.METAHYPS (resop cnf_nil) 1 THEN
wenzelm@37781
   387
                   (fn st' => st' |> Misc_Legacy.METAHYPS (resop cnf_nil) 1)
wenzelm@24300
   388
              in  Seq.list_of (tac (th RS disj_forward)) @ ths  end
blanchet@43964
   389
          | _ => nodups ctxt0 th :: ths  (*no work to do*)
paulson@19154
   390
      and cnf_nil th = cnf_aux (th,[])
blanchet@39269
   391
      val cls =
blanchet@43964
   392
        if has_too_many_clauses ctxt (concl_of th) then
blanchet@43964
   393
          (trace_msg ctxt (fn () =>
blanchet@43964
   394
               "cnf is ignoring: " ^ Display.string_of_thm ctxt0 th); ths)
blanchet@43964
   395
        else
blanchet@43964
   396
          cnf_aux (th, ths)
blanchet@43964
   397
  in (cls, !ctxt0r) end
blanchet@43964
   398
fun make_cnf old_skolem_ths th ctxt ctxt0 =
blanchet@43964
   399
  cnf old_skolem_ths ctxt ctxt0 (th, [])
paulson@20417
   400
paulson@20417
   401
(*Generalization, removal of redundant equalities, removal of tautologies.*)
paulson@24937
   402
fun finish_cnf ths = filter (not o is_taut) (map refl_clause ths);
paulson@9840
   403
paulson@9840
   404
paulson@15579
   405
(**** Generation of contrapositives ****)
paulson@9840
   406
haftmann@38557
   407
fun is_left (Const (@{const_name Trueprop}, _) $
haftmann@38795
   408
               (Const (@{const_name HOL.disj}, _) $ (Const (@{const_name HOL.disj}, _) $ _ $ _) $ _)) = true
paulson@21102
   409
  | is_left _ = false;
wenzelm@24300
   410
paulson@15579
   411
(*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
wenzelm@24300
   412
fun assoc_right th =
paulson@21102
   413
  if is_left (prop_of th) then assoc_right (th RS disj_assoc)
paulson@21102
   414
  else th;
paulson@9840
   415
paulson@15579
   416
(*Must check for negative literal first!*)
paulson@15579
   417
val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
paulson@9840
   418
paulson@15579
   419
(*For ordinary resolution. *)
paulson@15579
   420
val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
paulson@9840
   421
paulson@15579
   422
(*Create a goal or support clause, conclusing False*)
paulson@15579
   423
fun make_goal th =   (*Must check for negative literal first!*)
paulson@15579
   424
    make_goal (tryres(th, clause_rules))
paulson@15579
   425
  handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
paulson@9840
   426
paulson@15579
   427
(*Sort clauses by number of literals*)
paulson@15579
   428
fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
paulson@9840
   429
paulson@18389
   430
fun sort_clauses ths = sort (make_ord fewerlits) ths;
paulson@9840
   431
blanchet@38099
   432
fun has_bool @{typ bool} = true
blanchet@38099
   433
  | has_bool (Type (_, Ts)) = exists has_bool Ts
blanchet@38099
   434
  | has_bool _ = false
blanchet@38099
   435
blanchet@38099
   436
fun has_fun (Type (@{type_name fun}, _)) = true
blanchet@38099
   437
  | has_fun (Type (_, Ts)) = exists has_fun Ts
blanchet@38099
   438
  | has_fun _ = false
wenzelm@24300
   439
wenzelm@24300
   440
(*Is the string the name of a connective? Really only | and Not can remain,
wenzelm@24300
   441
  since this code expects to be called on a clause form.*)
wenzelm@19875
   442
val is_conn = member (op =)
haftmann@38795
   443
    [@{const_name Trueprop}, @{const_name HOL.conj}, @{const_name HOL.disj},
haftmann@38786
   444
     @{const_name HOL.implies}, @{const_name Not},
haftmann@38557
   445
     @{const_name All}, @{const_name Ex}, @{const_name Ball}, @{const_name Bex}];
paulson@15613
   446
wenzelm@24300
   447
(*True if the term contains a function--not a logical connective--where the type
paulson@20524
   448
  of any argument contains bool.*)
wenzelm@24300
   449
val has_bool_arg_const =
paulson@15613
   450
    exists_Const
blanchet@38099
   451
      (fn (c,T) => not(is_conn c) andalso exists has_bool (binder_types T));
paulson@22381
   452
wenzelm@24300
   453
(*A higher-order instance of a first-order constant? Example is the definition of
haftmann@38622
   454
  one, 1, at a function type in theory Function_Algebras.*)
wenzelm@24300
   455
fun higher_inst_const thy (c,T) =
paulson@22381
   456
  case binder_types T of
paulson@22381
   457
      [] => false (*not a function type, OK*)
paulson@22381
   458
    | Ts => length (binder_types (Sign.the_const_type thy c)) <> length Ts;
paulson@22381
   459
blanchet@42833
   460
(* Returns false if any Vars in the theorem mention type bool.
blanchet@42833
   461
   Also rejects functions whose arguments are Booleans or other functions. *)
paulson@22381
   462
fun is_fol_term thy t =
blanchet@42833
   463
    Term.is_first_order [@{const_name all}, @{const_name All},
blanchet@42833
   464
                         @{const_name Ex}] t andalso
blanchet@38099
   465
    not (exists_subterm (fn Var (_, T) => has_bool T orelse has_fun T
blanchet@42833
   466
                          | _ => false) t orelse
blanchet@38099
   467
         has_bool_arg_const t orelse
wenzelm@24300
   468
         exists_Const (higher_inst_const thy) t orelse
wenzelm@24300
   469
         has_meta_conn t);
paulson@19204
   470
paulson@21102
   471
fun rigid t = not (is_Var (head_of t));
paulson@21102
   472
haftmann@38795
   473
fun ok4horn (Const (@{const_name Trueprop},_) $ (Const (@{const_name HOL.disj}, _) $ t $ _)) = rigid t
haftmann@38557
   474
  | ok4horn (Const (@{const_name Trueprop},_) $ t) = rigid t
paulson@21102
   475
  | ok4horn _ = false;
paulson@21102
   476
paulson@15579
   477
(*Create a meta-level Horn clause*)
wenzelm@24300
   478
fun make_horn crules th =
wenzelm@24300
   479
  if ok4horn (concl_of th)
paulson@21102
   480
  then make_horn crules (tryres(th,crules)) handle THM _ => th
paulson@21102
   481
  else th;
paulson@9840
   482
paulson@16563
   483
(*Generate Horn clauses for all contrapositives of a clause. The input, th,
paulson@16563
   484
  is a HOL disjunction.*)
wenzelm@33339
   485
fun add_contras crules th hcs =
blanchet@39328
   486
  let fun rots (0,_) = hcs
wenzelm@24300
   487
        | rots (k,th) = zero_var_indexes (make_horn crules th) ::
wenzelm@24300
   488
                        rots(k-1, assoc_right (th RS disj_comm))
paulson@15862
   489
  in case nliterals(prop_of th) of
wenzelm@24300
   490
        1 => th::hcs
paulson@15579
   491
      | n => rots(n, assoc_right th)
paulson@15579
   492
  end;
paulson@9840
   493
paulson@15579
   494
(*Use "theorem naming" to label the clauses*)
paulson@15579
   495
fun name_thms label =
wenzelm@33339
   496
    let fun name1 th (k, ths) =
wenzelm@27865
   497
          (k-1, Thm.put_name_hint (label ^ string_of_int k) th :: ths)
wenzelm@33339
   498
    in  fn ths => #2 (fold_rev name1 ths (length ths, []))  end;
paulson@9840
   499
paulson@16563
   500
(*Is the given disjunction an all-negative support clause?*)
paulson@15579
   501
fun is_negative th = forall (not o #1) (literals (prop_of th));
paulson@9840
   502
wenzelm@33317
   503
val neg_clauses = filter is_negative;
paulson@9840
   504
paulson@9840
   505
paulson@15579
   506
(***** MESON PROOF PROCEDURE *****)
paulson@9840
   507
haftmann@38557
   508
fun rhyps (Const("==>",_) $ (Const(@{const_name Trueprop},_) $ A) $ phi,
wenzelm@24300
   509
           As) = rhyps(phi, A::As)
paulson@15579
   510
  | rhyps (_, As) = As;
paulson@9840
   511
paulson@15579
   512
(** Detecting repeated assumptions in a subgoal **)
paulson@9840
   513
paulson@15579
   514
(*The stringtree detects repeated assumptions.*)
wenzelm@33245
   515
fun ins_term t net = Net.insert_term (op aconv) (t, t) net;
paulson@9840
   516
paulson@15579
   517
(*detects repetitions in a list of terms*)
paulson@15579
   518
fun has_reps [] = false
paulson@15579
   519
  | has_reps [_] = false
paulson@15579
   520
  | has_reps [t,u] = (t aconv u)
wenzelm@33245
   521
  | has_reps ts = (fold ins_term ts Net.empty; false) handle Net.INSERT => true;
paulson@9840
   522
paulson@15579
   523
(*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
paulson@18508
   524
fun TRYING_eq_assume_tac 0 st = Seq.single st
paulson@18508
   525
  | TRYING_eq_assume_tac i st =
wenzelm@31945
   526
       TRYING_eq_assume_tac (i-1) (Thm.eq_assumption i st)
paulson@18508
   527
       handle THM _ => TRYING_eq_assume_tac (i-1) st;
paulson@18508
   528
paulson@18508
   529
fun TRYALL_eq_assume_tac st = TRYING_eq_assume_tac (nprems_of st) st;
paulson@9840
   530
paulson@15579
   531
(*Loop checking: FAIL if trying to prove the same thing twice
paulson@15579
   532
  -- if *ANY* subgoal has repeated literals*)
paulson@15579
   533
fun check_tac st =
paulson@15579
   534
  if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
paulson@15579
   535
  then  Seq.empty  else  Seq.single st;
paulson@9840
   536
paulson@9840
   537
paulson@15579
   538
(* net_resolve_tac actually made it slower... *)
paulson@15579
   539
fun prolog_step_tac horns i =
paulson@15579
   540
    (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
paulson@18508
   541
    TRYALL_eq_assume_tac;
paulson@9840
   542
paulson@9840
   543
(*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
wenzelm@33339
   544
fun addconcl prem sz = size_of_term (Logic.strip_assums_concl prem) + sz;
paulson@15579
   545
wenzelm@33339
   546
fun size_of_subgoals st = fold_rev addconcl (prems_of st) 0;
paulson@15579
   547
paulson@9840
   548
paulson@9840
   549
(*Negation Normal Form*)
paulson@9840
   550
val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
wenzelm@9869
   551
               not_impD, not_iffD, not_allD, not_exD, not_notD];
paulson@15581
   552
haftmann@38557
   553
fun ok4nnf (Const (@{const_name Trueprop},_) $ (Const (@{const_name Not}, _) $ t)) = rigid t
haftmann@38557
   554
  | ok4nnf (Const (@{const_name Trueprop},_) $ t) = rigid t
paulson@21102
   555
  | ok4nnf _ = false;
paulson@21102
   556
wenzelm@32262
   557
fun make_nnf1 ctxt th =
wenzelm@24300
   558
  if ok4nnf (concl_of th)
wenzelm@32262
   559
  then make_nnf1 ctxt (tryres(th, nnf_rls))
paulson@28174
   560
    handle THM ("tryres", _, _) =>
wenzelm@32262
   561
        forward_res ctxt (make_nnf1 ctxt)
wenzelm@9869
   562
           (tryres(th, [conj_forward,disj_forward,all_forward,ex_forward]))
paulson@28174
   563
    handle THM ("tryres", _, _) => th
blanchet@38608
   564
  else th
paulson@9840
   565
wenzelm@24300
   566
(*The simplification removes defined quantifiers and occurrences of True and False.
paulson@20018
   567
  nnf_ss also includes the one-point simprocs,
paulson@18405
   568
  which are needed to avoid the various one-point theorems from generating junk clauses.*)
paulson@19894
   569
val nnf_simps =
blanchet@37539
   570
  @{thms simp_implies_def Ex1_def Ball_def Bex_def if_True if_False if_cancel
blanchet@37539
   571
         if_eq_cancel cases_simp}
blanchet@37539
   572
val nnf_extra_simps = @{thms split_ifs ex_simps all_simps simp_thms}
paulson@18405
   573
blanchet@43821
   574
(* FIXME: "let_simp" is probably redundant now that we also rewrite with
blanchet@43821
   575
  "Let_def_raw". *)
paulson@18405
   576
val nnf_ss =
wenzelm@24300
   577
  HOL_basic_ss addsimps nnf_extra_simps
blanchet@43264
   578
    addsimprocs [@{simproc defined_All}, @{simproc defined_Ex}, @{simproc neq},
blanchet@43264
   579
                 @{simproc let_simp}]
blanchet@43264
   580
blanchet@46093
   581
val presimplified_consts =
blanchet@43264
   582
  [@{const_name simp_implies}, @{const_name False}, @{const_name True},
blanchet@43264
   583
   @{const_name Ex1}, @{const_name Ball}, @{const_name Bex}, @{const_name If},
blanchet@43264
   584
   @{const_name Let}]
paulson@15872
   585
blanchet@46093
   586
val presimplify =
blanchet@42750
   587
  rewrite_rule (map safe_mk_meta_eq nnf_simps)
blanchet@42750
   588
  #> simplify nnf_ss
blanchet@46071
   589
  #> Raw_Simplifier.rewrite_rule @{thms Let_def_raw}
blanchet@38089
   590
wenzelm@32262
   591
fun make_nnf ctxt th = case prems_of th of
blanchet@46093
   592
    [] => th |> presimplify |> make_nnf1 ctxt
paulson@21050
   593
  | _ => raise THM ("make_nnf: premises in argument", 0, [th]);
paulson@15581
   594
blanchet@39950
   595
fun choice_theorems thy =
blanchet@39950
   596
  try (Global_Theory.get_thm thy) "Hilbert_Choice.choice" |> the_list
blanchet@39950
   597
blanchet@39900
   598
(* Pull existential quantifiers to front. This accomplishes Skolemization for
blanchet@39900
   599
   clauses that arise from a subgoal. *)
blanchet@39950
   600
fun skolemize_with_choice_theorems ctxt choice_ths =
blanchet@39900
   601
  let
blanchet@39900
   602
    fun aux th =
blanchet@39900
   603
      if not (has_conns [@{const_name Ex}] (prop_of th)) then
blanchet@39900
   604
        th
blanchet@39900
   605
      else
blanchet@39901
   606
        tryres (th, choice_ths @
blanchet@39900
   607
                    [conj_exD1, conj_exD2, disj_exD, disj_exD1, disj_exD2])
blanchet@39900
   608
        |> aux
blanchet@39900
   609
        handle THM ("tryres", _, _) =>
blanchet@39900
   610
               tryres (th, [conj_forward, disj_forward, all_forward])
blanchet@39900
   611
               |> forward_res ctxt aux
blanchet@39900
   612
               |> aux
blanchet@39900
   613
               handle THM ("tryres", _, _) =>
blanchet@40262
   614
                      rename_bound_vars_RS th ex_forward
blanchet@39900
   615
                      |> forward_res ctxt aux
blanchet@39900
   616
  in aux o make_nnf ctxt end
paulson@29684
   617
blanchet@39950
   618
fun skolemize ctxt =
wenzelm@42361
   619
  let val thy = Proof_Context.theory_of ctxt in
blanchet@39950
   620
    skolemize_with_choice_theorems ctxt (choice_theorems thy)
blanchet@39950
   621
  end
blanchet@39904
   622
blanchet@42760
   623
(* Removes the lambdas from an equation of the form "t = (%x1 ... xn. u)". It
blanchet@42760
   624
   would be desirable to do this symmetrically but there's at least one existing
blanchet@42760
   625
   proof in "Tarski" that relies on the current behavior. *)
blanchet@42747
   626
fun extensionalize_conv ctxt ct =
blanchet@42747
   627
  case term_of ct of
blanchet@42760
   628
    Const (@{const_name HOL.eq}, _) $ _ $ Abs _ =>
blanchet@42760
   629
    ct |> (Conv.rewr_conv @{thm fun_eq_iff [THEN eq_reflection]}
blanchet@42760
   630
           then_conv extensionalize_conv ctxt)
blanchet@42747
   631
  | _ $ _ => Conv.comb_conv (extensionalize_conv ctxt) ct
blanchet@42747
   632
  | Abs _ => Conv.abs_conv (extensionalize_conv o snd) ctxt ct
blanchet@42747
   633
  | _ => Conv.all_conv ct
blanchet@42747
   634
blanchet@42747
   635
val extensionalize_theorem = Conv.fconv_rule o extensionalize_conv
blanchet@42747
   636
blanchet@39900
   637
(* "RS" can fail if "unify_search_bound" is too small. *)
blanchet@46071
   638
fun try_skolemize_etc ctxt th =
blanchet@42747
   639
  (* Extensionalize "th", because that makes sense and that's what Sledgehammer
blanchet@42747
   640
     does, but also keep an unextensionalized version of "th" for backward
blanchet@42747
   641
     compatibility. *)
blanchet@46071
   642
  [th] |> insert Thm.eq_thm_prop (extensionalize_theorem ctxt th)
blanchet@46071
   643
       |> map_filter (fn th => th |> try (skolemize ctxt)
blanchet@46071
   644
                                  |> tap (fn NONE =>
blanchet@46071
   645
                                             trace_msg ctxt (fn () =>
blanchet@46071
   646
                                                 "Failed to skolemize " ^
blanchet@46071
   647
                                                  Display.string_of_thm ctxt th)
blanchet@46071
   648
                                           | _ => ()))
paulson@25694
   649
blanchet@43964
   650
fun add_clauses ctxt th cls =
wenzelm@36603
   651
  let val ctxt0 = Variable.global_thm_context th
blanchet@43964
   652
      val (cnfs, ctxt) = make_cnf [] th ctxt ctxt0
paulson@24937
   653
  in Variable.export ctxt ctxt0 cnfs @ cls end;
paulson@9840
   654
paulson@9840
   655
(*Make clauses from a list of theorems, previously Skolemized and put into nnf.
paulson@9840
   656
  The resulting clauses are HOL disjunctions.*)
blanchet@43964
   657
fun make_clauses_unsorted ctxt ths = fold_rev (add_clauses ctxt) ths [];
blanchet@43964
   658
val make_clauses = sort_clauses oo make_clauses_unsorted;
quigley@15773
   659
paulson@16563
   660
(*Convert a list of clauses (disjunctions) to Horn clauses (contrapositives)*)
wenzelm@9869
   661
fun make_horns ths =
paulson@9840
   662
    name_thms "Horn#"
wenzelm@33339
   663
      (distinct Thm.eq_thm_prop (fold_rev (add_contras clause_rules) ths []));
paulson@9840
   664
paulson@9840
   665
(*Could simply use nprems_of, which would count remaining subgoals -- no
paulson@9840
   666
  discrimination as to their size!  With BEST_FIRST, fails for problem 41.*)
paulson@9840
   667
wenzelm@9869
   668
fun best_prolog_tac sizef horns =
paulson@9840
   669
    BEST_FIRST (has_fewer_prems 1, sizef) (prolog_step_tac horns 1);
paulson@9840
   670
wenzelm@9869
   671
fun depth_prolog_tac horns =
paulson@9840
   672
    DEPTH_FIRST (has_fewer_prems 1) (prolog_step_tac horns 1);
paulson@9840
   673
paulson@9840
   674
(*Return all negative clauses, as possible goal clauses*)
paulson@9840
   675
fun gocls cls = name_thms "Goal#" (map make_goal (neg_clauses cls));
paulson@9840
   676
wenzelm@32262
   677
fun skolemize_prems_tac ctxt prems =
blanchet@42747
   678
  cut_facts_tac (maps (try_skolemize_etc ctxt) prems) THEN' REPEAT o etac exE
paulson@9840
   679
paulson@22546
   680
(*Basis of all meson-tactics.  Supplies cltac with clauses: HOL disjunctions.
paulson@22546
   681
  Function mkcl converts theorems to clauses.*)
blanchet@39037
   682
fun MESON preskolem_tac mkcl cltac ctxt i st =
paulson@16588
   683
  SELECT_GOAL
wenzelm@35625
   684
    (EVERY [Object_Logic.atomize_prems_tac 1,
paulson@23552
   685
            rtac ccontr 1,
blanchet@39269
   686
            preskolem_tac,
wenzelm@32283
   687
            Subgoal.FOCUS (fn {context = ctxt', prems = negs, ...} =>
blanchet@39269
   688
                      EVERY1 [skolemize_prems_tac ctxt negs,
wenzelm@32283
   689
                              Subgoal.FOCUS (cltac o mkcl o #prems) ctxt']) ctxt 1]) i st
wenzelm@24300
   690
  handle THM _ => no_tac st;    (*probably from make_meta_clause, not first-order*)
paulson@9840
   691
blanchet@39037
   692
paulson@9840
   693
(** Best-first search versions **)
paulson@9840
   694
paulson@16563
   695
(*ths is a list of additional clauses (HOL disjunctions) to use.*)
blanchet@43964
   696
fun best_meson_tac sizef ctxt =
blanchet@43964
   697
  MESON all_tac (make_clauses ctxt)
paulson@22546
   698
    (fn cls =>
paulson@9840
   699
         THEN_BEST_FIRST (resolve_tac (gocls cls) 1)
paulson@9840
   700
                         (has_fewer_prems 1, sizef)
blanchet@43964
   701
                         (prolog_step_tac (make_horns cls) 1))
blanchet@43964
   702
    ctxt
paulson@9840
   703
paulson@9840
   704
(*First, breaks the goal into independent units*)
wenzelm@32262
   705
fun safe_best_meson_tac ctxt =
wenzelm@42793
   706
  SELECT_GOAL (TRY (safe_tac ctxt) THEN TRYALL (best_meson_tac size_of_subgoals ctxt));
paulson@9840
   707
paulson@9840
   708
(** Depth-first search version **)
paulson@9840
   709
blanchet@43964
   710
fun depth_meson_tac ctxt =
blanchet@43964
   711
  MESON all_tac (make_clauses ctxt)
blanchet@43964
   712
    (fn cls => EVERY [resolve_tac (gocls cls) 1, depth_prolog_tac (make_horns cls)])
blanchet@43964
   713
    ctxt
paulson@9840
   714
paulson@9840
   715
(** Iterative deepening version **)
paulson@9840
   716
paulson@9840
   717
(*This version does only one inference per call;
paulson@9840
   718
  having only one eq_assume_tac speeds it up!*)
wenzelm@9869
   719
fun prolog_step_tac' horns =
blanchet@39328
   720
    let val (horn0s, _) = (*0 subgoals vs 1 or more*)
paulson@9840
   721
            take_prefix Thm.no_prems horns
paulson@9840
   722
        val nrtac = net_resolve_tac horns
paulson@9840
   723
    in  fn i => eq_assume_tac i ORELSE
paulson@9840
   724
                match_tac horn0s i ORELSE  (*no backtracking if unit MATCHES*)
paulson@9840
   725
                ((assume_tac i APPEND nrtac i) THEN check_tac)
paulson@9840
   726
    end;
paulson@9840
   727
wenzelm@9869
   728
fun iter_deepen_prolog_tac horns =
wenzelm@38802
   729
    ITER_DEEPEN iter_deepen_limit (has_fewer_prems 1) (prolog_step_tac' horns);
paulson@9840
   730
blanchet@43964
   731
fun iter_deepen_meson_tac ctxt ths = ctxt |> MESON all_tac (make_clauses ctxt)
wenzelm@32091
   732
  (fn cls =>
wenzelm@32091
   733
    (case (gocls (cls @ ths)) of
wenzelm@32091
   734
      [] => no_tac  (*no goal clauses*)
wenzelm@32091
   735
    | goes =>
wenzelm@32091
   736
        let
wenzelm@32091
   737
          val horns = make_horns (cls @ ths)
blanchet@39979
   738
          val _ = trace_msg ctxt (fn () =>
wenzelm@32091
   739
            cat_lines ("meson method called:" ::
wenzelm@32262
   740
              map (Display.string_of_thm ctxt) (cls @ ths) @
wenzelm@32262
   741
              ["clauses:"] @ map (Display.string_of_thm ctxt) horns))
wenzelm@38802
   742
        in
wenzelm@38802
   743
          THEN_ITER_DEEPEN iter_deepen_limit
wenzelm@38802
   744
            (resolve_tac goes 1) (has_fewer_prems 1) (prolog_step_tac' horns)
wenzelm@38802
   745
        end));
paulson@9840
   746
wenzelm@32262
   747
fun meson_tac ctxt ths =
wenzelm@42793
   748
  SELECT_GOAL (TRY (safe_tac ctxt) THEN TRYALL (iter_deepen_meson_tac ctxt ths));
wenzelm@9869
   749
wenzelm@9869
   750
paulson@14813
   751
(**** Code to support ordinary resolution, rather than Model Elimination ****)
paulson@14744
   752
wenzelm@24300
   753
(*Convert a list of clauses (disjunctions) to meta-level clauses (==>),
paulson@15008
   754
  with no contrapositives, for ordinary resolution.*)
paulson@14744
   755
paulson@14744
   756
(*Rules to convert the head literal into a negated assumption. If the head
paulson@14744
   757
  literal is already negated, then using notEfalse instead of notEfalse'
paulson@14744
   758
  prevents a double negation.*)
wenzelm@27239
   759
val notEfalse = read_instantiate @{context} [(("R", 0), "False")] notE;
paulson@14744
   760
val notEfalse' = rotate_prems 1 notEfalse;
paulson@14744
   761
wenzelm@24300
   762
fun negated_asm_of_head th =
paulson@14744
   763
    th RS notEfalse handle THM _ => th RS notEfalse';
paulson@14744
   764
paulson@26066
   765
(*Converting one theorem from a disjunction to a meta-level clause*)
paulson@26066
   766
fun make_meta_clause th =
wenzelm@33832
   767
  let val (fth,thaw) = Drule.legacy_freeze_thaw_robust th
paulson@26066
   768
  in  
wenzelm@35845
   769
      (zero_var_indexes o Thm.varifyT_global o thaw 0 o 
paulson@26066
   770
       negated_asm_of_head o make_horn resolution_clause_rules) fth
paulson@26066
   771
  end;
wenzelm@24300
   772
paulson@14744
   773
fun make_meta_clauses ths =
paulson@14744
   774
    name_thms "MClause#"
wenzelm@22360
   775
      (distinct Thm.eq_thm_prop (map make_meta_clause ths));
paulson@14744
   776
paulson@9840
   777
end;