clasohm@1459
|
1 |
(* Title: FOL/simpdata
|
clasohm@0
|
2 |
ID: $Id$
|
clasohm@1459
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
lcp@282
|
4 |
Copyright 1994 University of Cambridge
|
clasohm@0
|
5 |
|
clasohm@0
|
6 |
Simplification data for FOL
|
clasohm@0
|
7 |
*)
|
clasohm@0
|
8 |
|
paulson@5496
|
9 |
(* Elimination of True from asumptions: *)
|
paulson@5496
|
10 |
|
paulson@5496
|
11 |
val True_implies_equals = prove_goal IFOL.thy
|
paulson@5496
|
12 |
"(True ==> PROP P) == PROP P"
|
paulson@5496
|
13 |
(K [rtac equal_intr_rule 1, atac 2,
|
paulson@5496
|
14 |
METAHYPS (fn prems => resolve_tac prems 1) 1,
|
paulson@5496
|
15 |
rtac TrueI 1]);
|
paulson@5496
|
16 |
|
paulson@5496
|
17 |
|
clasohm@0
|
18 |
(*** Rewrite rules ***)
|
clasohm@0
|
19 |
|
clasohm@0
|
20 |
fun int_prove_fun s =
|
lcp@282
|
21 |
(writeln s;
|
lcp@282
|
22 |
prove_goal IFOL.thy s
|
lcp@282
|
23 |
(fn prems => [ (cut_facts_tac prems 1),
|
paulson@2601
|
24 |
(IntPr.fast_tac 1) ]));
|
clasohm@0
|
25 |
|
paulson@1953
|
26 |
val conj_simps = map int_prove_fun
|
clasohm@1459
|
27 |
["P & True <-> P", "True & P <-> P",
|
clasohm@0
|
28 |
"P & False <-> False", "False & P <-> False",
|
nipkow@2801
|
29 |
"P & P <-> P", "P & P & Q <-> P & Q",
|
clasohm@1459
|
30 |
"P & ~P <-> False", "~P & P <-> False",
|
clasohm@0
|
31 |
"(P & Q) & R <-> P & (Q & R)"];
|
clasohm@0
|
32 |
|
paulson@1953
|
33 |
val disj_simps = map int_prove_fun
|
clasohm@1459
|
34 |
["P | True <-> True", "True | P <-> True",
|
clasohm@1459
|
35 |
"P | False <-> P", "False | P <-> P",
|
nipkow@2801
|
36 |
"P | P <-> P", "P | P | Q <-> P | Q",
|
clasohm@0
|
37 |
"(P | Q) | R <-> P | (Q | R)"];
|
clasohm@0
|
38 |
|
paulson@1953
|
39 |
val not_simps = map int_prove_fun
|
lcp@282
|
40 |
["~(P|Q) <-> ~P & ~Q",
|
clasohm@1459
|
41 |
"~ False <-> True", "~ True <-> False"];
|
clasohm@0
|
42 |
|
paulson@1953
|
43 |
val imp_simps = map int_prove_fun
|
clasohm@1459
|
44 |
["(P --> False) <-> ~P", "(P --> True) <-> True",
|
clasohm@1459
|
45 |
"(False --> P) <-> True", "(True --> P) <-> P",
|
clasohm@1459
|
46 |
"(P --> P) <-> True", "(P --> ~P) <-> ~P"];
|
clasohm@0
|
47 |
|
paulson@1953
|
48 |
val iff_simps = map int_prove_fun
|
clasohm@1459
|
49 |
["(True <-> P) <-> P", "(P <-> True) <-> P",
|
clasohm@0
|
50 |
"(P <-> P) <-> True",
|
clasohm@1459
|
51 |
"(False <-> P) <-> ~P", "(P <-> False) <-> ~P"];
|
clasohm@0
|
52 |
|
paulson@4349
|
53 |
(*The x=t versions are needed for the simplification procedures*)
|
paulson@1953
|
54 |
val quant_simps = map int_prove_fun
|
paulson@4349
|
55 |
["(ALL x. P) <-> P",
|
paulson@4349
|
56 |
"(ALL x. x=t --> P(x)) <-> P(t)",
|
paulson@4349
|
57 |
"(ALL x. t=x --> P(x)) <-> P(t)",
|
paulson@4349
|
58 |
"(EX x. P) <-> P",
|
paulson@4349
|
59 |
"(EX x. x=t & P(x)) <-> P(t)",
|
paulson@4349
|
60 |
"(EX x. t=x & P(x)) <-> P(t)"];
|
clasohm@0
|
61 |
|
clasohm@0
|
62 |
(*These are NOT supplied by default!*)
|
paulson@1953
|
63 |
val distrib_simps = map int_prove_fun
|
lcp@282
|
64 |
["P & (Q | R) <-> P&Q | P&R",
|
lcp@282
|
65 |
"(Q | R) & P <-> Q&P | R&P",
|
clasohm@0
|
66 |
"(P | Q --> R) <-> (P --> R) & (Q --> R)"];
|
clasohm@0
|
67 |
|
lcp@282
|
68 |
(** Conversion into rewrite rules **)
|
clasohm@0
|
69 |
|
nipkow@53
|
70 |
fun gen_all th = forall_elim_vars (#maxidx(rep_thm th)+1) th;
|
nipkow@53
|
71 |
|
lcp@282
|
72 |
val P_iff_F = int_prove_fun "~P ==> (P <-> False)";
|
lcp@282
|
73 |
val iff_reflection_F = P_iff_F RS iff_reflection;
|
lcp@282
|
74 |
|
lcp@282
|
75 |
val P_iff_T = int_prove_fun "P ==> (P <-> True)";
|
lcp@282
|
76 |
val iff_reflection_T = P_iff_T RS iff_reflection;
|
lcp@282
|
77 |
|
lcp@282
|
78 |
(*Make meta-equalities. The operator below is Trueprop*)
|
oheimb@5555
|
79 |
|
lcp@282
|
80 |
fun mk_meta_eq th = case concl_of th of
|
oheimb@5555
|
81 |
_ $ (Const("op =",_)$_$_) => th RS eq_reflection
|
oheimb@5555
|
82 |
| _ $ (Const("op <->",_)$_$_) => th RS iff_reflection
|
oheimb@5555
|
83 |
| _ =>
|
oheimb@5555
|
84 |
error("conclusion must be a =-equality or <->");;
|
oheimb@5555
|
85 |
|
oheimb@5555
|
86 |
fun mk_eq th = case concl_of th of
|
nipkow@394
|
87 |
Const("==",_)$_$_ => th
|
oheimb@5555
|
88 |
| _ $ (Const("op =",_)$_$_) => mk_meta_eq th
|
oheimb@5555
|
89 |
| _ $ (Const("op <->",_)$_$_) => mk_meta_eq th
|
lcp@282
|
90 |
| _ $ (Const("Not",_)$_) => th RS iff_reflection_F
|
lcp@282
|
91 |
| _ => th RS iff_reflection_T;
|
clasohm@0
|
92 |
|
paulson@6114
|
93 |
(*Replace premises x=y, X<->Y by X==Y*)
|
paulson@6114
|
94 |
val mk_meta_prems =
|
paulson@6114
|
95 |
rule_by_tactic
|
paulson@6114
|
96 |
(REPEAT_FIRST (resolve_tac [meta_eq_to_obj_eq, def_imp_iff]));
|
paulson@6114
|
97 |
|
paulson@6114
|
98 |
fun mk_meta_cong rl =
|
paulson@6114
|
99 |
standard(mk_meta_eq (mk_meta_prems rl))
|
paulson@6114
|
100 |
handle THM _ =>
|
paulson@6114
|
101 |
error("Premises and conclusion of congruence rules must use =-equality or <->");
|
oheimb@5555
|
102 |
|
oheimb@5304
|
103 |
val mksimps_pairs =
|
oheimb@5304
|
104 |
[("op -->", [mp]), ("op &", [conjunct1,conjunct2]),
|
oheimb@5304
|
105 |
("All", [spec]), ("True", []), ("False", [])];
|
oheimb@5304
|
106 |
|
oheimb@5555
|
107 |
(* ###FIXME: move to Provers/simplifier.ML
|
oheimb@5304
|
108 |
val mk_atomize: (string * thm list) list -> thm -> thm list
|
oheimb@5304
|
109 |
*)
|
oheimb@5555
|
110 |
(* ###FIXME: move to Provers/simplifier.ML *)
|
oheimb@5304
|
111 |
fun mk_atomize pairs =
|
oheimb@5304
|
112 |
let fun atoms th =
|
oheimb@5304
|
113 |
(case concl_of th of
|
oheimb@5304
|
114 |
Const("Trueprop",_) $ p =>
|
oheimb@5304
|
115 |
(case head_of p of
|
oheimb@5304
|
116 |
Const(a,_) =>
|
oheimb@5304
|
117 |
(case assoc(pairs,a) of
|
oheimb@5304
|
118 |
Some(rls) => flat (map atoms ([th] RL rls))
|
oheimb@5304
|
119 |
| None => [th])
|
oheimb@5304
|
120 |
| _ => [th])
|
oheimb@5304
|
121 |
| _ => [th])
|
oheimb@5304
|
122 |
in atoms end;
|
oheimb@5304
|
123 |
|
oheimb@5555
|
124 |
fun mksimps pairs = (map mk_eq o mk_atomize pairs o gen_all);
|
lcp@981
|
125 |
|
paulson@2074
|
126 |
(*** Classical laws ***)
|
lcp@282
|
127 |
|
clasohm@0
|
128 |
fun prove_fun s =
|
lcp@282
|
129 |
(writeln s;
|
wenzelm@7355
|
130 |
prove_goal (the_context ()) s
|
lcp@282
|
131 |
(fn prems => [ (cut_facts_tac prems 1),
|
clasohm@1459
|
132 |
(Cla.fast_tac FOL_cs 1) ]));
|
lcp@745
|
133 |
|
paulson@1953
|
134 |
(*Avoids duplication of subgoals after expand_if, when the true and false
|
paulson@1953
|
135 |
cases boil down to the same thing.*)
|
paulson@1953
|
136 |
val cases_simp = prove_fun "(P --> Q) & (~P --> Q) <-> Q";
|
paulson@1953
|
137 |
|
paulson@4349
|
138 |
|
paulson@4349
|
139 |
(*** Miniscoping: pushing quantifiers in
|
paulson@4349
|
140 |
We do NOT distribute of ALL over &, or dually that of EX over |
|
paulson@4349
|
141 |
Baaz and Leitsch, On Skolemization and Proof Complexity (1994)
|
paulson@4349
|
142 |
show that this step can increase proof length!
|
paulson@4349
|
143 |
***)
|
paulson@4349
|
144 |
|
paulson@4349
|
145 |
(*existential miniscoping*)
|
paulson@4349
|
146 |
val int_ex_simps = map int_prove_fun
|
paulson@4349
|
147 |
["(EX x. P(x) & Q) <-> (EX x. P(x)) & Q",
|
paulson@4349
|
148 |
"(EX x. P & Q(x)) <-> P & (EX x. Q(x))",
|
paulson@4349
|
149 |
"(EX x. P(x) | Q) <-> (EX x. P(x)) | Q",
|
paulson@4349
|
150 |
"(EX x. P | Q(x)) <-> P | (EX x. Q(x))"];
|
paulson@4349
|
151 |
|
paulson@4349
|
152 |
(*classical rules*)
|
paulson@4349
|
153 |
val cla_ex_simps = map prove_fun
|
paulson@4349
|
154 |
["(EX x. P(x) --> Q) <-> (ALL x. P(x)) --> Q",
|
paulson@4349
|
155 |
"(EX x. P --> Q(x)) <-> P --> (EX x. Q(x))"];
|
clasohm@0
|
156 |
|
paulson@4349
|
157 |
val ex_simps = int_ex_simps @ cla_ex_simps;
|
paulson@4349
|
158 |
|
paulson@4349
|
159 |
(*universal miniscoping*)
|
paulson@4349
|
160 |
val int_all_simps = map int_prove_fun
|
paulson@4349
|
161 |
["(ALL x. P(x) & Q) <-> (ALL x. P(x)) & Q",
|
paulson@4349
|
162 |
"(ALL x. P & Q(x)) <-> P & (ALL x. Q(x))",
|
paulson@4349
|
163 |
"(ALL x. P(x) --> Q) <-> (EX x. P(x)) --> Q",
|
paulson@4349
|
164 |
"(ALL x. P --> Q(x)) <-> P --> (ALL x. Q(x))"];
|
paulson@1953
|
165 |
|
paulson@4349
|
166 |
(*classical rules*)
|
paulson@4349
|
167 |
val cla_all_simps = map prove_fun
|
paulson@4349
|
168 |
["(ALL x. P(x) | Q) <-> (ALL x. P(x)) | Q",
|
paulson@4349
|
169 |
"(ALL x. P | Q(x)) <-> P | (ALL x. Q(x))"];
|
paulson@4349
|
170 |
|
paulson@4349
|
171 |
val all_simps = int_all_simps @ cla_all_simps;
|
paulson@4349
|
172 |
|
paulson@4349
|
173 |
|
paulson@4349
|
174 |
(*** Named rewrite rules proved for IFOL ***)
|
paulson@1953
|
175 |
|
paulson@1914
|
176 |
fun int_prove nm thm = qed_goal nm IFOL.thy thm
|
paulson@1914
|
177 |
(fn prems => [ (cut_facts_tac prems 1),
|
paulson@2601
|
178 |
(IntPr.fast_tac 1) ]);
|
paulson@1914
|
179 |
|
wenzelm@7355
|
180 |
fun prove nm thm = qed_goal nm (the_context ()) thm (fn _ => [Blast_tac 1]);
|
paulson@1914
|
181 |
|
paulson@1914
|
182 |
int_prove "conj_commute" "P&Q <-> Q&P";
|
paulson@1914
|
183 |
int_prove "conj_left_commute" "P&(Q&R) <-> Q&(P&R)";
|
paulson@1914
|
184 |
val conj_comms = [conj_commute, conj_left_commute];
|
paulson@1914
|
185 |
|
paulson@1914
|
186 |
int_prove "disj_commute" "P|Q <-> Q|P";
|
paulson@1914
|
187 |
int_prove "disj_left_commute" "P|(Q|R) <-> Q|(P|R)";
|
paulson@1914
|
188 |
val disj_comms = [disj_commute, disj_left_commute];
|
paulson@1914
|
189 |
|
paulson@1914
|
190 |
int_prove "conj_disj_distribL" "P&(Q|R) <-> (P&Q | P&R)";
|
paulson@1914
|
191 |
int_prove "conj_disj_distribR" "(P|Q)&R <-> (P&R | Q&R)";
|
paulson@1914
|
192 |
|
paulson@1914
|
193 |
int_prove "disj_conj_distribL" "P|(Q&R) <-> (P|Q) & (P|R)";
|
paulson@1914
|
194 |
int_prove "disj_conj_distribR" "(P&Q)|R <-> (P|R) & (Q|R)";
|
paulson@1914
|
195 |
|
paulson@1914
|
196 |
int_prove "imp_conj_distrib" "(P --> (Q&R)) <-> (P-->Q) & (P-->R)";
|
paulson@1914
|
197 |
int_prove "imp_conj" "((P&Q)-->R) <-> (P --> (Q --> R))";
|
paulson@1914
|
198 |
int_prove "imp_disj" "(P|Q --> R) <-> (P-->R) & (Q-->R)";
|
paulson@1914
|
199 |
|
paulson@3910
|
200 |
prove "imp_disj1" "(P-->Q) | R <-> (P-->Q | R)";
|
paulson@3910
|
201 |
prove "imp_disj2" "Q | (P-->R) <-> (P-->Q | R)";
|
paulson@3910
|
202 |
|
paulson@1914
|
203 |
int_prove "de_Morgan_disj" "(~(P | Q)) <-> (~P & ~Q)";
|
paulson@1914
|
204 |
prove "de_Morgan_conj" "(~(P & Q)) <-> (~P | ~Q)";
|
paulson@1914
|
205 |
|
paulson@1914
|
206 |
prove "not_iff" "~(P <-> Q) <-> (P <-> ~Q)";
|
paulson@1914
|
207 |
|
wenzelm@3835
|
208 |
prove "not_all" "(~ (ALL x. P(x))) <-> (EX x.~P(x))";
|
wenzelm@3835
|
209 |
prove "imp_all" "((ALL x. P(x)) --> Q) <-> (EX x. P(x) --> Q)";
|
wenzelm@3835
|
210 |
int_prove "not_ex" "(~ (EX x. P(x))) <-> (ALL x.~P(x))";
|
paulson@1914
|
211 |
int_prove "imp_ex" "((EX x. P(x)) --> Q) <-> (ALL x. P(x) --> Q)";
|
paulson@1914
|
212 |
|
paulson@1914
|
213 |
int_prove "ex_disj_distrib"
|
paulson@1914
|
214 |
"(EX x. P(x) | Q(x)) <-> ((EX x. P(x)) | (EX x. Q(x)))";
|
paulson@1914
|
215 |
int_prove "all_conj_distrib"
|
paulson@1914
|
216 |
"(ALL x. P(x) & Q(x)) <-> ((ALL x. P(x)) & (ALL x. Q(x)))";
|
paulson@1914
|
217 |
|
paulson@1914
|
218 |
|
paulson@4349
|
219 |
(** make simplification procedures for quantifier elimination **)
|
paulson@4349
|
220 |
structure Quantifier1 = Quantifier1Fun(
|
paulson@4349
|
221 |
struct
|
paulson@4349
|
222 |
(*abstract syntax*)
|
paulson@4349
|
223 |
fun dest_eq((c as Const("op =",_)) $ s $ t) = Some(c,s,t)
|
paulson@4349
|
224 |
| dest_eq _ = None;
|
paulson@4349
|
225 |
fun dest_conj((c as Const("op &",_)) $ s $ t) = Some(c,s,t)
|
paulson@4349
|
226 |
| dest_conj _ = None;
|
paulson@4349
|
227 |
val conj = FOLogic.conj
|
paulson@4349
|
228 |
val imp = FOLogic.imp
|
paulson@4349
|
229 |
(*rules*)
|
paulson@4349
|
230 |
val iff_reflection = iff_reflection
|
paulson@4349
|
231 |
val iffI = iffI
|
paulson@4349
|
232 |
val sym = sym
|
paulson@4349
|
233 |
val conjI= conjI
|
paulson@4349
|
234 |
val conjE= conjE
|
paulson@4349
|
235 |
val impI = impI
|
paulson@4349
|
236 |
val impE = impE
|
paulson@4349
|
237 |
val mp = mp
|
paulson@4349
|
238 |
val exI = exI
|
paulson@4349
|
239 |
val exE = exE
|
paulson@4349
|
240 |
val allI = allI
|
paulson@4349
|
241 |
val allE = allE
|
paulson@4349
|
242 |
end);
|
paulson@4349
|
243 |
|
paulson@4349
|
244 |
local
|
wenzelm@7355
|
245 |
|
paulson@4349
|
246 |
val ex_pattern =
|
wenzelm@7355
|
247 |
read_cterm (Theory.sign_of (the_context ())) ("EX x. P(x) & Q(x)", FOLogic.oT)
|
paulson@4349
|
248 |
|
paulson@4349
|
249 |
val all_pattern =
|
wenzelm@7355
|
250 |
read_cterm (Theory.sign_of (the_context ())) ("ALL x. P(x) & P'(x) --> Q(x)", FOLogic.oT)
|
paulson@4349
|
251 |
|
paulson@4349
|
252 |
in
|
paulson@4349
|
253 |
val defEX_regroup =
|
paulson@4349
|
254 |
mk_simproc "defined EX" [ex_pattern] Quantifier1.rearrange_ex;
|
paulson@4349
|
255 |
val defALL_regroup =
|
paulson@4349
|
256 |
mk_simproc "defined ALL" [all_pattern] Quantifier1.rearrange_all;
|
paulson@4349
|
257 |
end;
|
paulson@4349
|
258 |
|
paulson@4349
|
259 |
|
paulson@4349
|
260 |
(*** Case splitting ***)
|
clasohm@0
|
261 |
|
oheimb@5304
|
262 |
val meta_eq_to_iff = prove_goal IFOL.thy "x==y ==> x<->y"
|
oheimb@5304
|
263 |
(fn [prem] => [rewtac prem, rtac iffI 1, atac 1, atac 1]);
|
berghofe@1722
|
264 |
|
oheimb@5304
|
265 |
structure SplitterData =
|
oheimb@5304
|
266 |
struct
|
oheimb@5304
|
267 |
structure Simplifier = Simplifier
|
oheimb@5555
|
268 |
val mk_eq = mk_eq
|
oheimb@5304
|
269 |
val meta_eq_to_iff = meta_eq_to_iff
|
oheimb@5304
|
270 |
val iffD = iffD2
|
oheimb@5304
|
271 |
val disjE = disjE
|
oheimb@5304
|
272 |
val conjE = conjE
|
oheimb@5304
|
273 |
val exE = exE
|
oheimb@5304
|
274 |
val contrapos = contrapos
|
oheimb@5304
|
275 |
val contrapos2 = contrapos2
|
oheimb@5304
|
276 |
val notnotD = notnotD
|
oheimb@5304
|
277 |
end;
|
berghofe@1722
|
278 |
|
oheimb@5304
|
279 |
structure Splitter = SplitterFun(SplitterData);
|
berghofe@1722
|
280 |
|
oheimb@5304
|
281 |
val split_tac = Splitter.split_tac;
|
oheimb@5304
|
282 |
val split_inside_tac = Splitter.split_inside_tac;
|
oheimb@5304
|
283 |
val split_asm_tac = Splitter.split_asm_tac;
|
oheimb@5307
|
284 |
val op addsplits = Splitter.addsplits;
|
oheimb@5307
|
285 |
val op delsplits = Splitter.delsplits;
|
oheimb@5304
|
286 |
val Addsplits = Splitter.Addsplits;
|
oheimb@5304
|
287 |
val Delsplits = Splitter.Delsplits;
|
paulson@4325
|
288 |
|
paulson@4325
|
289 |
|
paulson@2074
|
290 |
(*** Standard simpsets ***)
|
paulson@2074
|
291 |
|
paulson@2074
|
292 |
structure Induction = InductionFun(struct val spec=IFOL.spec end);
|
paulson@2074
|
293 |
|
paulson@4349
|
294 |
open Induction;
|
paulson@2074
|
295 |
|
oheimb@5555
|
296 |
|
oheimb@5555
|
297 |
(* Add congruence rules for = or <-> (instead of ==) *)
|
oheimb@5555
|
298 |
|
oheimb@5555
|
299 |
(* ###FIXME: Move to simplifier,
|
oheimb@5555
|
300 |
taking mk_meta_cong as input, eliminating addeqcongs and deleqcongs *)
|
oheimb@2633
|
301 |
infix 4 addcongs delcongs;
|
oheimb@5555
|
302 |
fun ss addcongs congs = ss addeqcongs (map mk_meta_cong congs);
|
oheimb@5555
|
303 |
fun ss delcongs congs = ss deleqcongs (map mk_meta_cong congs);
|
wenzelm@4094
|
304 |
fun Addcongs congs = (simpset_ref() := simpset() addcongs congs);
|
wenzelm@4094
|
305 |
fun Delcongs congs = (simpset_ref() := simpset() delcongs congs);
|
paulson@2074
|
306 |
|
paulson@5115
|
307 |
|
paulson@5496
|
308 |
val meta_simps =
|
paulson@5496
|
309 |
[triv_forall_equality, (* prunes params *)
|
paulson@5496
|
310 |
True_implies_equals]; (* prune asms `True' *)
|
paulson@5496
|
311 |
|
paulson@2074
|
312 |
val IFOL_simps =
|
paulson@6114
|
313 |
[refl RS P_iff_T] @ conj_simps @ disj_simps @ not_simps @
|
paulson@2074
|
314 |
imp_simps @ iff_simps @ quant_simps;
|
paulson@2074
|
315 |
|
paulson@2074
|
316 |
val notFalseI = int_prove_fun "~False";
|
paulson@6114
|
317 |
val triv_rls = [TrueI,refl,reflexive_thm,iff_refl,notFalseI];
|
paulson@2074
|
318 |
|
oheimb@2633
|
319 |
fun unsafe_solver prems = FIRST'[resolve_tac (triv_rls@prems),
|
oheimb@2633
|
320 |
atac, etac FalseE];
|
oheimb@2633
|
321 |
(*No premature instantiation of variables during simplification*)
|
oheimb@2633
|
322 |
fun safe_solver prems = FIRST'[match_tac (triv_rls@prems),
|
oheimb@2633
|
323 |
eq_assume_tac, ematch_tac [FalseE]];
|
oheimb@2633
|
324 |
|
paulson@3910
|
325 |
(*No simprules, but basic infastructure for simplification*)
|
oheimb@2633
|
326 |
val FOL_basic_ss = empty_ss setsubgoaler asm_simp_tac
|
paulson@4349
|
327 |
addsimprocs [defALL_regroup,defEX_regroup]
|
oheimb@2633
|
328 |
setSSolver safe_solver
|
oheimb@2633
|
329 |
setSolver unsafe_solver
|
oheimb@5304
|
330 |
setmksimps (mksimps mksimps_pairs);
|
oheimb@5304
|
331 |
|
oheimb@5304
|
332 |
|
oheimb@2633
|
333 |
|
paulson@3910
|
334 |
(*intuitionistic simprules only*)
|
paulson@5496
|
335 |
val IFOL_ss =
|
paulson@5496
|
336 |
FOL_basic_ss addsimps (meta_simps @ IFOL_simps @
|
paulson@5496
|
337 |
int_ex_simps @ int_all_simps)
|
paulson@5496
|
338 |
addcongs [imp_cong];
|
paulson@2074
|
339 |
|
paulson@2074
|
340 |
val cla_simps =
|
paulson@3910
|
341 |
[de_Morgan_conj, de_Morgan_disj, imp_disj1, imp_disj2,
|
paulson@3910
|
342 |
not_all, not_ex, cases_simp] @
|
paulson@2074
|
343 |
map prove_fun
|
paulson@2074
|
344 |
["~(P&Q) <-> ~P | ~Q",
|
paulson@2074
|
345 |
"P | ~P", "~P | P",
|
paulson@2074
|
346 |
"~ ~ P <-> P", "(~P --> P) <-> P",
|
paulson@2074
|
347 |
"(~P <-> ~Q) <-> (P<->Q)"];
|
paulson@2074
|
348 |
|
paulson@3910
|
349 |
(*classical simprules too*)
|
paulson@4349
|
350 |
val FOL_ss = IFOL_ss addsimps (cla_simps @ cla_ex_simps @ cla_all_simps);
|
paulson@2074
|
351 |
|
wenzelm@7355
|
352 |
val simpsetup = [fn thy => (simpset_ref_of thy := FOL_ss; thy)];
|
oheimb@2633
|
353 |
|
oheimb@2633
|
354 |
|
wenzelm@5219
|
355 |
(*** integration of simplifier with classical reasoner ***)
|
oheimb@2633
|
356 |
|
wenzelm@5219
|
357 |
structure Clasimp = ClasimpFun
|
oheimb@5555
|
358 |
(structure Simplifier = Simplifier
|
oheimb@5555
|
359 |
and Classical = Cla
|
oheimb@5555
|
360 |
and Blast = Blast);
|
oheimb@4652
|
361 |
open Clasimp;
|
oheimb@2633
|
362 |
|
oheimb@2633
|
363 |
val FOL_css = (FOL_cs, FOL_ss);
|