src/Pure/tactic.ML
author wenzelm
Fri Oct 24 17:13:21 1997 +0200 (1997-10-24)
changeset 3991 4cb2f2422695
parent 3984 8fc76a487616
child 4178 e64ff1c1bc70
permissions -rw-r--r--
ProtoPure.thy;
wenzelm@3575
     1
(*  Title: 	Pure/tactic.ML
clasohm@0
     2
    ID:         $Id$
clasohm@1460
     3
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1991  University of Cambridge
clasohm@0
     5
clasohm@0
     6
Tactics 
clasohm@0
     7
*)
clasohm@0
     8
clasohm@0
     9
signature TACTIC =
paulson@1501
    10
  sig
paulson@3409
    11
  val ares_tac		: thm list -> int -> tactic
clasohm@0
    12
  val asm_rewrite_goal_tac:
nipkow@214
    13
        bool*bool -> (meta_simpset -> tactic) -> meta_simpset -> int -> tactic
paulson@3409
    14
  val assume_tac	: int -> tactic
paulson@3409
    15
  val atac	: int ->tactic
lcp@670
    16
  val bimatch_from_nets_tac: 
paulson@1501
    17
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
paulson@3409
    18
  val bimatch_tac	: (bool*thm)list -> int -> tactic
paulson@3706
    19
  val biresolution_from_nets_tac: 
paulson@3706
    20
	('a list -> (bool * thm) list) ->
paulson@3706
    21
	bool -> 'a Net.net * 'a Net.net -> int -> tactic
lcp@670
    22
  val biresolve_from_nets_tac: 
paulson@1501
    23
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
paulson@3409
    24
  val biresolve_tac	: (bool*thm)list -> int -> tactic
paulson@3409
    25
  val build_net	: thm list -> (int*thm) Net.net
paulson@1501
    26
  val build_netpair:    (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net ->
paulson@1501
    27
      (bool*thm)list -> (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net
paulson@3409
    28
  val compose_inst_tac	: (string*string)list -> (bool*thm*int) -> 
paulson@3409
    29
                          int -> tactic
paulson@3409
    30
  val compose_tac	: (bool * thm * int) -> int -> tactic 
paulson@3409
    31
  val cut_facts_tac	: thm list -> int -> tactic
paulson@3409
    32
  val cut_inst_tac	: (string*string)list -> thm -> int -> tactic   
paulson@3409
    33
  val defer_tac 	: int -> tactic
paulson@3409
    34
  val distinct_subgoals_tac	: tactic
paulson@3409
    35
  val dmatch_tac	: thm list -> int -> tactic
paulson@3409
    36
  val dresolve_tac	: thm list -> int -> tactic
paulson@3409
    37
  val dres_inst_tac	: (string*string)list -> thm -> int -> tactic   
paulson@3409
    38
  val dtac		: thm -> int ->tactic
paulson@3409
    39
  val etac		: thm -> int ->tactic
paulson@3409
    40
  val eq_assume_tac	: int -> tactic   
paulson@3409
    41
  val ematch_tac	: thm list -> int -> tactic
paulson@3409
    42
  val eresolve_tac	: thm list -> int -> tactic
paulson@3409
    43
  val eres_inst_tac	: (string*string)list -> thm -> int -> tactic   
paulson@3409
    44
  val filter_thms	: (term*term->bool) -> int*term*thm list -> thm list
paulson@3409
    45
  val filt_resolve_tac	: thm list -> int -> int -> tactic
paulson@3409
    46
  val flexflex_tac	: tactic
paulson@3409
    47
  val fold_goals_tac	: thm list -> tactic
paulson@3409
    48
  val fold_tac		: thm list -> tactic
paulson@3409
    49
  val forward_tac	: thm list -> int -> tactic   
paulson@3409
    50
  val forw_inst_tac	: (string*string)list -> thm -> int -> tactic
paulson@3409
    51
  val freeze_thaw	: thm -> thm * (thm -> thm)
paulson@3409
    52
  val insert_tagged_brl : ('a*(bool*thm)) * 
paulson@3409
    53
                          (('a*(bool*thm))Net.net * ('a*(bool*thm))Net.net) ->
paulson@3409
    54
                          ('a*(bool*thm))Net.net * ('a*(bool*thm))Net.net
paulson@3409
    55
  val delete_tagged_brl	: (bool*thm) * 
paulson@3409
    56
                         ((int*(bool*thm))Net.net * (int*(bool*thm))Net.net) ->
paulson@1801
    57
                    (int*(bool*thm))Net.net * (int*(bool*thm))Net.net
paulson@3409
    58
  val is_fact		: thm -> bool
paulson@3409
    59
  val lessb		: (bool * thm) * (bool * thm) -> bool
paulson@3409
    60
  val lift_inst_rule	: thm * int * (string*string)list * thm -> thm
paulson@3409
    61
  val make_elim		: thm -> thm
paulson@3409
    62
  val match_from_net_tac	: (int*thm) Net.net -> int -> tactic
paulson@3409
    63
  val match_tac	: thm list -> int -> tactic
paulson@3409
    64
  val metacut_tac	: thm -> int -> tactic   
paulson@3409
    65
  val net_bimatch_tac	: (bool*thm) list -> int -> tactic
paulson@3409
    66
  val net_biresolve_tac	: (bool*thm) list -> int -> tactic
paulson@3409
    67
  val net_match_tac	: thm list -> int -> tactic
paulson@3409
    68
  val net_resolve_tac	: thm list -> int -> tactic
paulson@3409
    69
  val orderlist		: (int * 'a) list -> 'a list
paulson@3409
    70
  val PRIMITIVE		: (thm -> thm) -> tactic  
paulson@3409
    71
  val PRIMSEQ		: (thm -> thm Sequence.seq) -> tactic  
paulson@3409
    72
  val prune_params_tac	: tactic
paulson@3409
    73
  val rename_tac	: string -> int -> tactic
paulson@3409
    74
  val rename_last_tac	: string -> string list -> int -> tactic
paulson@3409
    75
  val resolve_from_net_tac	: (int*thm) Net.net -> int -> tactic
paulson@3409
    76
  val resolve_tac	: thm list -> int -> tactic
paulson@3409
    77
  val res_inst_tac	: (string*string)list -> thm -> int -> tactic   
wenzelm@3575
    78
  val rewrite_goals_rule: thm list -> thm -> thm
wenzelm@3575
    79
  val rewrite_rule	: thm list -> thm -> thm
paulson@3409
    80
  val rewrite_goals_tac	: thm list -> tactic
paulson@3409
    81
  val rewrite_tac	: thm list -> tactic
paulson@3409
    82
  val rewtac		: thm -> tactic
paulson@3409
    83
  val rotate_tac	: int -> int -> tactic
paulson@3409
    84
  val rtac		: thm -> int -> tactic
paulson@3409
    85
  val rule_by_tactic	: tactic -> thm -> thm
paulson@3409
    86
  val subgoal_tac	: string -> int -> tactic
paulson@3409
    87
  val subgoals_tac	: string list -> int -> tactic
paulson@3409
    88
  val subgoals_of_brl	: bool * thm -> int
paulson@3409
    89
  val term_lift_inst_rule	:
nipkow@1975
    90
      thm * int * (indexname*typ)list * ((indexname*typ)*term)list  * thm
nipkow@1975
    91
      -> thm
paulson@3409
    92
  val thin_tac		: string -> int -> tactic
paulson@3409
    93
  val trace_goalno_tac	: (int -> tactic) -> int -> tactic
paulson@1501
    94
  end;
clasohm@0
    95
clasohm@0
    96
paulson@1501
    97
structure Tactic : TACTIC = 
clasohm@0
    98
struct
clasohm@0
    99
paulson@1501
   100
(*Discover which goal is chosen:  SOMEGOAL(trace_goalno_tac tac) *)
paulson@1501
   101
fun trace_goalno_tac tac i st =  
paulson@1501
   102
    case Sequence.pull(tac i st) of
clasohm@1460
   103
	None    => Sequence.null
clasohm@0
   104
      | seqcell => (prs("Subgoal " ^ string_of_int i ^ " selected\n"); 
paulson@1501
   105
    			 Sequence.seqof(fn()=> seqcell));
clasohm@0
   106
clasohm@0
   107
paulson@2029
   108
(*Convert all Vars in a theorem to Frees.  Also return a function for 
paulson@3409
   109
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@3409
   110
  Similar code in type/freeze_thaw*)
paulson@3409
   111
fun freeze_thaw th =
paulson@3409
   112
  let val fth = freezeT th
paulson@3409
   113
      val {prop,sign,...} = rep_thm fth
paulson@3409
   114
      val used = add_term_names (prop, [])
paulson@3409
   115
      and vars = term_vars prop
paulson@3409
   116
      fun newName (Var(ix,_), (pairs,used)) = 
paulson@3409
   117
	    let val v = variant used (string_of_indexname ix)
paulson@3409
   118
	    in  ((ix,v)::pairs, v::used)  end;
paulson@3409
   119
      val (alist, _) = foldr newName (vars, ([], used))
paulson@3409
   120
      fun mk_inst (Var(v,T)) = 
paulson@3409
   121
	  (cterm_of sign (Var(v,T)),
paulson@3409
   122
	   cterm_of sign (Free(the (assoc(alist,v)), T)))
paulson@3409
   123
      val insts = map mk_inst vars
paulson@3409
   124
      fun thaw th' = 
paulson@3409
   125
	  th' |> forall_intr_list (map #2 insts)
paulson@3409
   126
	      |> forall_elim_list (map #1 insts)
paulson@3409
   127
  in  (instantiate ([],insts) fth, thaw)  end;
paulson@2029
   128
paulson@2029
   129
paulson@2029
   130
(*Rotates the given subgoal to be the last.  Useful when re-playing
paulson@2029
   131
  an old proof script, when the proof of an early subgoal fails.
paulson@2029
   132
  DOES NOT WORK FOR TYPE VARIABLES.*)
paulson@2029
   133
fun defer_tac i state = 
paulson@2029
   134
    let val (state',thaw) = freeze_thaw state
paulson@2029
   135
	val hyps = Drule.strip_imp_prems (adjust_maxidx (cprop_of state'))
paulson@2580
   136
	val hyp::hyps' = List.drop(hyps, i-1)
paulson@2029
   137
    in  implies_intr hyp (implies_elim_list state' (map assume hyps)) 
paulson@2580
   138
        |> implies_intr_list (List.take(hyps, i-1) @ hyps')
paulson@2029
   139
        |> thaw
paulson@2029
   140
        |> Sequence.single
paulson@2029
   141
    end
paulson@2029
   142
    handle _ => Sequence.null;
paulson@2029
   143
clasohm@0
   144
clasohm@0
   145
(*Makes a rule by applying a tactic to an existing rule*)
paulson@1501
   146
fun rule_by_tactic tac rl =
paulson@2688
   147
  let val (st, thaw) = freeze_thaw (zero_var_indexes rl)
paulson@2688
   148
  in case Sequence.pull (tac st)  of
clasohm@1460
   149
	None        => raise THM("rule_by_tactic", 0, [rl])
paulson@2688
   150
      | Some(st',_) => Thm.varifyT (thaw st')
paulson@2688
   151
  end;
clasohm@0
   152
 
clasohm@0
   153
(*** Basic tactics ***)
clasohm@0
   154
clasohm@0
   155
(*Makes a tactic whose effect on a state is given by thmfun: thm->thm seq.*)
paulson@1501
   156
fun PRIMSEQ thmfun st =  thmfun st handle THM _ => Sequence.null;
clasohm@0
   157
clasohm@0
   158
(*Makes a tactic whose effect on a state is given by thmfun: thm->thm.*)
clasohm@0
   159
fun PRIMITIVE thmfun = PRIMSEQ (Sequence.single o thmfun);
clasohm@0
   160
clasohm@0
   161
(*** The following fail if the goal number is out of range:
clasohm@0
   162
     thus (REPEAT (resolve_tac rules i)) stops once subgoal i disappears. *)
clasohm@0
   163
clasohm@0
   164
(*Solve subgoal i by assumption*)
clasohm@0
   165
fun assume_tac i = PRIMSEQ (assumption i);
clasohm@0
   166
clasohm@0
   167
(*Solve subgoal i by assumption, using no unification*)
clasohm@0
   168
fun eq_assume_tac i = PRIMITIVE (eq_assumption i);
clasohm@0
   169
clasohm@0
   170
(** Resolution/matching tactics **)
clasohm@0
   171
clasohm@0
   172
(*The composition rule/state: no lifting or var renaming.
clasohm@0
   173
  The arg = (bires_flg, orule, m) ;  see bicompose for explanation.*)
clasohm@0
   174
fun compose_tac arg i = PRIMSEQ (bicompose false arg i);
clasohm@0
   175
clasohm@0
   176
(*Converts a "destruct" rule like P&Q==>P to an "elimination" rule
clasohm@0
   177
  like [| P&Q; P==>R |] ==> R *)
clasohm@0
   178
fun make_elim rl = zero_var_indexes (rl RS revcut_rl);
clasohm@0
   179
clasohm@0
   180
(*Attack subgoal i by resolution, using flags to indicate elimination rules*)
clasohm@0
   181
fun biresolve_tac brules i = PRIMSEQ (biresolution false brules i);
clasohm@0
   182
clasohm@0
   183
(*Resolution: the simple case, works for introduction rules*)
clasohm@0
   184
fun resolve_tac rules = biresolve_tac (map (pair false) rules);
clasohm@0
   185
clasohm@0
   186
(*Resolution with elimination rules only*)
clasohm@0
   187
fun eresolve_tac rules = biresolve_tac (map (pair true) rules);
clasohm@0
   188
clasohm@0
   189
(*Forward reasoning using destruction rules.*)
clasohm@0
   190
fun forward_tac rls = resolve_tac (map make_elim rls) THEN' assume_tac;
clasohm@0
   191
clasohm@0
   192
(*Like forward_tac, but deletes the assumption after use.*)
clasohm@0
   193
fun dresolve_tac rls = eresolve_tac (map make_elim rls);
clasohm@0
   194
clasohm@0
   195
(*Shorthand versions: for resolution with a single theorem*)
clasohm@1460
   196
fun rtac rl = resolve_tac [rl];
clasohm@1460
   197
fun etac rl = eresolve_tac [rl];
clasohm@1460
   198
fun dtac rl = dresolve_tac [rl];
clasohm@0
   199
val atac = assume_tac;
clasohm@0
   200
clasohm@0
   201
(*Use an assumption or some rules ... A popular combination!*)
clasohm@0
   202
fun ares_tac rules = assume_tac  ORELSE'  resolve_tac rules;
clasohm@0
   203
clasohm@0
   204
(*Matching tactics -- as above, but forbid updating of state*)
clasohm@0
   205
fun bimatch_tac brules i = PRIMSEQ (biresolution true brules i);
clasohm@0
   206
fun match_tac rules  = bimatch_tac (map (pair false) rules);
clasohm@0
   207
fun ematch_tac rules = bimatch_tac (map (pair true) rules);
clasohm@0
   208
fun dmatch_tac rls   = ematch_tac (map make_elim rls);
clasohm@0
   209
clasohm@0
   210
(*Smash all flex-flex disagreement pairs in the proof state.*)
clasohm@0
   211
val flexflex_tac = PRIMSEQ flexflex_rule;
clasohm@0
   212
paulson@3409
   213
paulson@3409
   214
(*Remove duplicate subgoals.  By Mark Staples*)
paulson@3409
   215
local
paulson@3409
   216
fun cterm_aconv (a,b) = #t (rep_cterm a) aconv #t (rep_cterm b);
paulson@3409
   217
in
paulson@3409
   218
fun distinct_subgoals_tac state = 
paulson@3409
   219
    let val (frozth,thawfn) = freeze_thaw state
paulson@3409
   220
	val froz_prems = cprems_of frozth
paulson@3409
   221
	val assumed = implies_elim_list frozth (map assume froz_prems)
paulson@3409
   222
	val implied = implies_intr_list (gen_distinct cterm_aconv froz_prems)
paulson@3409
   223
					assumed;
paulson@3409
   224
    in  Sequence.single (thawfn implied)  end
paulson@3409
   225
end; 
paulson@3409
   226
paulson@3409
   227
clasohm@0
   228
(*Lift and instantiate a rule wrt the given state and subgoal number *)
paulson@1501
   229
fun lift_inst_rule (st, i, sinsts, rule) =
paulson@1501
   230
let val {maxidx,sign,...} = rep_thm st
paulson@1501
   231
    val (_, _, Bi, _) = dest_state(st,i)
clasohm@1460
   232
    val params = Logic.strip_params Bi	        (*params of subgoal i*)
clasohm@0
   233
    val params = rev(rename_wrt_term Bi params) (*as they are printed*)
clasohm@0
   234
    val paramTs = map #2 params
clasohm@0
   235
    and inc = maxidx+1
clasohm@0
   236
    fun liftvar (Var ((a,j), T)) = Var((a, j+inc), paramTs---> incr_tvar inc T)
clasohm@0
   237
      | liftvar t = raise TERM("Variable expected", [t]);
clasohm@0
   238
    fun liftterm t = list_abs_free (params, 
clasohm@1460
   239
				    Logic.incr_indexes(paramTs,inc) t)
clasohm@0
   240
    (*Lifts instantiation pair over params*)
lcp@230
   241
    fun liftpair (cv,ct) = (cterm_fun liftvar cv, cterm_fun liftterm ct)
clasohm@0
   242
    fun lifttvar((a,i),ctyp) =
clasohm@1460
   243
	let val {T,sign} = rep_ctyp ctyp
clasohm@1460
   244
	in  ((a,i+inc), ctyp_of sign (incr_tvar inc T)) end
paulson@1501
   245
    val rts = types_sorts rule and (types,sorts) = types_sorts st
clasohm@0
   246
    fun types'(a,~1) = (case assoc(params,a) of None => types(a,~1) | sm => sm)
clasohm@0
   247
      | types'(ixn) = types ixn;
nipkow@949
   248
    val used = add_term_tvarnames
paulson@1501
   249
                  (#prop(rep_thm st) $ #prop(rep_thm rule),[])
nipkow@949
   250
    val (Tinsts,insts) = read_insts sign rts (types',sorts) used sinsts
clasohm@0
   251
in instantiate (map lifttvar Tinsts, map liftpair insts)
paulson@1501
   252
               (lift_rule (st,i) rule)
clasohm@0
   253
end;
clasohm@0
   254
nipkow@3984
   255
(*
nipkow@3984
   256
Like lift_inst_rule but takes terms, not strings, where the terms may contain
nipkow@3984
   257
Bounds referring to parameters of the subgoal.
nipkow@3984
   258
nipkow@3984
   259
insts: [...,(vj,tj),...]
nipkow@3984
   260
nipkow@3984
   261
The tj may contain references to parameters of subgoal i of the state st
nipkow@3984
   262
in the form of Bound k, i.e. the tj may be subterms of the subgoal.
nipkow@3984
   263
To saturate the lose bound vars, the tj are enclosed in abstractions
nipkow@3984
   264
corresponding to the parameters of subgoal i, thus turning them into
nipkow@3984
   265
functions. At the same time, the types of the vj are lifted.
nipkow@3984
   266
nipkow@3984
   267
NB: the types in insts must be correctly instantiated already,
nipkow@3984
   268
    i.e. Tinsts is not applied to insts.
nipkow@3984
   269
*)
nipkow@1975
   270
fun term_lift_inst_rule (st, i, Tinsts, insts, rule) =
nipkow@1966
   271
let val {maxidx,sign,...} = rep_thm st
nipkow@1966
   272
    val (_, _, Bi, _) = dest_state(st,i)
nipkow@1966
   273
    val params = Logic.strip_params Bi          (*params of subgoal i*)
nipkow@1966
   274
    val paramTs = map #2 params
nipkow@1966
   275
    and inc = maxidx+1
nipkow@1975
   276
    fun liftvar ((a,j), T) = Var((a, j+inc), paramTs---> incr_tvar inc T)
nipkow@1975
   277
    (*lift only Var, not term, which must be lifted already*)
nipkow@1975
   278
    fun liftpair (v,t) = (cterm_of sign (liftvar v), cterm_of sign t)
nipkow@1975
   279
    fun liftTpair((a,i),T) = ((a,i+inc), ctyp_of sign (incr_tvar inc T))
nipkow@1975
   280
in instantiate (map liftTpair Tinsts, map liftpair insts)
nipkow@1966
   281
               (lift_rule (st,i) rule)
nipkow@1966
   282
end;
clasohm@0
   283
clasohm@0
   284
(*** Resolve after lifting and instantation; may refer to parameters of the
clasohm@0
   285
     subgoal.  Fails if "i" is out of range.  ***)
clasohm@0
   286
clasohm@0
   287
(*compose version: arguments are as for bicompose.*)
paulson@3538
   288
fun compose_inst_tac sinsts (bires_flg, rule, nsubgoal) i st = st |>
paulson@3538
   289
  (compose_tac (bires_flg, lift_inst_rule (st, i, sinsts, rule), nsubgoal) i
paulson@3538
   290
   handle TERM (msg,_)   => (writeln msg;  no_tac)
paulson@3538
   291
	| THM  (msg,_,_) => (writeln msg;  no_tac));
clasohm@0
   292
lcp@761
   293
(*"Resolve" version.  Note: res_inst_tac cannot behave sensibly if the
lcp@761
   294
  terms that are substituted contain (term or type) unknowns from the
lcp@761
   295
  goal, because it is unable to instantiate goal unknowns at the same time.
lcp@761
   296
paulson@2029
   297
  The type checker is instructed not to freeze flexible type vars that
nipkow@952
   298
  were introduced during type inference and still remain in the term at the
nipkow@952
   299
  end.  This increases flexibility but can introduce schematic type vars in
nipkow@952
   300
  goals.
lcp@761
   301
*)
clasohm@0
   302
fun res_inst_tac sinsts rule i =
clasohm@0
   303
    compose_inst_tac sinsts (false, rule, nprems_of rule) i;
clasohm@0
   304
paulson@1501
   305
(*eresolve elimination version*)
clasohm@0
   306
fun eres_inst_tac sinsts rule i =
clasohm@0
   307
    compose_inst_tac sinsts (true, rule, nprems_of rule) i;
clasohm@0
   308
lcp@270
   309
(*For forw_inst_tac and dres_inst_tac.  Preserve Var indexes of rl;
lcp@270
   310
  increment revcut_rl instead.*)
clasohm@0
   311
fun make_elim_preserve rl = 
lcp@270
   312
  let val {maxidx,...} = rep_thm rl
wenzelm@3991
   313
      fun cvar ixn = cterm_of (sign_of ProtoPure.thy) (Var(ixn,propT));
lcp@270
   314
      val revcut_rl' = 
clasohm@1460
   315
	  instantiate ([],  [(cvar("V",0), cvar("V",maxidx+1)),
clasohm@1460
   316
			     (cvar("W",0), cvar("W",maxidx+1))]) revcut_rl
clasohm@0
   317
      val arg = (false, rl, nprems_of rl)
clasohm@0
   318
      val [th] = Sequence.list_of_s (bicompose false arg 1 revcut_rl')
clasohm@0
   319
  in  th  end
clasohm@0
   320
  handle Bind => raise THM("make_elim_preserve", 1, [rl]);
clasohm@0
   321
lcp@270
   322
(*instantiate and cut -- for a FACT, anyway...*)
lcp@270
   323
fun cut_inst_tac sinsts rule = res_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   324
lcp@270
   325
(*forward tactic applies a RULE to an assumption without deleting it*)
lcp@270
   326
fun forw_inst_tac sinsts rule = cut_inst_tac sinsts rule THEN' assume_tac;
lcp@270
   327
lcp@270
   328
(*dresolve tactic applies a RULE to replace an assumption*)
clasohm@0
   329
fun dres_inst_tac sinsts rule = eres_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   330
paulson@1951
   331
(*Deletion of an assumption*)
paulson@1951
   332
fun thin_tac s = eres_inst_tac [("V",s)] thin_rl;
paulson@1951
   333
lcp@270
   334
(*** Applications of cut_rl ***)
clasohm@0
   335
clasohm@0
   336
(*Used by metacut_tac*)
clasohm@0
   337
fun bires_cut_tac arg i =
clasohm@1460
   338
    resolve_tac [cut_rl] i  THEN  biresolve_tac arg (i+1) ;
clasohm@0
   339
clasohm@0
   340
(*The conclusion of the rule gets assumed in subgoal i,
clasohm@0
   341
  while subgoal i+1,... are the premises of the rule.*)
clasohm@0
   342
fun metacut_tac rule = bires_cut_tac [(false,rule)];
clasohm@0
   343
clasohm@0
   344
(*Recognizes theorems that are not rules, but simple propositions*)
clasohm@0
   345
fun is_fact rl =
clasohm@0
   346
    case prems_of rl of
clasohm@1460
   347
	[] => true  |  _::_ => false;
clasohm@0
   348
clasohm@0
   349
(*"Cut" all facts from theorem list into the goal as assumptions. *)
clasohm@0
   350
fun cut_facts_tac ths i =
clasohm@0
   351
    EVERY (map (fn th => metacut_tac th i) (filter is_fact ths));
clasohm@0
   352
clasohm@0
   353
(*Introduce the given proposition as a lemma and subgoal*)
clasohm@0
   354
fun subgoal_tac sprop = res_inst_tac [("psi", sprop)] cut_rl;
clasohm@0
   355
lcp@439
   356
(*Introduce a list of lemmas and subgoals*)
lcp@439
   357
fun subgoals_tac sprops = EVERY' (map subgoal_tac sprops);
lcp@439
   358
clasohm@0
   359
clasohm@0
   360
(**** Indexing and filtering of theorems ****)
clasohm@0
   361
clasohm@0
   362
(*Returns the list of potentially resolvable theorems for the goal "prem",
clasohm@1460
   363
	using the predicate  could(subgoal,concl).
clasohm@0
   364
  Resulting list is no longer than "limit"*)
clasohm@0
   365
fun filter_thms could (limit, prem, ths) =
clasohm@0
   366
  let val pb = Logic.strip_assums_concl prem;   (*delete assumptions*)
clasohm@0
   367
      fun filtr (limit, []) = []
clasohm@1460
   368
	| filtr (limit, th::ths) =
clasohm@1460
   369
	    if limit=0 then  []
clasohm@1460
   370
	    else if could(pb, concl_of th)  then th :: filtr(limit-1, ths)
clasohm@1460
   371
	    else filtr(limit,ths)
clasohm@0
   372
  in  filtr(limit,ths)  end;
clasohm@0
   373
clasohm@0
   374
clasohm@0
   375
(*** biresolution and resolution using nets ***)
clasohm@0
   376
clasohm@0
   377
(** To preserve the order of the rules, tag them with increasing integers **)
clasohm@0
   378
clasohm@0
   379
(*insert tags*)
clasohm@0
   380
fun taglist k [] = []
clasohm@0
   381
  | taglist k (x::xs) = (k,x) :: taglist (k+1) xs;
clasohm@0
   382
clasohm@0
   383
(*remove tags and suppress duplicates -- list is assumed sorted!*)
clasohm@0
   384
fun untaglist [] = []
clasohm@0
   385
  | untaglist [(k:int,x)] = [x]
clasohm@0
   386
  | untaglist ((k,x) :: (rest as (k',x')::_)) =
clasohm@0
   387
      if k=k' then untaglist rest
clasohm@0
   388
      else    x :: untaglist rest;
clasohm@0
   389
clasohm@0
   390
(*return list elements in original order*)
paulson@2228
   391
fun orderlist kbrls = untaglist (sort (fn(x,y)=> #1 x < #1 y) kbrls); 
clasohm@0
   392
clasohm@0
   393
(*insert one tagged brl into the pair of nets*)
lcp@1077
   394
fun insert_tagged_brl (kbrl as (k,(eres,th)), (inet,enet)) =
clasohm@0
   395
    if eres then 
clasohm@1460
   396
	case prems_of th of
clasohm@1460
   397
	    prem::_ => (inet, Net.insert_term ((prem,kbrl), enet, K false))
clasohm@1460
   398
	  | [] => error"insert_tagged_brl: elimination rule with no premises"
clasohm@0
   399
    else (Net.insert_term ((concl_of th, kbrl), inet, K false), enet);
clasohm@0
   400
clasohm@0
   401
(*build a pair of nets for biresolution*)
lcp@670
   402
fun build_netpair netpair brls = 
lcp@1077
   403
    foldr insert_tagged_brl (taglist 1 brls, netpair);
clasohm@0
   404
paulson@1801
   405
(*delete one kbrl from the pair of nets;
paulson@1801
   406
  we don't know the value of k, so we use 0 and ignore it in the comparison*)
paulson@1801
   407
local
paulson@1801
   408
  fun eq_kbrl ((k,(eres,th)), (k',(eres',th'))) = eq_thm (th,th')
paulson@1801
   409
in
paulson@1801
   410
fun delete_tagged_brl (brl as (eres,th), (inet,enet)) =
paulson@1801
   411
    if eres then 
paulson@1801
   412
	case prems_of th of
paulson@1801
   413
	    prem::_ => (inet, Net.delete_term ((prem, (0,brl)), enet, eq_kbrl))
paulson@2814
   414
	  | []      => (inet,enet)     (*no major premise: ignore*)
paulson@1801
   415
    else (Net.delete_term ((concl_of th, (0,brl)), inet, eq_kbrl), enet);
paulson@1801
   416
end;
paulson@1801
   417
paulson@1801
   418
paulson@3706
   419
(*biresolution using a pair of nets rather than rules.  
paulson@3706
   420
    function "order" must sort and possibly filter the list of brls.
paulson@3706
   421
    boolean "match" indicates matching or unification.*)
paulson@3706
   422
fun biresolution_from_nets_tac order match (inet,enet) =
clasohm@0
   423
  SUBGOAL
clasohm@0
   424
    (fn (prem,i) =>
clasohm@0
   425
      let val hyps = Logic.strip_assums_hyp prem
clasohm@0
   426
          and concl = Logic.strip_assums_concl prem 
clasohm@0
   427
          val kbrls = Net.unify_term inet concl @
paulson@2672
   428
                      List.concat (map (Net.unify_term enet) hyps)
paulson@3706
   429
      in PRIMSEQ (biresolution match (order kbrls) i) end);
clasohm@0
   430
paulson@3706
   431
(*versions taking pre-built nets.  No filtering of brls*)
paulson@3706
   432
val biresolve_from_nets_tac = biresolution_from_nets_tac orderlist false;
paulson@3706
   433
val bimatch_from_nets_tac   = biresolution_from_nets_tac orderlist true;
clasohm@0
   434
clasohm@0
   435
(*fast versions using nets internally*)
lcp@670
   436
val net_biresolve_tac =
lcp@670
   437
    biresolve_from_nets_tac o build_netpair(Net.empty,Net.empty);
lcp@670
   438
lcp@670
   439
val net_bimatch_tac =
lcp@670
   440
    bimatch_from_nets_tac o build_netpair(Net.empty,Net.empty);
clasohm@0
   441
clasohm@0
   442
(*** Simpler version for resolve_tac -- only one net, and no hyps ***)
clasohm@0
   443
clasohm@0
   444
(*insert one tagged rl into the net*)
clasohm@0
   445
fun insert_krl (krl as (k,th), net) =
clasohm@0
   446
    Net.insert_term ((concl_of th, krl), net, K false);
clasohm@0
   447
clasohm@0
   448
(*build a net of rules for resolution*)
clasohm@0
   449
fun build_net rls = 
clasohm@0
   450
    foldr insert_krl (taglist 1 rls, Net.empty);
clasohm@0
   451
clasohm@0
   452
(*resolution using a net rather than rules; pred supports filt_resolve_tac*)
clasohm@0
   453
fun filt_resolution_from_net_tac match pred net =
clasohm@0
   454
  SUBGOAL
clasohm@0
   455
    (fn (prem,i) =>
clasohm@0
   456
      let val krls = Net.unify_term net (Logic.strip_assums_concl prem)
clasohm@0
   457
      in 
clasohm@1460
   458
	 if pred krls  
clasohm@0
   459
         then PRIMSEQ
clasohm@1460
   460
		(biresolution match (map (pair false) (orderlist krls)) i)
clasohm@0
   461
         else no_tac
clasohm@0
   462
      end);
clasohm@0
   463
clasohm@0
   464
(*Resolve the subgoal using the rules (making a net) unless too flexible,
clasohm@0
   465
   which means more than maxr rules are unifiable.      *)
clasohm@0
   466
fun filt_resolve_tac rules maxr = 
clasohm@0
   467
    let fun pred krls = length krls <= maxr
clasohm@0
   468
    in  filt_resolution_from_net_tac false pred (build_net rules)  end;
clasohm@0
   469
clasohm@0
   470
(*versions taking pre-built nets*)
clasohm@0
   471
val resolve_from_net_tac = filt_resolution_from_net_tac false (K true);
clasohm@0
   472
val match_from_net_tac = filt_resolution_from_net_tac true (K true);
clasohm@0
   473
clasohm@0
   474
(*fast versions using nets internally*)
clasohm@0
   475
val net_resolve_tac = resolve_from_net_tac o build_net;
clasohm@0
   476
val net_match_tac = match_from_net_tac o build_net;
clasohm@0
   477
clasohm@0
   478
clasohm@0
   479
(*** For Natural Deduction using (bires_flg, rule) pairs ***)
clasohm@0
   480
clasohm@0
   481
(*The number of new subgoals produced by the brule*)
lcp@1077
   482
fun subgoals_of_brl (true,rule)  = nprems_of rule - 1
lcp@1077
   483
  | subgoals_of_brl (false,rule) = nprems_of rule;
clasohm@0
   484
clasohm@0
   485
(*Less-than test: for sorting to minimize number of new subgoals*)
clasohm@0
   486
fun lessb (brl1,brl2) = subgoals_of_brl brl1 < subgoals_of_brl brl2;
clasohm@0
   487
clasohm@0
   488
clasohm@0
   489
(*** Meta-Rewriting Tactics ***)
clasohm@0
   490
clasohm@0
   491
fun result1 tacf mss thm =
wenzelm@3554
   492
  apsome fst (Sequence.pull (tacf mss thm));
clasohm@0
   493
wenzelm@3575
   494
val simple_prover =
wenzelm@3575
   495
  result1 (fn mss => ALLGOALS (resolve_tac (prems_of_mss mss)));
wenzelm@3575
   496
wenzelm@3575
   497
val rewrite_rule = Drule.rewrite_rule_aux simple_prover;
wenzelm@3575
   498
val rewrite_goals_rule = Drule.rewrite_goals_rule_aux simple_prover;
wenzelm@3575
   499
wenzelm@3575
   500
paulson@2145
   501
(*Rewrite subgoal i only.  SELECT_GOAL avoids inefficiencies in goals_conv.*)
paulson@2145
   502
fun asm_rewrite_goal_tac mode prover_tac mss =
paulson@2145
   503
      SELECT_GOAL 
paulson@2145
   504
        (PRIMITIVE
paulson@2145
   505
	   (rewrite_goal_rule mode (result1 prover_tac) mss 1));
clasohm@0
   506
lcp@69
   507
(*Rewrite throughout proof state. *)
lcp@69
   508
fun rewrite_tac defs = PRIMITIVE(rewrite_rule defs);
clasohm@0
   509
clasohm@0
   510
(*Rewrite subgoals only, not main goal. *)
lcp@69
   511
fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs);
clasohm@0
   512
clasohm@1460
   513
fun rewtac def = rewrite_goals_tac [def];
clasohm@0
   514
clasohm@0
   515
paulson@1501
   516
(*** for folding definitions, handling critical pairs ***)
lcp@69
   517
lcp@69
   518
(*The depth of nesting in a term*)
lcp@69
   519
fun term_depth (Abs(a,T,t)) = 1 + term_depth t
paulson@2145
   520
  | term_depth (f$t) = 1 + Int.max(term_depth f, term_depth t)
lcp@69
   521
  | term_depth _ = 0;
lcp@69
   522
lcp@69
   523
val lhs_of_thm = #1 o Logic.dest_equals o #prop o rep_thm;
lcp@69
   524
lcp@69
   525
(*folding should handle critical pairs!  E.g. K == Inl(0),  S == Inr(Inl(0))
lcp@69
   526
  Returns longest lhs first to avoid folding its subexpressions.*)
lcp@69
   527
fun sort_lhs_depths defs =
lcp@69
   528
  let val keylist = make_keylist (term_depth o lhs_of_thm) defs
lcp@69
   529
      val keys = distinct (sort op> (map #2 keylist))
lcp@69
   530
  in  map (keyfilter keylist) keys  end;
lcp@69
   531
lcp@69
   532
fun fold_tac defs = EVERY 
lcp@69
   533
    (map rewrite_tac (sort_lhs_depths (map symmetric defs)));
lcp@69
   534
lcp@69
   535
fun fold_goals_tac defs = EVERY 
lcp@69
   536
    (map rewrite_goals_tac (sort_lhs_depths (map symmetric defs)));
lcp@69
   537
lcp@69
   538
lcp@69
   539
(*** Renaming of parameters in a subgoal
lcp@69
   540
     Names may contain letters, digits or primes and must be
lcp@69
   541
     separated by blanks ***)
clasohm@0
   542
clasohm@0
   543
(*Calling this will generate the warning "Same as previous level" since
clasohm@0
   544
  it affects nothing but the names of bound variables!*)
clasohm@0
   545
fun rename_tac str i = 
clasohm@0
   546
  let val cs = explode str 
clasohm@0
   547
  in  
clasohm@0
   548
  if !Logic.auto_rename 
clasohm@0
   549
  then (writeln"Note: setting Logic.auto_rename := false"; 
clasohm@1460
   550
	Logic.auto_rename := false)
clasohm@0
   551
  else ();
clasohm@0
   552
  case #2 (take_prefix (is_letdig orf is_blank) cs) of
clasohm@0
   553
      [] => PRIMITIVE (rename_params_rule (scanwords is_letdig cs, i))
clasohm@0
   554
    | c::_ => error ("Illegal character: " ^ c)
clasohm@0
   555
  end;
clasohm@0
   556
paulson@1501
   557
(*Rename recent parameters using names generated from a and the suffixes,
paulson@1501
   558
  provided the string a, which represents a term, is an identifier. *)
clasohm@0
   559
fun rename_last_tac a sufs i = 
clasohm@0
   560
  let val names = map (curry op^ a) sufs
clasohm@0
   561
  in  if Syntax.is_identifier a
clasohm@0
   562
      then PRIMITIVE (rename_params_rule (names,i))
clasohm@0
   563
      else all_tac
clasohm@0
   564
  end;
clasohm@0
   565
paulson@2043
   566
(*Prunes all redundant parameters from the proof state by rewriting.
paulson@2043
   567
  DOES NOT rewrite main goal, where quantification over an unused bound
paulson@2043
   568
    variable is sometimes done to avoid the need for cut_facts_tac.*)
paulson@2043
   569
val prune_params_tac = rewrite_goals_tac [triv_forall_equality];
clasohm@0
   570
paulson@1501
   571
(*rotate_tac n i: rotate the assumptions of subgoal i by n positions, from
paulson@1501
   572
  right to left if n is positive, and from left to right if n is negative.*)
paulson@2672
   573
fun rotate_tac 0 i = all_tac
paulson@2672
   574
  | rotate_tac k i = PRIMITIVE (rotate_rule k i);
nipkow@1209
   575
clasohm@0
   576
end;
paulson@1501
   577
paulson@1501
   578
open Tactic;