src/HOL/Rat.thy
author wenzelm
Mon Dec 07 10:38:04 2015 +0100 (2015-12-07)
changeset 61799 4cf66f21b764
parent 61144 5e94dfead1c2
child 61942 f02b26f7d39d
permissions -rw-r--r--
isabelle update_cartouches -c -t;
haftmann@35372
     1
(*  Title:  HOL/Rat.thy
paulson@14365
     2
    Author: Markus Wenzel, TU Muenchen
paulson@14365
     3
*)
paulson@14365
     4
wenzelm@60758
     5
section \<open>Rational numbers\<close>
paulson@14365
     6
haftmann@35372
     7
theory Rat
huffman@30097
     8
imports GCD Archimedean_Field
nipkow@15131
     9
begin
paulson@14365
    10
wenzelm@60758
    11
subsection \<open>Rational numbers as quotient\<close>
paulson@14365
    12
wenzelm@60758
    13
subsubsection \<open>Construction of the type of rational numbers\<close>
huffman@18913
    14
wenzelm@21404
    15
definition
huffman@47906
    16
  ratrel :: "(int \<times> int) \<Rightarrow> (int \<times> int) \<Rightarrow> bool" where
huffman@47906
    17
  "ratrel = (\<lambda>x y. snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x)"
paulson@14365
    18
huffman@18913
    19
lemma ratrel_iff [simp]:
huffman@47906
    20
  "ratrel x y \<longleftrightarrow> snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x"
haftmann@27551
    21
  by (simp add: ratrel_def)
paulson@14365
    22
huffman@47906
    23
lemma exists_ratrel_refl: "\<exists>x. ratrel x x"
huffman@47906
    24
  by (auto intro!: one_neq_zero)
huffman@18913
    25
huffman@47906
    26
lemma symp_ratrel: "symp ratrel"
huffman@47906
    27
  by (simp add: ratrel_def symp_def)
paulson@14365
    28
huffman@47906
    29
lemma transp_ratrel: "transp ratrel"
huffman@47906
    30
proof (rule transpI, unfold split_paired_all)
haftmann@27551
    31
  fix a b a' b' a'' b'' :: int
huffman@47906
    32
  assume A: "ratrel (a, b) (a', b')"
huffman@47906
    33
  assume B: "ratrel (a', b') (a'', b'')"
haftmann@27551
    34
  have "b' * (a * b'') = b'' * (a * b')" by simp
haftmann@27551
    35
  also from A have "a * b' = a' * b" by auto
haftmann@27551
    36
  also have "b'' * (a' * b) = b * (a' * b'')" by simp
haftmann@27551
    37
  also from B have "a' * b'' = a'' * b'" by auto
haftmann@27551
    38
  also have "b * (a'' * b') = b' * (a'' * b)" by simp
haftmann@27551
    39
  finally have "b' * (a * b'') = b' * (a'' * b)" .
haftmann@27551
    40
  moreover from B have "b' \<noteq> 0" by auto
haftmann@27551
    41
  ultimately have "a * b'' = a'' * b" by simp
huffman@47906
    42
  with A B show "ratrel (a, b) (a'', b'')" by auto
haftmann@27551
    43
qed
haftmann@27551
    44
huffman@47906
    45
lemma part_equivp_ratrel: "part_equivp ratrel"
huffman@47906
    46
  by (rule part_equivpI [OF exists_ratrel_refl symp_ratrel transp_ratrel])
huffman@47906
    47
huffman@47906
    48
quotient_type rat = "int \<times> int" / partial: "ratrel"
huffman@47906
    49
  morphisms Rep_Rat Abs_Rat
huffman@47906
    50
  by (rule part_equivp_ratrel)
haftmann@27551
    51
kuncar@53012
    52
lemma Domainp_cr_rat [transfer_domain_rule]: "Domainp pcr_rat = (\<lambda>x. snd x \<noteq> 0)"
kuncar@53012
    53
by (simp add: rat.domain_eq)
haftmann@27551
    54
wenzelm@60758
    55
subsubsection \<open>Representation and basic operations\<close>
haftmann@27551
    56
huffman@47906
    57
lift_definition Fract :: "int \<Rightarrow> int \<Rightarrow> rat"
huffman@47906
    58
  is "\<lambda>a b. if b = 0 then (0, 1) else (a, b)"
huffman@47906
    59
  by simp
haftmann@27551
    60
haftmann@27551
    61
lemma eq_rat:
haftmann@27551
    62
  shows "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b"
haftmann@27652
    63
  and "\<And>a. Fract a 0 = Fract 0 1"
haftmann@27652
    64
  and "\<And>a c. Fract 0 a = Fract 0 c"
huffman@47906
    65
  by (transfer, simp)+
haftmann@27551
    66
haftmann@35369
    67
lemma Rat_cases [case_names Fract, cases type: rat]:
haftmann@35369
    68
  assumes "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> C"
haftmann@35369
    69
  shows C
haftmann@35369
    70
proof -
haftmann@35369
    71
  obtain a b :: int where "q = Fract a b" and "b \<noteq> 0"
huffman@47906
    72
    by transfer simp
haftmann@35369
    73
  let ?a = "a div gcd a b"
haftmann@35369
    74
  let ?b = "b div gcd a b"
wenzelm@60758
    75
  from \<open>b \<noteq> 0\<close> have "?b * gcd a b = b"
haftmann@58834
    76
    by simp
wenzelm@60758
    77
  with \<open>b \<noteq> 0\<close> have "?b \<noteq> 0" by fastforce
wenzelm@60758
    78
  from \<open>q = Fract a b\<close> \<open>b \<noteq> 0\<close> \<open>?b \<noteq> 0\<close> have q: "q = Fract ?a ?b"
haftmann@57512
    79
    by (simp add: eq_rat dvd_div_mult mult.commute [of a])
wenzelm@60758
    80
  from \<open>b \<noteq> 0\<close> have coprime: "coprime ?a ?b"
haftmann@35369
    81
    by (auto intro: div_gcd_coprime_int)
haftmann@35369
    82
  show C proof (cases "b > 0")
haftmann@35369
    83
    case True
haftmann@35369
    84
    note assms
haftmann@35369
    85
    moreover note q
haftmann@35369
    86
    moreover from True have "?b > 0" by (simp add: nonneg1_imp_zdiv_pos_iff)
haftmann@35369
    87
    moreover note coprime
haftmann@35369
    88
    ultimately show C .
haftmann@35369
    89
  next
haftmann@35369
    90
    case False
haftmann@35369
    91
    note assms
huffman@47906
    92
    moreover have "q = Fract (- ?a) (- ?b)" unfolding q by transfer simp
wenzelm@60758
    93
    moreover from False \<open>b \<noteq> 0\<close> have "- ?b > 0" by (simp add: pos_imp_zdiv_neg_iff)
haftmann@35369
    94
    moreover from coprime have "coprime (- ?a) (- ?b)" by simp
haftmann@35369
    95
    ultimately show C .
haftmann@35369
    96
  qed
haftmann@35369
    97
qed
haftmann@35369
    98
haftmann@35369
    99
lemma Rat_induct [case_names Fract, induct type: rat]:
haftmann@35369
   100
  assumes "\<And>a b. b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> P (Fract a b)"
haftmann@35369
   101
  shows "P q"
haftmann@35369
   102
  using assms by (cases q) simp
haftmann@35369
   103
haftmann@59867
   104
instantiation rat :: field
haftmann@25571
   105
begin
haftmann@25571
   106
huffman@47906
   107
lift_definition zero_rat :: "rat" is "(0, 1)"
huffman@47906
   108
  by simp
huffman@47906
   109
huffman@47906
   110
lift_definition one_rat :: "rat" is "(1, 1)"
huffman@47906
   111
  by simp
paulson@14365
   112
huffman@47906
   113
lemma Zero_rat_def: "0 = Fract 0 1"
huffman@47906
   114
  by transfer simp
huffman@18913
   115
huffman@47906
   116
lemma One_rat_def: "1 = Fract 1 1"
huffman@47906
   117
  by transfer simp
huffman@47906
   118
huffman@47906
   119
lift_definition plus_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat"
huffman@47906
   120
  is "\<lambda>x y. (fst x * snd y + fst y * snd x, snd x * snd y)"
haftmann@57514
   121
  by (clarsimp, simp add: distrib_right, simp add: ac_simps)
haftmann@27551
   122
haftmann@27652
   123
lemma add_rat [simp]:
haftmann@27551
   124
  assumes "b \<noteq> 0" and "d \<noteq> 0"
haftmann@27551
   125
  shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)"
huffman@47906
   126
  using assms by transfer simp
huffman@18913
   127
huffman@47906
   128
lift_definition uminus_rat :: "rat \<Rightarrow> rat" is "\<lambda>x. (- fst x, snd x)"
huffman@47906
   129
  by simp
haftmann@27551
   130
haftmann@35369
   131
lemma minus_rat [simp]: "- Fract a b = Fract (- a) b"
huffman@47906
   132
  by transfer simp
haftmann@27551
   133
haftmann@27652
   134
lemma minus_rat_cancel [simp]: "Fract (- a) (- b) = Fract a b"
haftmann@27551
   135
  by (cases "b = 0") (simp_all add: eq_rat)
haftmann@25571
   136
haftmann@25571
   137
definition
haftmann@35369
   138
  diff_rat_def: "q - r = q + - (r::rat)"
huffman@18913
   139
haftmann@27652
   140
lemma diff_rat [simp]:
haftmann@27551
   141
  assumes "b \<noteq> 0" and "d \<noteq> 0"
haftmann@27551
   142
  shows "Fract a b - Fract c d = Fract (a * d - c * b) (b * d)"
haftmann@27652
   143
  using assms by (simp add: diff_rat_def)
haftmann@25571
   144
huffman@47906
   145
lift_definition times_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat"
huffman@47906
   146
  is "\<lambda>x y. (fst x * fst y, snd x * snd y)"
haftmann@57514
   147
  by (simp add: ac_simps)
paulson@14365
   148
haftmann@27652
   149
lemma mult_rat [simp]: "Fract a b * Fract c d = Fract (a * c) (b * d)"
huffman@47906
   150
  by transfer simp
paulson@14365
   151
haftmann@27652
   152
lemma mult_rat_cancel:
haftmann@27551
   153
  assumes "c \<noteq> 0"
haftmann@27551
   154
  shows "Fract (c * a) (c * b) = Fract a b"
huffman@47906
   155
  using assms by transfer simp
huffman@47906
   156
huffman@47906
   157
lift_definition inverse_rat :: "rat \<Rightarrow> rat"
huffman@47906
   158
  is "\<lambda>x. if fst x = 0 then (0, 1) else (snd x, fst x)"
haftmann@57512
   159
  by (auto simp add: mult.commute)
huffman@47906
   160
huffman@47906
   161
lemma inverse_rat [simp]: "inverse (Fract a b) = Fract b a"
huffman@47906
   162
  by transfer simp
huffman@47906
   163
huffman@47906
   164
definition
haftmann@60429
   165
  divide_rat_def: "q div r = q * inverse (r::rat)"
huffman@47906
   166
haftmann@60429
   167
lemma divide_rat [simp]: "Fract a b div Fract c d = Fract (a * d) (b * c)"
huffman@47906
   168
  by (simp add: divide_rat_def)
huffman@27509
   169
huffman@27509
   170
instance proof
huffman@47906
   171
  fix q r s :: rat
huffman@47906
   172
  show "(q * r) * s = q * (r * s)"
huffman@47906
   173
    by transfer simp
huffman@47906
   174
  show "q * r = r * q"
huffman@47906
   175
    by transfer simp
huffman@47906
   176
  show "1 * q = q"
huffman@47906
   177
    by transfer simp
huffman@47906
   178
  show "(q + r) + s = q + (r + s)"
huffman@47906
   179
    by transfer (simp add: algebra_simps)
huffman@47906
   180
  show "q + r = r + q"
huffman@47906
   181
    by transfer simp
huffman@47906
   182
  show "0 + q = q"
huffman@47906
   183
    by transfer simp
huffman@47906
   184
  show "- q + q = 0"
huffman@47906
   185
    by transfer simp
huffman@47906
   186
  show "q - r = q + - r"
huffman@47906
   187
    by (fact diff_rat_def)
huffman@47906
   188
  show "(q + r) * s = q * s + r * s"
huffman@47906
   189
    by transfer (simp add: algebra_simps)
huffman@47906
   190
  show "(0::rat) \<noteq> 1"
huffman@47906
   191
    by transfer simp
huffman@47906
   192
  { assume "q \<noteq> 0" thus "inverse q * q = 1"
huffman@47906
   193
    by transfer simp }
haftmann@60429
   194
  show "q div r = q * inverse r"
huffman@47906
   195
    by (fact divide_rat_def)
huffman@47906
   196
  show "inverse 0 = (0::rat)"
huffman@47906
   197
    by transfer simp
huffman@27509
   198
qed
huffman@27509
   199
huffman@27509
   200
end
huffman@27509
   201
haftmann@27551
   202
lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1"
haftmann@27652
   203
  by (induct k) (simp_all add: Zero_rat_def One_rat_def)
haftmann@27551
   204
haftmann@27551
   205
lemma of_int_rat: "of_int k = Fract k 1"
haftmann@27652
   206
  by (cases k rule: int_diff_cases) (simp add: of_nat_rat)
haftmann@27551
   207
haftmann@27551
   208
lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k"
haftmann@27551
   209
  by (rule of_nat_rat [symmetric])
haftmann@27551
   210
haftmann@27551
   211
lemma Fract_of_int_eq: "Fract k 1 = of_int k"
haftmann@27551
   212
  by (rule of_int_rat [symmetric])
haftmann@27551
   213
haftmann@35369
   214
lemma rat_number_collapse:
haftmann@27551
   215
  "Fract 0 k = 0"
haftmann@27551
   216
  "Fract 1 1 = 1"
huffman@47108
   217
  "Fract (numeral w) 1 = numeral w"
haftmann@54489
   218
  "Fract (- numeral w) 1 = - numeral w"
haftmann@54489
   219
  "Fract (- 1) 1 = - 1"
haftmann@27551
   220
  "Fract k 0 = 0"
huffman@47108
   221
  using Fract_of_int_eq [of "numeral w"]
haftmann@54489
   222
  using Fract_of_int_eq [of "- numeral w"]
huffman@47108
   223
  by (simp_all add: Zero_rat_def One_rat_def eq_rat)
haftmann@27551
   224
huffman@47108
   225
lemma rat_number_expand:
haftmann@27551
   226
  "0 = Fract 0 1"
haftmann@27551
   227
  "1 = Fract 1 1"
huffman@47108
   228
  "numeral k = Fract (numeral k) 1"
haftmann@54489
   229
  "- 1 = Fract (- 1) 1"
haftmann@54489
   230
  "- numeral k = Fract (- numeral k) 1"
haftmann@27551
   231
  by (simp_all add: rat_number_collapse)
haftmann@27551
   232
haftmann@27551
   233
lemma Rat_cases_nonzero [case_names Fract 0]:
haftmann@35369
   234
  assumes Fract: "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> C"
haftmann@27551
   235
  assumes 0: "q = 0 \<Longrightarrow> C"
haftmann@27551
   236
  shows C
haftmann@27551
   237
proof (cases "q = 0")
haftmann@27551
   238
  case True then show C using 0 by auto
haftmann@27551
   239
next
haftmann@27551
   240
  case False
haftmann@35369
   241
  then obtain a b where "q = Fract a b" and "b > 0" and "coprime a b" by (cases q) auto
wenzelm@53374
   242
  with False have "0 \<noteq> Fract a b" by simp
wenzelm@60758
   243
  with \<open>b > 0\<close> have "a \<noteq> 0" by (simp add: Zero_rat_def eq_rat)
wenzelm@60758
   244
  with Fract \<open>q = Fract a b\<close> \<open>b > 0\<close> \<open>coprime a b\<close> show C by blast
haftmann@27551
   245
qed
haftmann@27551
   246
wenzelm@61799
   247
subsubsection \<open>Function \<open>normalize\<close>\<close>
nipkow@33805
   248
haftmann@35369
   249
lemma Fract_coprime: "Fract (a div gcd a b) (b div gcd a b) = Fract a b"
haftmann@35369
   250
proof (cases "b = 0")
haftmann@35369
   251
  case True then show ?thesis by (simp add: eq_rat)
haftmann@35369
   252
next
haftmann@35369
   253
  case False
haftmann@35369
   254
  moreover have "b div gcd a b * gcd a b = b"
haftmann@35369
   255
    by (rule dvd_div_mult_self) simp
haftmann@58834
   256
  ultimately have "b div gcd a b * gcd a b \<noteq> 0" by simp
haftmann@58834
   257
  then have "b div gcd a b \<noteq> 0" by fastforce
haftmann@57512
   258
  with False show ?thesis by (simp add: eq_rat dvd_div_mult mult.commute [of a])
haftmann@35369
   259
qed
nipkow@33805
   260
haftmann@35369
   261
definition normalize :: "int \<times> int \<Rightarrow> int \<times> int" where
haftmann@35369
   262
  "normalize p = (if snd p > 0 then (let a = gcd (fst p) (snd p) in (fst p div a, snd p div a))
haftmann@35369
   263
    else if snd p = 0 then (0, 1)
haftmann@35369
   264
    else (let a = - gcd (fst p) (snd p) in (fst p div a, snd p div a)))"
haftmann@35369
   265
haftmann@35369
   266
lemma normalize_crossproduct:
haftmann@35369
   267
  assumes "q \<noteq> 0" "s \<noteq> 0"
haftmann@35369
   268
  assumes "normalize (p, q) = normalize (r, s)"
haftmann@35369
   269
  shows "p * s = r * q"
haftmann@35369
   270
proof -
haftmann@35369
   271
  have aux: "p * gcd r s = sgn (q * s) * r * gcd p q \<Longrightarrow> q * gcd r s = sgn (q * s) * s * gcd p q \<Longrightarrow> p * s = q * r"
haftmann@35369
   272
  proof -
haftmann@35369
   273
    assume "p * gcd r s = sgn (q * s) * r * gcd p q" and "q * gcd r s = sgn (q * s) * s * gcd p q"
haftmann@35369
   274
    then have "(p * gcd r s) * (sgn (q * s) * s * gcd p q) = (q * gcd r s) * (sgn (q * s) * r * gcd p q)" by simp
haftmann@57514
   275
    with assms show "p * s = q * r" by (auto simp add: ac_simps sgn_times sgn_0_0)
haftmann@35369
   276
  qed
haftmann@35369
   277
  from assms show ?thesis
haftmann@57512
   278
    by (auto simp add: normalize_def Let_def dvd_div_div_eq_mult mult.commute sgn_times split: if_splits intro: aux)
nipkow@33805
   279
qed
nipkow@33805
   280
haftmann@35369
   281
lemma normalize_eq: "normalize (a, b) = (p, q) \<Longrightarrow> Fract p q = Fract a b"
haftmann@35369
   282
  by (auto simp add: normalize_def Let_def Fract_coprime dvd_div_neg rat_number_collapse
haftmann@35369
   283
    split:split_if_asm)
haftmann@35369
   284
haftmann@35369
   285
lemma normalize_denom_pos: "normalize r = (p, q) \<Longrightarrow> q > 0"
haftmann@35369
   286
  by (auto simp add: normalize_def Let_def dvd_div_neg pos_imp_zdiv_neg_iff nonneg1_imp_zdiv_pos_iff
haftmann@35369
   287
    split:split_if_asm)
haftmann@35369
   288
haftmann@35369
   289
lemma normalize_coprime: "normalize r = (p, q) \<Longrightarrow> coprime p q"
haftmann@35369
   290
  by (auto simp add: normalize_def Let_def dvd_div_neg div_gcd_coprime_int
haftmann@35369
   291
    split:split_if_asm)
haftmann@35369
   292
haftmann@35369
   293
lemma normalize_stable [simp]:
haftmann@35369
   294
  "q > 0 \<Longrightarrow> coprime p q \<Longrightarrow> normalize (p, q) = (p, q)"
haftmann@35369
   295
  by (simp add: normalize_def)
haftmann@35369
   296
haftmann@35369
   297
lemma normalize_denom_zero [simp]:
haftmann@35369
   298
  "normalize (p, 0) = (0, 1)"
haftmann@35369
   299
  by (simp add: normalize_def)
haftmann@35369
   300
haftmann@35369
   301
lemma normalize_negative [simp]:
haftmann@35369
   302
  "q < 0 \<Longrightarrow> normalize (p, q) = normalize (- p, - q)"
haftmann@35369
   303
  by (simp add: normalize_def Let_def dvd_div_neg dvd_neg_div)
haftmann@35369
   304
wenzelm@60758
   305
text\<open>
haftmann@35369
   306
  Decompose a fraction into normalized, i.e. coprime numerator and denominator:
wenzelm@60758
   307
\<close>
haftmann@35369
   308
haftmann@35369
   309
definition quotient_of :: "rat \<Rightarrow> int \<times> int" where
haftmann@35369
   310
  "quotient_of x = (THE pair. x = Fract (fst pair) (snd pair) &
haftmann@35369
   311
                   snd pair > 0 & coprime (fst pair) (snd pair))"
haftmann@35369
   312
haftmann@35369
   313
lemma quotient_of_unique:
haftmann@35369
   314
  "\<exists>!p. r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)"
haftmann@35369
   315
proof (cases r)
haftmann@35369
   316
  case (Fract a b)
haftmann@35369
   317
  then have "r = Fract (fst (a, b)) (snd (a, b)) \<and> snd (a, b) > 0 \<and> coprime (fst (a, b)) (snd (a, b))" by auto
haftmann@35369
   318
  then show ?thesis proof (rule ex1I)
haftmann@35369
   319
    fix p
haftmann@35369
   320
    obtain c d :: int where p: "p = (c, d)" by (cases p)
haftmann@35369
   321
    assume "r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)"
haftmann@35369
   322
    with p have Fract': "r = Fract c d" "d > 0" "coprime c d" by simp_all
haftmann@35369
   323
    have "c = a \<and> d = b"
haftmann@35369
   324
    proof (cases "a = 0")
haftmann@35369
   325
      case True with Fract Fract' show ?thesis by (simp add: eq_rat)
haftmann@35369
   326
    next
haftmann@35369
   327
      case False
haftmann@35369
   328
      with Fract Fract' have *: "c * b = a * d" and "c \<noteq> 0" by (auto simp add: eq_rat)
haftmann@35369
   329
      then have "c * b > 0 \<longleftrightarrow> a * d > 0" by auto
wenzelm@60758
   330
      with \<open>b > 0\<close> \<open>d > 0\<close> have "a > 0 \<longleftrightarrow> c > 0" by (simp add: zero_less_mult_iff)
wenzelm@60758
   331
      with \<open>a \<noteq> 0\<close> \<open>c \<noteq> 0\<close> have sgn: "sgn a = sgn c" by (auto simp add: not_less)
wenzelm@60758
   332
      from \<open>coprime a b\<close> \<open>coprime c d\<close> have "\<bar>a\<bar> * \<bar>d\<bar> = \<bar>c\<bar> * \<bar>b\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> \<bar>d\<bar> = \<bar>b\<bar>"
haftmann@35369
   333
        by (simp add: coprime_crossproduct_int)
wenzelm@60758
   334
      with \<open>b > 0\<close> \<open>d > 0\<close> have "\<bar>a\<bar> * d = \<bar>c\<bar> * b \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> d = b" by simp
haftmann@35369
   335
      then have "a * sgn a * d = c * sgn c * b \<longleftrightarrow> a * sgn a = c * sgn c \<and> d = b" by (simp add: abs_sgn)
haftmann@35369
   336
      with sgn * show ?thesis by (auto simp add: sgn_0_0)
nipkow@33805
   337
    qed
haftmann@35369
   338
    with p show "p = (a, b)" by simp
nipkow@33805
   339
  qed
nipkow@33805
   340
qed
nipkow@33805
   341
haftmann@35369
   342
lemma quotient_of_Fract [code]:
haftmann@35369
   343
  "quotient_of (Fract a b) = normalize (a, b)"
haftmann@35369
   344
proof -
haftmann@35369
   345
  have "Fract a b = Fract (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?Fract)
haftmann@35369
   346
    by (rule sym) (auto intro: normalize_eq)
wenzelm@52146
   347
  moreover have "0 < snd (normalize (a, b))" (is ?denom_pos)
haftmann@35369
   348
    by (cases "normalize (a, b)") (rule normalize_denom_pos, simp)
haftmann@35369
   349
  moreover have "coprime (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?coprime)
haftmann@35369
   350
    by (rule normalize_coprime) simp
haftmann@35369
   351
  ultimately have "?Fract \<and> ?denom_pos \<and> ?coprime" by blast
haftmann@35369
   352
  with quotient_of_unique have
haftmann@35369
   353
    "(THE p. Fract a b = Fract (fst p) (snd p) \<and> 0 < snd p \<and> coprime (fst p) (snd p)) = normalize (a, b)"
haftmann@35369
   354
    by (rule the1_equality)
haftmann@35369
   355
  then show ?thesis by (simp add: quotient_of_def)
haftmann@35369
   356
qed
haftmann@35369
   357
haftmann@35369
   358
lemma quotient_of_number [simp]:
haftmann@35369
   359
  "quotient_of 0 = (0, 1)"
haftmann@35369
   360
  "quotient_of 1 = (1, 1)"
huffman@47108
   361
  "quotient_of (numeral k) = (numeral k, 1)"
haftmann@54489
   362
  "quotient_of (- 1) = (- 1, 1)"
haftmann@54489
   363
  "quotient_of (- numeral k) = (- numeral k, 1)"
haftmann@35369
   364
  by (simp_all add: rat_number_expand quotient_of_Fract)
nipkow@33805
   365
haftmann@35369
   366
lemma quotient_of_eq: "quotient_of (Fract a b) = (p, q) \<Longrightarrow> Fract p q = Fract a b"
haftmann@35369
   367
  by (simp add: quotient_of_Fract normalize_eq)
haftmann@35369
   368
haftmann@35369
   369
lemma quotient_of_denom_pos: "quotient_of r = (p, q) \<Longrightarrow> q > 0"
haftmann@35369
   370
  by (cases r) (simp add: quotient_of_Fract normalize_denom_pos)
haftmann@35369
   371
haftmann@35369
   372
lemma quotient_of_coprime: "quotient_of r = (p, q) \<Longrightarrow> coprime p q"
haftmann@35369
   373
  by (cases r) (simp add: quotient_of_Fract normalize_coprime)
nipkow@33805
   374
haftmann@35369
   375
lemma quotient_of_inject:
haftmann@35369
   376
  assumes "quotient_of a = quotient_of b"
haftmann@35369
   377
  shows "a = b"
haftmann@35369
   378
proof -
haftmann@35369
   379
  obtain p q r s where a: "a = Fract p q"
haftmann@35369
   380
    and b: "b = Fract r s"
haftmann@35369
   381
    and "q > 0" and "s > 0" by (cases a, cases b)
haftmann@35369
   382
  with assms show ?thesis by (simp add: eq_rat quotient_of_Fract normalize_crossproduct)
haftmann@35369
   383
qed
haftmann@35369
   384
haftmann@35369
   385
lemma quotient_of_inject_eq:
haftmann@35369
   386
  "quotient_of a = quotient_of b \<longleftrightarrow> a = b"
haftmann@35369
   387
  by (auto simp add: quotient_of_inject)
nipkow@33805
   388
haftmann@27551
   389
wenzelm@60758
   390
subsubsection \<open>Various\<close>
haftmann@27551
   391
haftmann@27551
   392
lemma Fract_of_int_quotient: "Fract k l = of_int k / of_int l"
haftmann@27652
   393
  by (simp add: Fract_of_int_eq [symmetric])
haftmann@27551
   394
huffman@47108
   395
lemma Fract_add_one: "n \<noteq> 0 ==> Fract (m + n) n = Fract m n + 1"
huffman@47108
   396
  by (simp add: rat_number_expand)
haftmann@27551
   397
hoelzl@50178
   398
lemma quotient_of_div:
hoelzl@50178
   399
  assumes r: "quotient_of r = (n,d)"
hoelzl@50178
   400
  shows "r = of_int n / of_int d"
hoelzl@50178
   401
proof -
hoelzl@50178
   402
  from theI'[OF quotient_of_unique[of r], unfolded r[unfolded quotient_of_def]]
hoelzl@50178
   403
  have "r = Fract n d" by simp
hoelzl@50178
   404
  thus ?thesis using Fract_of_int_quotient by simp
hoelzl@50178
   405
qed
haftmann@27551
   406
wenzelm@60758
   407
subsubsection \<open>The ordered field of rational numbers\<close>
huffman@27509
   408
huffman@47907
   409
lift_definition positive :: "rat \<Rightarrow> bool"
huffman@47907
   410
  is "\<lambda>x. 0 < fst x * snd x"
huffman@47907
   411
proof (clarsimp)
huffman@47907
   412
  fix a b c d :: int
huffman@47907
   413
  assume "b \<noteq> 0" and "d \<noteq> 0" and "a * d = c * b"
huffman@47907
   414
  hence "a * d * b * d = c * b * b * d"
huffman@47907
   415
    by simp
wenzelm@53015
   416
  hence "a * b * d\<^sup>2 = c * d * b\<^sup>2"
haftmann@57514
   417
    unfolding power2_eq_square by (simp add: ac_simps)
wenzelm@53015
   418
  hence "0 < a * b * d\<^sup>2 \<longleftrightarrow> 0 < c * d * b\<^sup>2"
huffman@47907
   419
    by simp
huffman@47907
   420
  thus "0 < a * b \<longleftrightarrow> 0 < c * d"
wenzelm@60758
   421
    using \<open>b \<noteq> 0\<close> and \<open>d \<noteq> 0\<close>
huffman@47907
   422
    by (simp add: zero_less_mult_iff)
huffman@47907
   423
qed
huffman@47907
   424
huffman@47907
   425
lemma positive_zero: "\<not> positive 0"
huffman@47907
   426
  by transfer simp
huffman@47907
   427
huffman@47907
   428
lemma positive_add:
huffman@47907
   429
  "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x + y)"
huffman@47907
   430
apply transfer
huffman@47907
   431
apply (simp add: zero_less_mult_iff)
huffman@47907
   432
apply (elim disjE, simp_all add: add_pos_pos add_neg_neg
nipkow@56544
   433
  mult_pos_neg mult_neg_pos mult_neg_neg)
huffman@47907
   434
done
huffman@47907
   435
huffman@47907
   436
lemma positive_mult:
huffman@47907
   437
  "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x * y)"
haftmann@57514
   438
by transfer (drule (1) mult_pos_pos, simp add: ac_simps)
huffman@47907
   439
huffman@47907
   440
lemma positive_minus:
huffman@47907
   441
  "\<not> positive x \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> positive (- x)"
huffman@47907
   442
by transfer (force simp: neq_iff zero_less_mult_iff mult_less_0_iff)
huffman@47907
   443
haftmann@59867
   444
instantiation rat :: linordered_field
huffman@27509
   445
begin
huffman@27509
   446
huffman@47907
   447
definition
huffman@47907
   448
  "x < y \<longleftrightarrow> positive (y - x)"
huffman@47907
   449
huffman@47907
   450
definition
huffman@47907
   451
  "x \<le> (y::rat) \<longleftrightarrow> x < y \<or> x = y"
huffman@47907
   452
huffman@47907
   453
definition
huffman@47907
   454
  "abs (a::rat) = (if a < 0 then - a else a)"
huffman@47907
   455
huffman@47907
   456
definition
huffman@47907
   457
  "sgn (a::rat) = (if a = 0 then 0 else if 0 < a then 1 else - 1)"
huffman@47906
   458
huffman@47907
   459
instance proof
huffman@47907
   460
  fix a b c :: rat
huffman@47907
   461
  show "\<bar>a\<bar> = (if a < 0 then - a else a)"
huffman@47907
   462
    by (rule abs_rat_def)
huffman@47907
   463
  show "a < b \<longleftrightarrow> a \<le> b \<and> \<not> b \<le> a"
huffman@47907
   464
    unfolding less_eq_rat_def less_rat_def
huffman@47907
   465
    by (auto, drule (1) positive_add, simp_all add: positive_zero)
huffman@47907
   466
  show "a \<le> a"
huffman@47907
   467
    unfolding less_eq_rat_def by simp
huffman@47907
   468
  show "a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c"
huffman@47907
   469
    unfolding less_eq_rat_def less_rat_def
huffman@47907
   470
    by (auto, drule (1) positive_add, simp add: algebra_simps)
huffman@47907
   471
  show "a \<le> b \<Longrightarrow> b \<le> a \<Longrightarrow> a = b"
huffman@47907
   472
    unfolding less_eq_rat_def less_rat_def
huffman@47907
   473
    by (auto, drule (1) positive_add, simp add: positive_zero)
huffman@47907
   474
  show "a \<le> b \<Longrightarrow> c + a \<le> c + b"
haftmann@54230
   475
    unfolding less_eq_rat_def less_rat_def by auto
huffman@47907
   476
  show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)"
huffman@47907
   477
    by (rule sgn_rat_def)
huffman@47907
   478
  show "a \<le> b \<or> b \<le> a"
huffman@47907
   479
    unfolding less_eq_rat_def less_rat_def
huffman@47907
   480
    by (auto dest!: positive_minus)
huffman@47907
   481
  show "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
huffman@47907
   482
    unfolding less_rat_def
huffman@47907
   483
    by (drule (1) positive_mult, simp add: algebra_simps)
huffman@47906
   484
qed
haftmann@27551
   485
huffman@47907
   486
end
huffman@47907
   487
huffman@47907
   488
instantiation rat :: distrib_lattice
huffman@47907
   489
begin
huffman@47907
   490
huffman@47907
   491
definition
huffman@47907
   492
  "(inf :: rat \<Rightarrow> rat \<Rightarrow> rat) = min"
huffman@27509
   493
huffman@27509
   494
definition
huffman@47907
   495
  "(sup :: rat \<Rightarrow> rat \<Rightarrow> rat) = max"
huffman@47907
   496
huffman@47907
   497
instance proof
haftmann@54863
   498
qed (auto simp add: inf_rat_def sup_rat_def max_min_distrib2)
huffman@47907
   499
huffman@47907
   500
end
huffman@47907
   501
huffman@47907
   502
lemma positive_rat: "positive (Fract a b) \<longleftrightarrow> 0 < a * b"
huffman@47907
   503
  by transfer simp
huffman@27509
   504
haftmann@27652
   505
lemma less_rat [simp]:
haftmann@27551
   506
  assumes "b \<noteq> 0" and "d \<noteq> 0"
haftmann@27551
   507
  shows "Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)"
huffman@47907
   508
  using assms unfolding less_rat_def
huffman@47907
   509
  by (simp add: positive_rat algebra_simps)
huffman@27509
   510
huffman@47907
   511
lemma le_rat [simp]:
huffman@47907
   512
  assumes "b \<noteq> 0" and "d \<noteq> 0"
huffman@47907
   513
  shows "Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)"
huffman@47907
   514
  using assms unfolding le_less by (simp add: eq_rat)
haftmann@27551
   515
haftmann@27652
   516
lemma abs_rat [simp, code]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>"
huffman@35216
   517
  by (auto simp add: abs_rat_def zabs_def Zero_rat_def not_less le_less eq_rat zero_less_mult_iff)
haftmann@27551
   518
haftmann@27652
   519
lemma sgn_rat [simp, code]: "sgn (Fract a b) = of_int (sgn a * sgn b)"
haftmann@27551
   520
  unfolding Fract_of_int_eq
haftmann@27652
   521
  by (auto simp: zsgn_def sgn_rat_def Zero_rat_def eq_rat)
haftmann@27551
   522
    (auto simp: rat_number_collapse not_less le_less zero_less_mult_iff)
haftmann@27551
   523
haftmann@27551
   524
lemma Rat_induct_pos [case_names Fract, induct type: rat]:
haftmann@27551
   525
  assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)"
haftmann@27551
   526
  shows "P q"
paulson@14365
   527
proof (cases q)
haftmann@27551
   528
  have step': "\<And>a b. b < 0 \<Longrightarrow> P (Fract a b)"
paulson@14365
   529
  proof -
paulson@14365
   530
    fix a::int and b::int
paulson@14365
   531
    assume b: "b < 0"
paulson@14365
   532
    hence "0 < -b" by simp
paulson@14365
   533
    hence "P (Fract (-a) (-b))" by (rule step)
paulson@14365
   534
    thus "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b])
paulson@14365
   535
  qed
paulson@14365
   536
  case (Fract a b)
paulson@14365
   537
  thus "P q" by (force simp add: linorder_neq_iff step step')
paulson@14365
   538
qed
paulson@14365
   539
paulson@14365
   540
lemma zero_less_Fract_iff:
huffman@30095
   541
  "0 < b \<Longrightarrow> 0 < Fract a b \<longleftrightarrow> 0 < a"
huffman@30095
   542
  by (simp add: Zero_rat_def zero_less_mult_iff)
huffman@30095
   543
huffman@30095
   544
lemma Fract_less_zero_iff:
huffman@30095
   545
  "0 < b \<Longrightarrow> Fract a b < 0 \<longleftrightarrow> a < 0"
huffman@30095
   546
  by (simp add: Zero_rat_def mult_less_0_iff)
huffman@30095
   547
huffman@30095
   548
lemma zero_le_Fract_iff:
huffman@30095
   549
  "0 < b \<Longrightarrow> 0 \<le> Fract a b \<longleftrightarrow> 0 \<le> a"
huffman@30095
   550
  by (simp add: Zero_rat_def zero_le_mult_iff)
huffman@30095
   551
huffman@30095
   552
lemma Fract_le_zero_iff:
huffman@30095
   553
  "0 < b \<Longrightarrow> Fract a b \<le> 0 \<longleftrightarrow> a \<le> 0"
huffman@30095
   554
  by (simp add: Zero_rat_def mult_le_0_iff)
huffman@30095
   555
huffman@30095
   556
lemma one_less_Fract_iff:
huffman@30095
   557
  "0 < b \<Longrightarrow> 1 < Fract a b \<longleftrightarrow> b < a"
huffman@30095
   558
  by (simp add: One_rat_def mult_less_cancel_right_disj)
huffman@30095
   559
huffman@30095
   560
lemma Fract_less_one_iff:
huffman@30095
   561
  "0 < b \<Longrightarrow> Fract a b < 1 \<longleftrightarrow> a < b"
huffman@30095
   562
  by (simp add: One_rat_def mult_less_cancel_right_disj)
huffman@30095
   563
huffman@30095
   564
lemma one_le_Fract_iff:
huffman@30095
   565
  "0 < b \<Longrightarrow> 1 \<le> Fract a b \<longleftrightarrow> b \<le> a"
huffman@30095
   566
  by (simp add: One_rat_def mult_le_cancel_right)
huffman@30095
   567
huffman@30095
   568
lemma Fract_le_one_iff:
huffman@30095
   569
  "0 < b \<Longrightarrow> Fract a b \<le> 1 \<longleftrightarrow> a \<le> b"
huffman@30095
   570
  by (simp add: One_rat_def mult_le_cancel_right)
paulson@14365
   571
paulson@14378
   572
wenzelm@60758
   573
subsubsection \<open>Rationals are an Archimedean field\<close>
huffman@30097
   574
huffman@30097
   575
lemma rat_floor_lemma:
huffman@30097
   576
  shows "of_int (a div b) \<le> Fract a b \<and> Fract a b < of_int (a div b + 1)"
huffman@30097
   577
proof -
huffman@30097
   578
  have "Fract a b = of_int (a div b) + Fract (a mod b) b"
huffman@35293
   579
    by (cases "b = 0", simp, simp add: of_int_rat)
huffman@30097
   580
  moreover have "0 \<le> Fract (a mod b) b \<and> Fract (a mod b) b < 1"
huffman@35293
   581
    unfolding Fract_of_int_quotient
hoelzl@56571
   582
    by (rule linorder_cases [of b 0]) (simp_all add: divide_nonpos_neg)
huffman@30097
   583
  ultimately show ?thesis by simp
huffman@30097
   584
qed
huffman@30097
   585
huffman@30097
   586
instance rat :: archimedean_field
huffman@30097
   587
proof
huffman@30097
   588
  fix r :: rat
huffman@30097
   589
  show "\<exists>z. r \<le> of_int z"
huffman@30097
   590
  proof (induct r)
huffman@30097
   591
    case (Fract a b)
huffman@35293
   592
    have "Fract a b \<le> of_int (a div b + 1)"
huffman@35293
   593
      using rat_floor_lemma [of a b] by simp
huffman@30097
   594
    then show "\<exists>z. Fract a b \<le> of_int z" ..
huffman@30097
   595
  qed
huffman@30097
   596
qed
huffman@30097
   597
bulwahn@43732
   598
instantiation rat :: floor_ceiling
bulwahn@43732
   599
begin
bulwahn@43732
   600
bulwahn@43732
   601
definition [code del]:
bulwahn@43732
   602
  "floor (x::rat) = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))"
bulwahn@43732
   603
bulwahn@43732
   604
instance proof
bulwahn@43732
   605
  fix x :: rat
bulwahn@43732
   606
  show "of_int (floor x) \<le> x \<and> x < of_int (floor x + 1)"
bulwahn@43732
   607
    unfolding floor_rat_def using floor_exists1 by (rule theI')
bulwahn@43732
   608
qed
bulwahn@43732
   609
bulwahn@43732
   610
end
bulwahn@43732
   611
huffman@35293
   612
lemma floor_Fract: "floor (Fract a b) = a div b"
haftmann@59984
   613
  by (simp add: Fract_of_int_quotient floor_divide_of_int_eq)
huffman@30097
   614
huffman@30097
   615
wenzelm@60758
   616
subsection \<open>Linear arithmetic setup\<close>
paulson@14387
   617
wenzelm@60758
   618
declaration \<open>
haftmann@31100
   619
  K (Lin_Arith.add_inj_thms [@{thm of_nat_le_iff} RS iffD2, @{thm of_nat_eq_iff} RS iffD2]
haftmann@31100
   620
    (* not needed because x < (y::nat) can be rewritten as Suc x <= y: of_nat_less_iff RS iffD2 *)
haftmann@31100
   621
  #> Lin_Arith.add_inj_thms [@{thm of_int_le_iff} RS iffD2, @{thm of_int_eq_iff} RS iffD2]
haftmann@31100
   622
    (* not needed because x < (y::int) can be rewritten as x + 1 <= y: of_int_less_iff RS iffD2 *)
haftmann@31100
   623
  #> Lin_Arith.add_simps [@{thm neg_less_iff_less},
haftmann@31100
   624
      @{thm True_implies_equals},
wenzelm@55143
   625
      @{thm distrib_left [where a = "numeral v" for v]},
wenzelm@55143
   626
      @{thm distrib_left [where a = "- numeral v" for v]},
haftmann@31100
   627
      @{thm divide_1}, @{thm divide_zero_left},
haftmann@31100
   628
      @{thm times_divide_eq_right}, @{thm times_divide_eq_left},
haftmann@31100
   629
      @{thm minus_divide_left} RS sym, @{thm minus_divide_right} RS sym,
haftmann@31100
   630
      @{thm of_int_minus}, @{thm of_int_diff},
haftmann@31100
   631
      @{thm of_int_of_nat_eq}]
wenzelm@61144
   632
  #> Lin_Arith.add_simprocs [Numeral_Simprocs.field_divide_cancel_numeral_factor]
haftmann@31100
   633
  #> Lin_Arith.add_inj_const (@{const_name of_nat}, @{typ "nat => rat"})
haftmann@31100
   634
  #> Lin_Arith.add_inj_const (@{const_name of_int}, @{typ "int => rat"}))
wenzelm@60758
   635
\<close>
paulson@14387
   636
huffman@23342
   637
wenzelm@60758
   638
subsection \<open>Embedding from Rationals to other Fields\<close>
huffman@23342
   639
haftmann@27551
   640
context field_char_0
haftmann@27551
   641
begin
haftmann@27551
   642
huffman@47906
   643
lift_definition of_rat :: "rat \<Rightarrow> 'a"
huffman@47906
   644
  is "\<lambda>x. of_int (fst x) / of_int (snd x)"
huffman@23342
   645
apply (clarsimp simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
huffman@23342
   646
apply (simp only: of_int_mult [symmetric])
huffman@23342
   647
done
huffman@23342
   648
huffman@47906
   649
end
huffman@47906
   650
haftmann@27551
   651
lemma of_rat_rat: "b \<noteq> 0 \<Longrightarrow> of_rat (Fract a b) = of_int a / of_int b"
huffman@47906
   652
  by transfer simp
huffman@23342
   653
huffman@23342
   654
lemma of_rat_0 [simp]: "of_rat 0 = 0"
huffman@47906
   655
  by transfer simp
huffman@23342
   656
huffman@23342
   657
lemma of_rat_1 [simp]: "of_rat 1 = 1"
huffman@47906
   658
  by transfer simp
huffman@23342
   659
huffman@23342
   660
lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b"
huffman@47906
   661
  by transfer (simp add: add_frac_eq)
huffman@23342
   662
huffman@23343
   663
lemma of_rat_minus: "of_rat (- a) = - of_rat a"
hoelzl@56479
   664
  by transfer simp
huffman@23343
   665
haftmann@54489
   666
lemma of_rat_neg_one [simp]:
haftmann@54489
   667
  "of_rat (- 1) = - 1"
haftmann@54489
   668
  by (simp add: of_rat_minus)
haftmann@54489
   669
huffman@23343
   670
lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b"
haftmann@54230
   671
  using of_rat_add [of a "- b"] by (simp add: of_rat_minus)
huffman@23343
   672
huffman@23342
   673
lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b"
huffman@47906
   674
apply transfer
haftmann@57514
   675
apply (simp add: divide_inverse nonzero_inverse_mult_distrib ac_simps)
huffman@23342
   676
done
huffman@23342
   677
hoelzl@59000
   678
lemma of_rat_setsum: "of_rat (\<Sum>a\<in>A. f a) = (\<Sum>a\<in>A. of_rat (f a))"
hoelzl@59000
   679
  by (induct rule: infinite_finite_induct) (auto simp: of_rat_add)
hoelzl@59000
   680
hoelzl@59000
   681
lemma of_rat_setprod: "of_rat (\<Prod>a\<in>A. f a) = (\<Prod>a\<in>A. of_rat (f a))"
hoelzl@59000
   682
  by (induct rule: infinite_finite_induct) (auto simp: of_rat_mult)
hoelzl@59000
   683
huffman@23342
   684
lemma nonzero_of_rat_inverse:
huffman@23342
   685
  "a \<noteq> 0 \<Longrightarrow> of_rat (inverse a) = inverse (of_rat a)"
huffman@23343
   686
apply (rule inverse_unique [symmetric])
huffman@23343
   687
apply (simp add: of_rat_mult [symmetric])
huffman@23342
   688
done
huffman@23342
   689
huffman@23342
   690
lemma of_rat_inverse:
haftmann@59867
   691
  "(of_rat (inverse a)::'a::{field_char_0, field}) =
huffman@23342
   692
   inverse (of_rat a)"
huffman@23342
   693
by (cases "a = 0", simp_all add: nonzero_of_rat_inverse)
huffman@23342
   694
huffman@23342
   695
lemma nonzero_of_rat_divide:
huffman@23342
   696
  "b \<noteq> 0 \<Longrightarrow> of_rat (a / b) = of_rat a / of_rat b"
huffman@23342
   697
by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse)
huffman@23342
   698
huffman@23342
   699
lemma of_rat_divide:
haftmann@59867
   700
  "(of_rat (a / b)::'a::{field_char_0, field})
huffman@23342
   701
   = of_rat a / of_rat b"
haftmann@27652
   702
by (cases "b = 0") (simp_all add: nonzero_of_rat_divide)
huffman@23342
   703
huffman@23343
   704
lemma of_rat_power:
haftmann@31017
   705
  "(of_rat (a ^ n)::'a::field_char_0) = of_rat a ^ n"
huffman@30273
   706
by (induct n) (simp_all add: of_rat_mult)
huffman@23343
   707
huffman@23343
   708
lemma of_rat_eq_iff [simp]: "(of_rat a = of_rat b) = (a = b)"
huffman@47906
   709
apply transfer
huffman@23343
   710
apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
huffman@23343
   711
apply (simp only: of_int_mult [symmetric] of_int_eq_iff)
huffman@23343
   712
done
huffman@23343
   713
hoelzl@54409
   714
lemma of_rat_eq_0_iff [simp]: "(of_rat a = 0) = (a = 0)"
hoelzl@54409
   715
  using of_rat_eq_iff [of _ 0] by simp
hoelzl@54409
   716
hoelzl@54409
   717
lemma zero_eq_of_rat_iff [simp]: "(0 = of_rat a) = (0 = a)"
hoelzl@54409
   718
  by simp
hoelzl@54409
   719
hoelzl@54409
   720
lemma of_rat_eq_1_iff [simp]: "(of_rat a = 1) = (a = 1)"
hoelzl@54409
   721
  using of_rat_eq_iff [of _ 1] by simp
hoelzl@54409
   722
hoelzl@54409
   723
lemma one_eq_of_rat_iff [simp]: "(1 = of_rat a) = (1 = a)"
hoelzl@54409
   724
  by simp
hoelzl@54409
   725
haftmann@27652
   726
lemma of_rat_less:
haftmann@35028
   727
  "(of_rat r :: 'a::linordered_field) < of_rat s \<longleftrightarrow> r < s"
haftmann@27652
   728
proof (induct r, induct s)
haftmann@27652
   729
  fix a b c d :: int
haftmann@27652
   730
  assume not_zero: "b > 0" "d > 0"
nipkow@56544
   731
  then have "b * d > 0" by simp
haftmann@27652
   732
  have of_int_divide_less_eq:
haftmann@27652
   733
    "(of_int a :: 'a) / of_int b < of_int c / of_int d
haftmann@27652
   734
      \<longleftrightarrow> (of_int a :: 'a) * of_int d < of_int c * of_int b"
haftmann@27652
   735
    using not_zero by (simp add: pos_less_divide_eq pos_divide_less_eq)
haftmann@35028
   736
  show "(of_rat (Fract a b) :: 'a::linordered_field) < of_rat (Fract c d)
haftmann@27652
   737
    \<longleftrightarrow> Fract a b < Fract c d"
wenzelm@60758
   738
    using not_zero \<open>b * d > 0\<close>
haftmann@27652
   739
    by (simp add: of_rat_rat of_int_divide_less_eq of_int_mult [symmetric] del: of_int_mult)
haftmann@27652
   740
qed
haftmann@27652
   741
haftmann@27652
   742
lemma of_rat_less_eq:
haftmann@35028
   743
  "(of_rat r :: 'a::linordered_field) \<le> of_rat s \<longleftrightarrow> r \<le> s"
haftmann@27652
   744
  unfolding le_less by (auto simp add: of_rat_less)
haftmann@27652
   745
hoelzl@54409
   746
lemma of_rat_le_0_iff [simp]: "((of_rat r :: 'a::linordered_field) \<le> 0) = (r \<le> 0)"
hoelzl@54409
   747
  using of_rat_less_eq [of r 0, where 'a='a] by simp
hoelzl@54409
   748
hoelzl@54409
   749
lemma zero_le_of_rat_iff [simp]: "(0 \<le> (of_rat r :: 'a::linordered_field)) = (0 \<le> r)"
hoelzl@54409
   750
  using of_rat_less_eq [of 0 r, where 'a='a] by simp
hoelzl@54409
   751
hoelzl@54409
   752
lemma of_rat_le_1_iff [simp]: "((of_rat r :: 'a::linordered_field) \<le> 1) = (r \<le> 1)"
hoelzl@54409
   753
  using of_rat_less_eq [of r 1] by simp
hoelzl@54409
   754
hoelzl@54409
   755
lemma one_le_of_rat_iff [simp]: "(1 \<le> (of_rat r :: 'a::linordered_field)) = (1 \<le> r)"
hoelzl@54409
   756
  using of_rat_less_eq [of 1 r] by simp
hoelzl@54409
   757
hoelzl@54409
   758
lemma of_rat_less_0_iff [simp]: "((of_rat r :: 'a::linordered_field) < 0) = (r < 0)"
hoelzl@54409
   759
  using of_rat_less [of r 0, where 'a='a] by simp
hoelzl@54409
   760
hoelzl@54409
   761
lemma zero_less_of_rat_iff [simp]: "(0 < (of_rat r :: 'a::linordered_field)) = (0 < r)"
hoelzl@54409
   762
  using of_rat_less [of 0 r, where 'a='a] by simp
hoelzl@54409
   763
hoelzl@54409
   764
lemma of_rat_less_1_iff [simp]: "((of_rat r :: 'a::linordered_field) < 1) = (r < 1)"
hoelzl@54409
   765
  using of_rat_less [of r 1] by simp
hoelzl@54409
   766
hoelzl@54409
   767
lemma one_less_of_rat_iff [simp]: "(1 < (of_rat r :: 'a::linordered_field)) = (1 < r)"
hoelzl@54409
   768
  using of_rat_less [of 1 r] by simp
huffman@23343
   769
haftmann@27652
   770
lemma of_rat_eq_id [simp]: "of_rat = id"
huffman@23343
   771
proof
huffman@23343
   772
  fix a
huffman@23343
   773
  show "of_rat a = id a"
huffman@23343
   774
  by (induct a)
haftmann@27652
   775
     (simp add: of_rat_rat Fract_of_int_eq [symmetric])
huffman@23343
   776
qed
huffman@23343
   777
wenzelm@60758
   778
text\<open>Collapse nested embeddings\<close>
huffman@23343
   779
lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n"
huffman@23343
   780
by (induct n) (simp_all add: of_rat_add)
huffman@23343
   781
huffman@23343
   782
lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z"
haftmann@27652
   783
by (cases z rule: int_diff_cases) (simp add: of_rat_diff)
huffman@23343
   784
huffman@47108
   785
lemma of_rat_numeral_eq [simp]:
huffman@47108
   786
  "of_rat (numeral w) = numeral w"
huffman@47108
   787
using of_rat_of_int_eq [of "numeral w"] by simp
huffman@47108
   788
huffman@47108
   789
lemma of_rat_neg_numeral_eq [simp]:
haftmann@54489
   790
  "of_rat (- numeral w) = - numeral w"
haftmann@54489
   791
using of_rat_of_int_eq [of "- numeral w"] by simp
huffman@23343
   792
haftmann@23879
   793
lemmas zero_rat = Zero_rat_def
haftmann@23879
   794
lemmas one_rat = One_rat_def
haftmann@23879
   795
haftmann@24198
   796
abbreviation
haftmann@24198
   797
  rat_of_nat :: "nat \<Rightarrow> rat"
haftmann@24198
   798
where
haftmann@24198
   799
  "rat_of_nat \<equiv> of_nat"
haftmann@24198
   800
haftmann@24198
   801
abbreviation
haftmann@24198
   802
  rat_of_int :: "int \<Rightarrow> rat"
haftmann@24198
   803
where
haftmann@24198
   804
  "rat_of_int \<equiv> of_int"
haftmann@24198
   805
wenzelm@60758
   806
subsection \<open>The Set of Rational Numbers\<close>
berghofe@24533
   807
nipkow@28001
   808
context field_char_0
nipkow@28001
   809
begin
nipkow@28001
   810
wenzelm@61070
   811
definition Rats :: "'a set" ("\<rat>")
wenzelm@61070
   812
  where "\<rat> = range of_rat"
nipkow@28001
   813
nipkow@28001
   814
end
nipkow@28001
   815
wenzelm@61070
   816
lemma Rats_of_rat [simp]: "of_rat r \<in> \<rat>"
huffman@28010
   817
by (simp add: Rats_def)
huffman@28010
   818
wenzelm@61070
   819
lemma Rats_of_int [simp]: "of_int z \<in> \<rat>"
huffman@28010
   820
by (subst of_rat_of_int_eq [symmetric], rule Rats_of_rat)
huffman@28010
   821
wenzelm@61070
   822
lemma Rats_of_nat [simp]: "of_nat n \<in> \<rat>"
huffman@28010
   823
by (subst of_rat_of_nat_eq [symmetric], rule Rats_of_rat)
huffman@28010
   824
wenzelm@61070
   825
lemma Rats_number_of [simp]: "numeral w \<in> \<rat>"
huffman@47108
   826
by (subst of_rat_numeral_eq [symmetric], rule Rats_of_rat)
huffman@47108
   827
wenzelm@61070
   828
lemma Rats_0 [simp]: "0 \<in> \<rat>"
huffman@28010
   829
apply (unfold Rats_def)
huffman@28010
   830
apply (rule range_eqI)
huffman@28010
   831
apply (rule of_rat_0 [symmetric])
huffman@28010
   832
done
huffman@28010
   833
wenzelm@61070
   834
lemma Rats_1 [simp]: "1 \<in> \<rat>"
huffman@28010
   835
apply (unfold Rats_def)
huffman@28010
   836
apply (rule range_eqI)
huffman@28010
   837
apply (rule of_rat_1 [symmetric])
huffman@28010
   838
done
huffman@28010
   839
wenzelm@61070
   840
lemma Rats_add [simp]: "\<lbrakk>a \<in> \<rat>; b \<in> \<rat>\<rbrakk> \<Longrightarrow> a + b \<in> \<rat>"
huffman@28010
   841
apply (auto simp add: Rats_def)
huffman@28010
   842
apply (rule range_eqI)
huffman@28010
   843
apply (rule of_rat_add [symmetric])
huffman@28010
   844
done
huffman@28010
   845
wenzelm@61070
   846
lemma Rats_minus [simp]: "a \<in> \<rat> \<Longrightarrow> - a \<in> \<rat>"
huffman@28010
   847
apply (auto simp add: Rats_def)
huffman@28010
   848
apply (rule range_eqI)
huffman@28010
   849
apply (rule of_rat_minus [symmetric])
huffman@28010
   850
done
huffman@28010
   851
wenzelm@61070
   852
lemma Rats_diff [simp]: "\<lbrakk>a \<in> \<rat>; b \<in> \<rat>\<rbrakk> \<Longrightarrow> a - b \<in> \<rat>"
huffman@28010
   853
apply (auto simp add: Rats_def)
huffman@28010
   854
apply (rule range_eqI)
huffman@28010
   855
apply (rule of_rat_diff [symmetric])
huffman@28010
   856
done
huffman@28010
   857
wenzelm@61070
   858
lemma Rats_mult [simp]: "\<lbrakk>a \<in> \<rat>; b \<in> \<rat>\<rbrakk> \<Longrightarrow> a * b \<in> \<rat>"
huffman@28010
   859
apply (auto simp add: Rats_def)
huffman@28010
   860
apply (rule range_eqI)
huffman@28010
   861
apply (rule of_rat_mult [symmetric])
huffman@28010
   862
done
huffman@28010
   863
huffman@28010
   864
lemma nonzero_Rats_inverse:
huffman@28010
   865
  fixes a :: "'a::field_char_0"
wenzelm@61070
   866
  shows "\<lbrakk>a \<in> \<rat>; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> \<rat>"
huffman@28010
   867
apply (auto simp add: Rats_def)
huffman@28010
   868
apply (rule range_eqI)
huffman@28010
   869
apply (erule nonzero_of_rat_inverse [symmetric])
huffman@28010
   870
done
huffman@28010
   871
huffman@28010
   872
lemma Rats_inverse [simp]:
haftmann@59867
   873
  fixes a :: "'a::{field_char_0, field}"
wenzelm@61070
   874
  shows "a \<in> \<rat> \<Longrightarrow> inverse a \<in> \<rat>"
huffman@28010
   875
apply (auto simp add: Rats_def)
huffman@28010
   876
apply (rule range_eqI)
huffman@28010
   877
apply (rule of_rat_inverse [symmetric])
huffman@28010
   878
done
huffman@28010
   879
huffman@28010
   880
lemma nonzero_Rats_divide:
huffman@28010
   881
  fixes a b :: "'a::field_char_0"
wenzelm@61070
   882
  shows "\<lbrakk>a \<in> \<rat>; b \<in> \<rat>; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> \<rat>"
huffman@28010
   883
apply (auto simp add: Rats_def)
huffman@28010
   884
apply (rule range_eqI)
huffman@28010
   885
apply (erule nonzero_of_rat_divide [symmetric])
huffman@28010
   886
done
huffman@28010
   887
huffman@28010
   888
lemma Rats_divide [simp]:
haftmann@59867
   889
  fixes a b :: "'a::{field_char_0, field}"
wenzelm@61070
   890
  shows "\<lbrakk>a \<in> \<rat>; b \<in> \<rat>\<rbrakk> \<Longrightarrow> a / b \<in> \<rat>"
huffman@28010
   891
apply (auto simp add: Rats_def)
huffman@28010
   892
apply (rule range_eqI)
huffman@28010
   893
apply (rule of_rat_divide [symmetric])
huffman@28010
   894
done
huffman@28010
   895
huffman@28010
   896
lemma Rats_power [simp]:
haftmann@31017
   897
  fixes a :: "'a::field_char_0"
wenzelm@61070
   898
  shows "a \<in> \<rat> \<Longrightarrow> a ^ n \<in> \<rat>"
huffman@28010
   899
apply (auto simp add: Rats_def)
huffman@28010
   900
apply (rule range_eqI)
huffman@28010
   901
apply (rule of_rat_power [symmetric])
huffman@28010
   902
done
huffman@28010
   903
huffman@28010
   904
lemma Rats_cases [cases set: Rats]:
huffman@28010
   905
  assumes "q \<in> \<rat>"
huffman@28010
   906
  obtains (of_rat) r where "q = of_rat r"
huffman@28010
   907
proof -
wenzelm@60758
   908
  from \<open>q \<in> \<rat>\<close> have "q \<in> range of_rat" unfolding Rats_def .
huffman@28010
   909
  then obtain r where "q = of_rat r" ..
huffman@28010
   910
  then show thesis ..
huffman@28010
   911
qed
huffman@28010
   912
huffman@28010
   913
lemma Rats_induct [case_names of_rat, induct set: Rats]:
huffman@28010
   914
  "q \<in> \<rat> \<Longrightarrow> (\<And>r. P (of_rat r)) \<Longrightarrow> P q"
huffman@28010
   915
  by (rule Rats_cases) auto
huffman@28010
   916
hoelzl@57275
   917
lemma Rats_infinite: "\<not> finite \<rat>"
hoelzl@57275
   918
  by (auto dest!: finite_imageD simp: inj_on_def infinite_UNIV_char_0 Rats_def)
nipkow@28001
   919
wenzelm@60758
   920
subsection \<open>Implementation of rational numbers as pairs of integers\<close>
berghofe@24533
   921
wenzelm@60758
   922
text \<open>Formal constructor\<close>
huffman@47108
   923
haftmann@35369
   924
definition Frct :: "int \<times> int \<Rightarrow> rat" where
haftmann@35369
   925
  [simp]: "Frct p = Fract (fst p) (snd p)"
haftmann@35369
   926
haftmann@36112
   927
lemma [code abstype]:
haftmann@36112
   928
  "Frct (quotient_of q) = q"
haftmann@36112
   929
  by (cases q) (auto intro: quotient_of_eq)
haftmann@35369
   930
huffman@47108
   931
wenzelm@60758
   932
text \<open>Numerals\<close>
haftmann@35369
   933
haftmann@35369
   934
declare quotient_of_Fract [code abstract]
haftmann@35369
   935
huffman@47108
   936
definition of_int :: "int \<Rightarrow> rat"
huffman@47108
   937
where
huffman@47108
   938
  [code_abbrev]: "of_int = Int.of_int"
huffman@47108
   939
hide_const (open) of_int
huffman@47108
   940
huffman@47108
   941
lemma quotient_of_int [code abstract]:
huffman@47108
   942
  "quotient_of (Rat.of_int a) = (a, 1)"
huffman@47108
   943
  by (simp add: of_int_def of_int_rat quotient_of_Fract)
huffman@47108
   944
huffman@47108
   945
lemma [code_unfold]:
huffman@47108
   946
  "numeral k = Rat.of_int (numeral k)"
huffman@47108
   947
  by (simp add: Rat.of_int_def)
huffman@47108
   948
huffman@47108
   949
lemma [code_unfold]:
haftmann@54489
   950
  "- numeral k = Rat.of_int (- numeral k)"
huffman@47108
   951
  by (simp add: Rat.of_int_def)
huffman@47108
   952
huffman@47108
   953
lemma Frct_code_post [code_post]:
huffman@47108
   954
  "Frct (0, a) = 0"
huffman@47108
   955
  "Frct (a, 0) = 0"
huffman@47108
   956
  "Frct (1, 1) = 1"
huffman@47108
   957
  "Frct (numeral k, 1) = numeral k"
huffman@47108
   958
  "Frct (1, numeral k) = 1 / numeral k"
huffman@47108
   959
  "Frct (numeral k, numeral l) = numeral k / numeral l"
haftmann@57576
   960
  "Frct (- a, b) = - Frct (a, b)"
haftmann@57576
   961
  "Frct (a, - b) = - Frct (a, b)"
haftmann@57576
   962
  "- (- Frct q) = Frct q"
huffman@47108
   963
  by (simp_all add: Fract_of_int_quotient)
huffman@47108
   964
huffman@47108
   965
wenzelm@60758
   966
text \<open>Operations\<close>
huffman@47108
   967
haftmann@35369
   968
lemma rat_zero_code [code abstract]:
haftmann@35369
   969
  "quotient_of 0 = (0, 1)"
haftmann@35369
   970
  by (simp add: Zero_rat_def quotient_of_Fract normalize_def)
haftmann@35369
   971
haftmann@35369
   972
lemma rat_one_code [code abstract]:
haftmann@35369
   973
  "quotient_of 1 = (1, 1)"
haftmann@35369
   974
  by (simp add: One_rat_def quotient_of_Fract normalize_def)
haftmann@35369
   975
haftmann@35369
   976
lemma rat_plus_code [code abstract]:
haftmann@35369
   977
  "quotient_of (p + q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
haftmann@35369
   978
     in normalize (a * d + b * c, c * d))"
haftmann@35369
   979
  by (cases p, cases q) (simp add: quotient_of_Fract)
haftmann@27652
   980
haftmann@35369
   981
lemma rat_uminus_code [code abstract]:
haftmann@35369
   982
  "quotient_of (- p) = (let (a, b) = quotient_of p in (- a, b))"
haftmann@35369
   983
  by (cases p) (simp add: quotient_of_Fract)
haftmann@35369
   984
haftmann@35369
   985
lemma rat_minus_code [code abstract]:
haftmann@35369
   986
  "quotient_of (p - q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
haftmann@35369
   987
     in normalize (a * d - b * c, c * d))"
haftmann@35369
   988
  by (cases p, cases q) (simp add: quotient_of_Fract)
haftmann@35369
   989
haftmann@35369
   990
lemma rat_times_code [code abstract]:
haftmann@35369
   991
  "quotient_of (p * q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
haftmann@35369
   992
     in normalize (a * b, c * d))"
haftmann@35369
   993
  by (cases p, cases q) (simp add: quotient_of_Fract)
berghofe@24533
   994
haftmann@35369
   995
lemma rat_inverse_code [code abstract]:
haftmann@35369
   996
  "quotient_of (inverse p) = (let (a, b) = quotient_of p
haftmann@35369
   997
    in if a = 0 then (0, 1) else (sgn a * b, \<bar>a\<bar>))"
haftmann@35369
   998
proof (cases p)
haftmann@35369
   999
  case (Fract a b) then show ?thesis
haftmann@60688
  1000
    by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract gcd.commute)
haftmann@35369
  1001
qed
haftmann@35369
  1002
haftmann@35369
  1003
lemma rat_divide_code [code abstract]:
haftmann@35369
  1004
  "quotient_of (p / q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
haftmann@35369
  1005
     in normalize (a * d, c * b))"
haftmann@35369
  1006
  by (cases p, cases q) (simp add: quotient_of_Fract)
haftmann@35369
  1007
haftmann@35369
  1008
lemma rat_abs_code [code abstract]:
haftmann@35369
  1009
  "quotient_of \<bar>p\<bar> = (let (a, b) = quotient_of p in (\<bar>a\<bar>, b))"
haftmann@35369
  1010
  by (cases p) (simp add: quotient_of_Fract)
haftmann@35369
  1011
haftmann@35369
  1012
lemma rat_sgn_code [code abstract]:
haftmann@35369
  1013
  "quotient_of (sgn p) = (sgn (fst (quotient_of p)), 1)"
haftmann@35369
  1014
proof (cases p)
haftmann@35369
  1015
  case (Fract a b) then show ?thesis
haftmann@35369
  1016
  by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract)
haftmann@35369
  1017
qed
berghofe@24533
  1018
bulwahn@43733
  1019
lemma rat_floor_code [code]:
bulwahn@43733
  1020
  "floor p = (let (a, b) = quotient_of p in a div b)"
bulwahn@43733
  1021
by (cases p) (simp add: quotient_of_Fract floor_Fract)
bulwahn@43733
  1022
haftmann@38857
  1023
instantiation rat :: equal
haftmann@26513
  1024
begin
haftmann@26513
  1025
haftmann@35369
  1026
definition [code]:
haftmann@38857
  1027
  "HOL.equal a b \<longleftrightarrow> quotient_of a = quotient_of b"
haftmann@26513
  1028
haftmann@35369
  1029
instance proof
haftmann@38857
  1030
qed (simp add: equal_rat_def quotient_of_inject_eq)
haftmann@26513
  1031
haftmann@28351
  1032
lemma rat_eq_refl [code nbe]:
haftmann@38857
  1033
  "HOL.equal (r::rat) r \<longleftrightarrow> True"
haftmann@38857
  1034
  by (rule equal_refl)
haftmann@28351
  1035
haftmann@26513
  1036
end
berghofe@24533
  1037
haftmann@35369
  1038
lemma rat_less_eq_code [code]:
haftmann@35369
  1039
  "p \<le> q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d \<le> c * b)"
haftmann@35726
  1040
  by (cases p, cases q) (simp add: quotient_of_Fract mult.commute)
berghofe@24533
  1041
haftmann@35369
  1042
lemma rat_less_code [code]:
haftmann@35369
  1043
  "p < q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d < c * b)"
haftmann@35726
  1044
  by (cases p, cases q) (simp add: quotient_of_Fract mult.commute)
berghofe@24533
  1045
haftmann@35369
  1046
lemma [code]:
haftmann@35369
  1047
  "of_rat p = (let (a, b) = quotient_of p in of_int a / of_int b)"
haftmann@35369
  1048
  by (cases p) (simp add: quotient_of_Fract of_rat_rat)
haftmann@27652
  1049
huffman@47108
  1050
wenzelm@60758
  1051
text \<open>Quickcheck\<close>
huffman@47108
  1052
haftmann@31203
  1053
definition (in term_syntax)
haftmann@32657
  1054
  valterm_fract :: "int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> rat \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
haftmann@32657
  1055
  [code_unfold]: "valterm_fract k l = Code_Evaluation.valtermify Fract {\<cdot>} k {\<cdot>} l"
haftmann@31203
  1056
haftmann@37751
  1057
notation fcomp (infixl "\<circ>>" 60)
haftmann@37751
  1058
notation scomp (infixl "\<circ>\<rightarrow>" 60)
haftmann@31203
  1059
haftmann@31203
  1060
instantiation rat :: random
haftmann@31203
  1061
begin
haftmann@31203
  1062
haftmann@31203
  1063
definition
haftmann@51126
  1064
  "Quickcheck_Random.random i = Quickcheck_Random.random i \<circ>\<rightarrow> (\<lambda>num. Random.range i \<circ>\<rightarrow> (\<lambda>denom. Pair (
haftmann@51143
  1065
     let j = int_of_integer (integer_of_natural (denom + 1))
haftmann@32657
  1066
     in valterm_fract num (j, \<lambda>u. Code_Evaluation.term_of j))))"
haftmann@31203
  1067
haftmann@31203
  1068
instance ..
haftmann@31203
  1069
haftmann@31203
  1070
end
haftmann@31203
  1071
haftmann@37751
  1072
no_notation fcomp (infixl "\<circ>>" 60)
haftmann@37751
  1073
no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
haftmann@31203
  1074
bulwahn@41920
  1075
instantiation rat :: exhaustive
bulwahn@41231
  1076
begin
bulwahn@41231
  1077
bulwahn@41231
  1078
definition
haftmann@51143
  1079
  "exhaustive_rat f d = Quickcheck_Exhaustive.exhaustive
haftmann@51143
  1080
    (\<lambda>l. Quickcheck_Exhaustive.exhaustive (\<lambda>k. f (Fract k (int_of_integer (integer_of_natural l) + 1))) d) d"
bulwahn@42311
  1081
bulwahn@42311
  1082
instance ..
bulwahn@42311
  1083
bulwahn@42311
  1084
end
bulwahn@42311
  1085
bulwahn@42311
  1086
instantiation rat :: full_exhaustive
bulwahn@42311
  1087
begin
bulwahn@42311
  1088
bulwahn@42311
  1089
definition
bulwahn@45818
  1090
  "full_exhaustive_rat f d = Quickcheck_Exhaustive.full_exhaustive (%(l, _). Quickcheck_Exhaustive.full_exhaustive (%k.
haftmann@51143
  1091
     f (let j = int_of_integer (integer_of_natural l) + 1
bulwahn@45507
  1092
        in valterm_fract k (j, %_. Code_Evaluation.term_of j))) d) d"
bulwahn@41231
  1093
bulwahn@41231
  1094
instance ..
bulwahn@41231
  1095
bulwahn@41231
  1096
end
bulwahn@41231
  1097
bulwahn@43889
  1098
instantiation rat :: partial_term_of
bulwahn@43889
  1099
begin
bulwahn@43889
  1100
bulwahn@43889
  1101
instance ..
bulwahn@43889
  1102
bulwahn@43889
  1103
end
bulwahn@43889
  1104
bulwahn@43889
  1105
lemma [code]:
bulwahn@46758
  1106
  "partial_term_of (ty :: rat itself) (Quickcheck_Narrowing.Narrowing_variable p tt) == Code_Evaluation.Free (STR ''_'') (Typerep.Typerep (STR ''Rat.rat'') [])"
bulwahn@46758
  1107
  "partial_term_of (ty :: rat itself) (Quickcheck_Narrowing.Narrowing_constructor 0 [l, k]) ==
bulwahn@45507
  1108
     Code_Evaluation.App (Code_Evaluation.Const (STR ''Rat.Frct'')
bulwahn@45507
  1109
     (Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Product_Type.prod'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Int.int'') []],
bulwahn@45507
  1110
        Typerep.Typerep (STR ''Rat.rat'') []])) (Code_Evaluation.App (Code_Evaluation.App (Code_Evaluation.Const (STR ''Product_Type.Pair'') (Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Product_Type.prod'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Int.int'') []]]])) (partial_term_of (TYPE(int)) l)) (partial_term_of (TYPE(int)) k))"
bulwahn@43889
  1111
by (rule partial_term_of_anything)+
bulwahn@43889
  1112
bulwahn@43887
  1113
instantiation rat :: narrowing
bulwahn@43887
  1114
begin
bulwahn@43887
  1115
bulwahn@43887
  1116
definition
bulwahn@45507
  1117
  "narrowing = Quickcheck_Narrowing.apply (Quickcheck_Narrowing.apply
bulwahn@45507
  1118
    (Quickcheck_Narrowing.cons (%nom denom. Fract nom denom)) narrowing) narrowing"
bulwahn@43887
  1119
bulwahn@43887
  1120
instance ..
bulwahn@43887
  1121
bulwahn@43887
  1122
end
bulwahn@43887
  1123
bulwahn@43887
  1124
wenzelm@60758
  1125
subsection \<open>Setup for Nitpick\<close>
berghofe@24533
  1126
wenzelm@60758
  1127
declaration \<open>
blanchet@38287
  1128
  Nitpick_HOL.register_frac_type @{type_name rat}
wenzelm@33209
  1129
   [(@{const_name zero_rat_inst.zero_rat}, @{const_name Nitpick.zero_frac}),
wenzelm@33209
  1130
    (@{const_name one_rat_inst.one_rat}, @{const_name Nitpick.one_frac}),
wenzelm@33209
  1131
    (@{const_name plus_rat_inst.plus_rat}, @{const_name Nitpick.plus_frac}),
wenzelm@33209
  1132
    (@{const_name times_rat_inst.times_rat}, @{const_name Nitpick.times_frac}),
wenzelm@33209
  1133
    (@{const_name uminus_rat_inst.uminus_rat}, @{const_name Nitpick.uminus_frac}),
wenzelm@33209
  1134
    (@{const_name inverse_rat_inst.inverse_rat}, @{const_name Nitpick.inverse_frac}),
blanchet@37397
  1135
    (@{const_name ord_rat_inst.less_rat}, @{const_name Nitpick.less_frac}),
wenzelm@33209
  1136
    (@{const_name ord_rat_inst.less_eq_rat}, @{const_name Nitpick.less_eq_frac}),
blanchet@45478
  1137
    (@{const_name field_char_0_class.of_rat}, @{const_name Nitpick.of_frac})]
wenzelm@60758
  1138
\<close>
blanchet@33197
  1139
blanchet@41792
  1140
lemmas [nitpick_unfold] = inverse_rat_inst.inverse_rat
huffman@47108
  1141
  one_rat_inst.one_rat ord_rat_inst.less_rat
blanchet@37397
  1142
  ord_rat_inst.less_eq_rat plus_rat_inst.plus_rat times_rat_inst.times_rat
blanchet@37397
  1143
  uminus_rat_inst.uminus_rat zero_rat_inst.zero_rat
blanchet@33197
  1144
wenzelm@52146
  1145
wenzelm@60758
  1146
subsection \<open>Float syntax\<close>
huffman@35343
  1147
huffman@35343
  1148
syntax "_Float" :: "float_const \<Rightarrow> 'a"    ("_")
huffman@35343
  1149
wenzelm@60758
  1150
parse_translation \<open>
wenzelm@52146
  1151
  let
wenzelm@52146
  1152
    fun mk_frac str =
wenzelm@52146
  1153
      let
wenzelm@52146
  1154
        val {mant = i, exp = n} = Lexicon.read_float str;
wenzelm@52146
  1155
        val exp = Syntax.const @{const_syntax Power.power};
haftmann@58410
  1156
        val ten = Numeral.mk_number_syntax 10;
haftmann@60352
  1157
        val exp10 = if n = 1 then ten else exp $ ten $ Numeral.mk_number_syntax n;
haftmann@60352
  1158
      in Syntax.const @{const_syntax Fields.inverse_divide} $ Numeral.mk_number_syntax i $ exp10 end;
wenzelm@52146
  1159
wenzelm@52146
  1160
    fun float_tr [(c as Const (@{syntax_const "_constrain"}, _)) $ t $ u] = c $ float_tr [t] $ u
wenzelm@52146
  1161
      | float_tr [t as Const (str, _)] = mk_frac str
wenzelm@52146
  1162
      | float_tr ts = raise TERM ("float_tr", ts);
wenzelm@52146
  1163
  in [(@{syntax_const "_Float"}, K float_tr)] end
wenzelm@60758
  1164
\<close>
huffman@35343
  1165
wenzelm@60758
  1166
text\<open>Test:\<close>
huffman@35343
  1167
lemma "123.456 = -111.111 + 200 + 30 + 4 + 5/10 + 6/100 + (7/1000::rat)"
wenzelm@52146
  1168
  by simp
huffman@35343
  1169
wenzelm@55974
  1170
wenzelm@60758
  1171
subsection \<open>Hiding implementation details\<close>
wenzelm@37143
  1172
huffman@47907
  1173
hide_const (open) normalize positive
wenzelm@37143
  1174
kuncar@53652
  1175
lifting_update rat.lifting
kuncar@53652
  1176
lifting_forget rat.lifting
huffman@47906
  1177
huffman@29880
  1178
end
haftmann@51143
  1179