src/Pure/net.ML
author haftmann
Thu Oct 22 13:48:06 2009 +0200 (2009-10-22)
changeset 33063 4d462963a7db
parent 29606 fedb8be05f24
child 33371 d74dc1b54930
permissions -rw-r--r--
map_range (and map_index) combinator
wenzelm@12319
     1
(*  Title:      Pure/net.ML
wenzelm@12319
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     3
    Copyright   1993  University of Cambridge
clasohm@0
     4
clasohm@0
     5
Discrimination nets: a data structure for indexing items
clasohm@0
     6
wenzelm@12319
     7
From the book
wenzelm@12319
     8
    E. Charniak, C. K. Riesbeck, D. V. McDermott.
clasohm@0
     9
    Artificial Intelligence Programming.
clasohm@0
    10
    (Lawrence Erlbaum Associates, 1980).  [Chapter 14]
nipkow@225
    11
wenzelm@12319
    12
match_term no longer treats abstractions as wildcards; instead they match
nipkow@228
    13
only wildcards in patterns.  Requires operands to be beta-eta-normal.
clasohm@0
    14
*)
clasohm@0
    15
wenzelm@12319
    16
signature NET =
wenzelm@16808
    17
sig
clasohm@0
    18
  type key
wenzelm@16808
    19
  val key_of_term: term -> key list
clasohm@0
    20
  type 'a net
clasohm@0
    21
  val empty: 'a net
wenzelm@16808
    22
  exception INSERT
wenzelm@16808
    23
  val insert: ('a * 'a -> bool) -> key list * 'a -> 'a net -> 'a net
wenzelm@16808
    24
  val insert_term: ('a * 'a -> bool) -> term * 'a -> 'a net -> 'a net
wenzelm@16808
    25
  exception DELETE
wenzelm@16808
    26
  val delete: ('b * 'a -> bool) -> key list * 'b -> 'a net -> 'a net
wenzelm@16808
    27
  val delete_term: ('b * 'a -> bool) -> term * 'b -> 'a net -> 'a net
wenzelm@16808
    28
  val lookup: 'a net -> key list -> 'a list
clasohm@0
    29
  val match_term: 'a net -> term -> 'a list
clasohm@0
    30
  val unify_term: 'a net -> term -> 'a list
wenzelm@16808
    31
  val entries: 'a net -> 'a list
wenzelm@16808
    32
  val subtract: ('b * 'a -> bool) -> 'a net -> 'b net -> 'b list
wenzelm@16808
    33
  val merge: ('a * 'a -> bool) -> 'a net * 'a net -> 'a net
wenzelm@20011
    34
  val content: 'a net -> 'a list
wenzelm@16808
    35
end;
clasohm@0
    36
wenzelm@16808
    37
structure Net: NET =
clasohm@0
    38
struct
clasohm@0
    39
clasohm@0
    40
datatype key = CombK | VarK | AtomK of string;
clasohm@0
    41
nipkow@228
    42
(*Keys are preorder lists of symbols -- Combinations, Vars, Atoms.
nipkow@225
    43
  Any term whose head is a Var is regarded entirely as a Var.
nipkow@228
    44
  Abstractions are also regarded as Vars;  this covers eta-conversion
nipkow@228
    45
    and "near" eta-conversions such as %x.?P(?f(x)).
clasohm@0
    46
*)
wenzelm@12319
    47
fun add_key_of_terms (t, cs) =
clasohm@0
    48
  let fun rands (f$t, cs) = CombK :: rands (f, add_key_of_terms(t, cs))
wenzelm@12319
    49
        | rands (Const(c,_), cs) = AtomK c :: cs
wenzelm@12319
    50
        | rands (Free(c,_),  cs) = AtomK c :: cs
wenzelm@20080
    51
        | rands (Bound i,  cs)   = AtomK (Name.bound i) :: cs
clasohm@0
    52
  in case (head_of t) of
nipkow@225
    53
      Var _ => VarK :: cs
nipkow@228
    54
    | Abs _ => VarK :: cs
nipkow@225
    55
    | _     => rands(t,cs)
clasohm@0
    56
  end;
clasohm@0
    57
nipkow@225
    58
(*convert a term to a list of keys*)
clasohm@0
    59
fun key_of_term t = add_key_of_terms (t, []);
clasohm@0
    60
clasohm@0
    61
clasohm@0
    62
(*Trees indexed by key lists: each arc is labelled by a key.
clasohm@0
    63
  Each node contains a list of items, and arcs to children.
clasohm@0
    64
  The empty key addresses the entire net.
clasohm@0
    65
  Lookup functions preserve order in items stored at same level.
clasohm@0
    66
*)
clasohm@0
    67
datatype 'a net = Leaf of 'a list
wenzelm@12319
    68
                | Net of {comb: 'a net,
wenzelm@12319
    69
                          var: 'a net,
wenzelm@16708
    70
                          atoms: 'a net Symtab.table};
clasohm@0
    71
clasohm@0
    72
val empty = Leaf[];
wenzelm@16708
    73
fun is_empty (Leaf []) = true | is_empty _ = false;
wenzelm@16708
    74
val emptynet = Net{comb=empty, var=empty, atoms=Symtab.empty};
clasohm@0
    75
clasohm@0
    76
clasohm@0
    77
(*** Insertion into a discrimination net ***)
clasohm@0
    78
wenzelm@12319
    79
exception INSERT;       (*duplicate item in the net*)
clasohm@0
    80
clasohm@0
    81
clasohm@0
    82
(*Adds item x to the list at the node addressed by the keys.
clasohm@0
    83
  Creates node if not already present.
wenzelm@12319
    84
  eq is the equality test for items.
clasohm@0
    85
  The empty list of keys generates a Leaf node, others a Net node.
clasohm@0
    86
*)
wenzelm@16808
    87
fun insert eq (keys,x) net =
wenzelm@12319
    88
  let fun ins1 ([], Leaf xs) =
wenzelm@16686
    89
            if member eq xs x then  raise INSERT  else Leaf(x::xs)
clasohm@0
    90
        | ins1 (keys, Leaf[]) = ins1 (keys, emptynet)   (*expand empty...*)
wenzelm@16708
    91
        | ins1 (CombK :: keys, Net{comb,var,atoms}) =
wenzelm@16708
    92
            Net{comb=ins1(keys,comb), var=var, atoms=atoms}
wenzelm@16708
    93
        | ins1 (VarK :: keys, Net{comb,var,atoms}) =
wenzelm@16708
    94
            Net{comb=comb, var=ins1(keys,var), atoms=atoms}
wenzelm@16708
    95
        | ins1 (AtomK a :: keys, Net{comb,var,atoms}) =
wenzelm@16708
    96
            let
wenzelm@18939
    97
              val net' = the_default empty (Symtab.lookup atoms a);
wenzelm@17412
    98
              val atoms' = Symtab.update (a, ins1 (keys, net')) atoms;
wenzelm@16708
    99
            in  Net{comb=comb, var=var, atoms=atoms'}  end
clasohm@0
   100
  in  ins1 (keys,net)  end;
clasohm@0
   101
wenzelm@16808
   102
fun insert_safe eq entry net = insert eq entry net handle INSERT => net;
wenzelm@16808
   103
fun insert_term eq (t, x) = insert eq (key_of_term t, x);
wenzelm@16808
   104
clasohm@0
   105
clasohm@0
   106
(*** Deletion from a discrimination net ***)
clasohm@0
   107
wenzelm@12319
   108
exception DELETE;       (*missing item in the net*)
clasohm@0
   109
clasohm@0
   110
(*Create a new Net node if it would be nonempty*)
wenzelm@16708
   111
fun newnet (args as {comb,var,atoms}) =
wenzelm@16708
   112
  if is_empty comb andalso is_empty var andalso Symtab.is_empty atoms
wenzelm@16708
   113
  then empty else Net args;
clasohm@0
   114
clasohm@0
   115
(*Deletes item x from the list at the node addressed by the keys.
clasohm@0
   116
  Raises DELETE if absent.  Collapses the net if possible.
clasohm@0
   117
  eq is the equality test for items. *)
wenzelm@16808
   118
fun delete eq (keys, x) net =
clasohm@0
   119
  let fun del1 ([], Leaf xs) =
wenzelm@16686
   120
            if member eq xs x then Leaf (remove eq x xs)
clasohm@0
   121
            else raise DELETE
wenzelm@12319
   122
        | del1 (keys, Leaf[]) = raise DELETE
wenzelm@16708
   123
        | del1 (CombK :: keys, Net{comb,var,atoms}) =
wenzelm@16708
   124
            newnet{comb=del1(keys,comb), var=var, atoms=atoms}
wenzelm@16708
   125
        | del1 (VarK :: keys, Net{comb,var,atoms}) =
wenzelm@16708
   126
            newnet{comb=comb, var=del1(keys,var), atoms=atoms}
wenzelm@16708
   127
        | del1 (AtomK a :: keys, Net{comb,var,atoms}) =
wenzelm@16708
   128
            let val atoms' =
wenzelm@17412
   129
              (case Symtab.lookup atoms a of
wenzelm@16708
   130
                NONE => raise DELETE
wenzelm@16708
   131
              | SOME net' =>
wenzelm@16708
   132
                  (case del1 (keys, net') of
wenzelm@16708
   133
                    Leaf [] => Symtab.delete a atoms
wenzelm@17412
   134
                  | net'' => Symtab.update (a, net'') atoms))
wenzelm@16708
   135
            in  newnet{comb=comb, var=var, atoms=atoms'}  end
clasohm@0
   136
  in  del1 (keys,net)  end;
clasohm@0
   137
wenzelm@16808
   138
fun delete_term eq (t, x) = delete eq (key_of_term t, x);
clasohm@0
   139
wenzelm@16677
   140
clasohm@0
   141
(*** Retrieval functions for discrimination nets ***)
clasohm@0
   142
wenzelm@16708
   143
exception ABSENT;
clasohm@0
   144
wenzelm@16708
   145
fun the_atom atoms a =
wenzelm@17412
   146
  (case Symtab.lookup atoms a of
wenzelm@16708
   147
    NONE => raise ABSENT
wenzelm@16708
   148
  | SOME net => net);
clasohm@0
   149
clasohm@0
   150
(*Return the list of items at the given node, [] if no such node*)
wenzelm@16808
   151
fun lookup (Leaf xs) [] = xs
wenzelm@16808
   152
  | lookup (Leaf _) (_ :: _) = []  (*non-empty keys and empty net*)
wenzelm@16808
   153
  | lookup (Net {comb, var, atoms}) (CombK :: keys) = lookup comb keys
wenzelm@16808
   154
  | lookup (Net {comb, var, atoms}) (VarK :: keys) = lookup var keys
wenzelm@16808
   155
  | lookup (Net {comb, var, atoms}) (AtomK a :: keys) =
wenzelm@16808
   156
      lookup (the_atom atoms a) keys handle ABSENT => [];
clasohm@0
   157
clasohm@0
   158
clasohm@0
   159
(*Skipping a term in a net.  Recursively skip 2 levels if a combination*)
wenzelm@23178
   160
fun net_skip (Leaf _) nets = nets
wenzelm@23178
   161
  | net_skip (Net{comb,var,atoms}) nets =
wenzelm@23178
   162
      fold_rev net_skip (net_skip comb []) (Symtab.fold (cons o #2) atoms (var::nets));
clasohm@0
   163
wenzelm@16808
   164
wenzelm@16808
   165
(** Matching and Unification **)
clasohm@0
   166
clasohm@0
   167
(*conses the linked net, if present, to nets*)
wenzelm@16708
   168
fun look1 (atoms, a) nets =
wenzelm@16708
   169
  the_atom atoms a :: nets handle ABSENT => nets;
clasohm@0
   170
wenzelm@12319
   171
(*Return the nodes accessible from the term (cons them before nets)
clasohm@0
   172
  "unif" signifies retrieval for unification rather than matching.
clasohm@0
   173
  Var in net matches any term.
wenzelm@12319
   174
  Abs or Var in object: if "unif", regarded as wildcard,
nipkow@225
   175
                                   else matches only a variable in net.
nipkow@225
   176
*)
wenzelm@23178
   177
fun matching unif t net nets =
clasohm@0
   178
  let fun rands _ (Leaf _, nets) = nets
wenzelm@16708
   179
        | rands t (Net{comb,atoms,...}, nets) =
wenzelm@12319
   180
            case t of
wenzelm@23178
   181
                f$t => fold_rev (matching unif t) (rands f (comb,[])) nets
wenzelm@16708
   182
              | Const(c,_) => look1 (atoms, c) nets
wenzelm@16708
   183
              | Free(c,_)  => look1 (atoms, c) nets
wenzelm@20080
   184
              | Bound i    => look1 (atoms, Name.bound i) nets
wenzelm@12319
   185
              | _          => nets
wenzelm@12319
   186
  in
clasohm@0
   187
     case net of
wenzelm@12319
   188
         Leaf _ => nets
clasohm@0
   189
       | Net{var,...} =>
wenzelm@12319
   190
             case head_of t of
wenzelm@23178
   191
                 Var _ => if unif then net_skip net nets
wenzelm@12319
   192
                          else var::nets           (*only matches Var in net*)
paulson@2836
   193
  (*If "unif" then a var instantiation in the abstraction could allow
paulson@2836
   194
    an eta-reduction, so regard the abstraction as a wildcard.*)
wenzelm@23178
   195
               | Abs _ => if unif then net_skip net nets
wenzelm@12319
   196
                          else var::nets           (*only a Var can match*)
wenzelm@12319
   197
               | _ => rands t (net, var::nets)  (*var could match also*)
clasohm@0
   198
  end;
clasohm@0
   199
wenzelm@19482
   200
fun extract_leaves l = maps (fn Leaf xs => xs) l;
clasohm@0
   201
nipkow@225
   202
(*return items whose key could match t, WHICH MUST BE BETA-ETA NORMAL*)
wenzelm@12319
   203
fun match_term net t =
wenzelm@23178
   204
    extract_leaves (matching false t net []);
clasohm@0
   205
clasohm@0
   206
(*return items whose key could unify with t*)
wenzelm@12319
   207
fun unify_term net t =
wenzelm@23178
   208
    extract_leaves (matching true t net []);
clasohm@0
   209
wenzelm@3548
   210
wenzelm@16808
   211
(** operations on nets **)
wenzelm@16808
   212
wenzelm@16808
   213
(*subtraction: collect entries of second net that are NOT present in first net*)
wenzelm@16808
   214
fun subtract eq net1 net2 =
wenzelm@16808
   215
  let
wenzelm@16808
   216
    fun subtr (Net _) (Leaf ys) = append ys
wenzelm@16808
   217
      | subtr (Leaf xs) (Leaf ys) =
wenzelm@16808
   218
          fold_rev (fn y => if member eq xs y then I else cons y) ys
wenzelm@16808
   219
      | subtr (Leaf _) (net as Net _) = subtr emptynet net
wenzelm@16808
   220
      | subtr (Net {comb = comb1, var = var1, atoms = atoms1})
wenzelm@16808
   221
            (Net {comb = comb2, var = var2, atoms = atoms2}) =
wenzelm@16842
   222
          subtr comb1 comb2
wenzelm@16842
   223
          #> subtr var1 var2
wenzelm@16842
   224
          #> Symtab.fold (fn (a, net) =>
wenzelm@18939
   225
            subtr (the_default emptynet (Symtab.lookup atoms1 a)) net) atoms2
wenzelm@16808
   226
  in subtr net1 net2 [] end;
wenzelm@16808
   227
wenzelm@16808
   228
fun entries net = subtract (K false) empty net;
wenzelm@16808
   229
wenzelm@16808
   230
wenzelm@16808
   231
(* merge *)
wenzelm@3548
   232
wenzelm@3548
   233
fun cons_fst x (xs, y) = (x :: xs, y);
wenzelm@3548
   234
wenzelm@3548
   235
fun dest (Leaf xs) = map (pair []) xs
wenzelm@16708
   236
  | dest (Net {comb, var, atoms}) =
wenzelm@3560
   237
      map (cons_fst CombK) (dest comb) @
wenzelm@3560
   238
      map (cons_fst VarK) (dest var) @
wenzelm@19482
   239
      maps (fn (a, net) => map (cons_fst (AtomK a)) (dest net)) (Symtab.dest atoms);
wenzelm@3548
   240
wenzelm@16808
   241
fun merge eq (net1, net2) = fold (insert_safe eq) (dest net2) net1;
wenzelm@3548
   242
wenzelm@20011
   243
fun content net = map #2 (dest net);
wenzelm@20011
   244
clasohm@0
   245
end;