src/HOL/Auth/Yahalom2.ML
author paulson
Thu Jan 08 18:10:34 1998 +0100 (1998-01-08)
changeset 4537 4e835bd9fada
parent 4509 828148415197
child 4598 649bf14debe7
permissions -rw-r--r--
Expressed most Oops rules using Notes instead of Says, and other tidying
paulson@2111
     1
(*  Title:      HOL/Auth/Yahalom2
paulson@2111
     2
    ID:         $Id$
paulson@2111
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@2111
     4
    Copyright   1996  University of Cambridge
paulson@2111
     5
paulson@2111
     6
Inductive relation "yahalom" for the Yahalom protocol, Variant 2.
paulson@2111
     7
paulson@2111
     8
This version trades encryption of NB for additional explicitness in YM3.
paulson@2111
     9
paulson@2111
    10
From page 259 of
paulson@2111
    11
  Burrows, Abadi and Needham.  A Logic of Authentication.
paulson@2111
    12
  Proc. Royal Soc. 426 (1989)
paulson@2111
    13
*)
paulson@2111
    14
paulson@2111
    15
open Yahalom2;
paulson@2111
    16
wenzelm@4449
    17
set proof_timing;
paulson@2111
    18
HOL_quantifiers := false;
paulson@2111
    19
paulson@2323
    20
(*A "possibility property": there are traces that reach the end*)
paulson@2111
    21
goal thy 
paulson@3519
    22
 "!!A B. [| A ~= B; A ~= Server; B ~= Server |]   \
paulson@3519
    23
\        ==> EX X NB K. EX evs: yahalom.          \
nipkow@3465
    24
\               Says A B {|X, Crypt K (Nonce NB)|} : set evs";
paulson@2111
    25
by (REPEAT (resolve_tac [exI,bexI] 1));
paulson@2516
    26
by (rtac (yahalom.Nil RS yahalom.YM1 RS yahalom.YM2 RS yahalom.YM3 RS 
paulson@2516
    27
          yahalom.YM4) 2);
paulson@2516
    28
by possibility_tac;
paulson@2111
    29
result();
paulson@2111
    30
paulson@2111
    31
paulson@2111
    32
(**** Inductive proofs about yahalom ****)
paulson@2111
    33
paulson@2111
    34
(*Nobody sends themselves messages*)
paulson@3519
    35
goal thy "!!evs. evs: yahalom ==> ALL A X. Says A A X ~: set evs";
paulson@2111
    36
by (etac yahalom.induct 1);
paulson@4477
    37
by Auto_tac;
paulson@2111
    38
qed_spec_mp "not_Says_to_self";
paulson@2111
    39
Addsimps [not_Says_to_self];
paulson@2111
    40
AddSEs   [not_Says_to_self RSN (2, rev_notE)];
paulson@2111
    41
paulson@2111
    42
paulson@2111
    43
(** For reasoning about the encrypted portion of messages **)
paulson@2111
    44
paulson@2111
    45
(*Lets us treat YM4 using a similar argument as for the Fake case.*)
nipkow@3465
    46
goal thy "!!evs. Says S A {|NB, Crypt (shrK A) Y, X|} : set evs ==> \
paulson@3683
    47
\                X : analz (spies evs)";
wenzelm@4091
    48
by (blast_tac (claset() addSDs [Says_imp_spies RS analz.Inj]) 1);
paulson@3683
    49
qed "YM4_analz_spies";
paulson@2111
    50
paulson@3683
    51
bind_thm ("YM4_parts_spies",
paulson@3683
    52
          YM4_analz_spies RS (impOfSubs analz_subset_parts));
paulson@2111
    53
paulson@2155
    54
(*Relates to both YM4 and Oops*)
paulson@3466
    55
goal thy "!!evs. Says S A {|NB, Crypt (shrK A) {|B,K,NA|}, X|} : set evs ==> \
paulson@3683
    56
\                K : parts (spies evs)";
wenzelm@4091
    57
by (blast_tac (claset() addSEs partsEs
paulson@4238
    58
                        addSDs [Says_imp_spies RS parts.Inj]) 1);
paulson@3683
    59
qed "YM4_Key_parts_spies";
paulson@2111
    60
paulson@3683
    61
(*For proving the easier theorems about X ~: parts (spies evs).*)
paulson@3683
    62
fun parts_spies_tac i = 
paulson@3683
    63
    forward_tac [YM4_Key_parts_spies] (i+6) THEN
paulson@3683
    64
    forward_tac [YM4_parts_spies] (i+5)     THEN
paulson@3519
    65
    prove_simple_subgoals_tac  i;
paulson@2111
    66
paulson@3519
    67
(*Induction for regularity theorems.  If induction formula has the form
paulson@3683
    68
   X ~: analz (spies evs) --> ... then it shortens the proof by discarding
paulson@3683
    69
   needless information about analz (insert X (spies evs))  *)
paulson@3519
    70
fun parts_induct_tac i = 
paulson@3519
    71
    etac yahalom.induct i
paulson@3519
    72
    THEN 
paulson@3519
    73
    REPEAT (FIRSTGOAL analz_mono_contra_tac)
paulson@3683
    74
    THEN  parts_spies_tac i;
paulson@3432
    75
paulson@2111
    76
paulson@3683
    77
(** Theorems of the form X ~: parts (spies evs) imply that NOBODY
paulson@2111
    78
    sends messages containing X! **)
paulson@2111
    79
paulson@3683
    80
(*Spy never sees another agent's shared key! (unless it's bad at start)*)
paulson@2111
    81
goal thy 
paulson@3683
    82
 "!!evs. evs : yahalom ==> (Key (shrK A) : parts (spies evs)) = (A : bad)";
paulson@3519
    83
by (parts_induct_tac 1);
paulson@3121
    84
by (Fake_parts_insert_tac 1);
paulson@3121
    85
by (Blast_tac 1);
paulson@2516
    86
qed "Spy_see_shrK";
paulson@2516
    87
Addsimps [Spy_see_shrK];
paulson@2111
    88
paulson@2516
    89
goal thy 
paulson@3683
    90
 "!!evs. evs : yahalom ==> (Key (shrK A) : analz (spies evs)) = (A : bad)";
wenzelm@4091
    91
by (auto_tac(claset() addDs [impOfSubs analz_subset_parts], simpset()));
paulson@2516
    92
qed "Spy_analz_shrK";
paulson@2516
    93
Addsimps [Spy_analz_shrK];
paulson@2111
    94
paulson@4471
    95
AddSDs [Spy_see_shrK RSN (2, rev_iffD1), 
paulson@4471
    96
	Spy_analz_shrK RSN (2, rev_iffD1)];
paulson@2111
    97
paulson@2111
    98
paulson@3432
    99
(*Nobody can have used non-existent keys!  Needed to apply analz_insert_Key*)
paulson@3519
   100
goal thy "!!evs. evs : yahalom ==>          \
paulson@3683
   101
\         Key K ~: used evs --> K ~: keysFor (parts (spies evs))";
paulson@3519
   102
by (parts_induct_tac 1);
paulson@2516
   103
(*YM4: Key K is not fresh!*)
wenzelm@4091
   104
by (blast_tac (claset() addSEs spies_partsEs) 3);
paulson@2516
   105
(*YM3*)
wenzelm@4091
   106
by (blast_tac (claset() addss (simpset())) 2);
paulson@2516
   107
(*Fake*)
paulson@4509
   108
by (blast_tac (claset() addSDs [keysFor_parts_insert]) 1);
paulson@2160
   109
qed_spec_mp "new_keys_not_used";
paulson@2111
   110
paulson@2111
   111
bind_thm ("new_keys_not_analzd",
paulson@2111
   112
          [analz_subset_parts RS keysFor_mono,
paulson@2111
   113
           new_keys_not_used] MRS contra_subsetD);
paulson@2111
   114
paulson@2111
   115
Addsimps [new_keys_not_used, new_keys_not_analzd];
paulson@2111
   116
paulson@2155
   117
(*Describes the form of K when the Server sends this message.  Useful for
paulson@2155
   118
  Oops as well as main secrecy property.*)
paulson@2111
   119
goal thy 
paulson@3501
   120
 "!!evs. [| Says Server A {|nb', Crypt (shrK A) {|Agent B, Key K, na|}, X|} \
paulson@3519
   121
\            : set evs;                                            \
paulson@3519
   122
\           evs : yahalom |]                                       \
paulson@2516
   123
\        ==> K ~: range shrK & A ~= B";
paulson@2155
   124
by (etac rev_mp 1);
paulson@2155
   125
by (etac yahalom.induct 1);
paulson@3121
   126
by (ALLGOALS Asm_simp_tac);
paulson@2155
   127
qed "Says_Server_message_form";
paulson@2111
   128
paulson@2111
   129
paulson@3519
   130
(*For proofs involving analz.*)
paulson@3683
   131
val analz_spies_tac = 
paulson@3683
   132
    dtac YM4_analz_spies 6 THEN
paulson@3519
   133
    forward_tac [Says_Server_message_form] 7 THEN
paulson@2516
   134
    assume_tac 7 THEN
paulson@2516
   135
    REPEAT ((etac conjE ORELSE' hyp_subst_tac) 7);
paulson@2111
   136
paulson@2111
   137
paulson@2111
   138
(****
paulson@2111
   139
 The following is to prove theorems of the form
paulson@2111
   140
paulson@3683
   141
          Key K : analz (insert (Key KAB) (spies evs)) ==>
paulson@3683
   142
          Key K : analz (spies evs)
paulson@2111
   143
paulson@2111
   144
 A more general formula must be proved inductively.
paulson@2111
   145
paulson@2111
   146
****)
paulson@2111
   147
paulson@2111
   148
(** Session keys are not used to encrypt other session keys **)
paulson@2111
   149
paulson@2111
   150
goal thy  
paulson@3519
   151
 "!!evs. evs : yahalom ==>                                  \
paulson@3519
   152
\  ALL K KK. KK <= Compl (range shrK) -->                   \
paulson@3683
   153
\            (Key K : analz (Key``KK Un (spies evs))) =  \
paulson@3683
   154
\            (K : KK | Key K : analz (spies evs))";
paulson@2111
   155
by (etac yahalom.induct 1);
paulson@3683
   156
by analz_spies_tac;
paulson@2516
   157
by (REPEAT_FIRST (resolve_tac [allI, impI]));
paulson@3961
   158
by (REPEAT_FIRST (rtac analz_image_freshK_lemma));
paulson@2516
   159
by (ALLGOALS (asm_simp_tac analz_image_freshK_ss));
paulson@3450
   160
(*Fake*) 
paulson@4422
   161
by (spy_analz_tac 1);
paulson@2516
   162
qed_spec_mp "analz_image_freshK";
paulson@2111
   163
paulson@2111
   164
goal thy
paulson@3519
   165
 "!!evs. [| evs : yahalom;  KAB ~: range shrK |] ==>        \
paulson@3683
   166
\        Key K : analz (insert (Key KAB) (spies evs)) =  \
paulson@3683
   167
\        (K = KAB | Key K : analz (spies evs))";
paulson@2516
   168
by (asm_simp_tac (analz_image_freshK_ss addsimps [analz_image_freshK]) 1);
paulson@2516
   169
qed "analz_insert_freshK";
paulson@2111
   170
paulson@2111
   171
paulson@2111
   172
(*** The Key K uniquely identifies the Server's  message. **)
paulson@2111
   173
paulson@2111
   174
goal thy 
paulson@3519
   175
 "!!evs. evs : yahalom ==>                                     \
paulson@3519
   176
\      EX A' B' na' nb' X'. ALL A B na nb X.                   \
paulson@3519
   177
\          Says Server A                                       \
paulson@3519
   178
\           {|nb, Crypt (shrK A) {|Agent B, Key K, na|}, X|}   \
nipkow@3465
   179
\          : set evs --> A=A' & B=B' & na=na' & nb=nb' & X=X'";
paulson@2111
   180
by (etac yahalom.induct 1);
wenzelm@4091
   181
by (ALLGOALS (asm_simp_tac (simpset() addsimps [all_conj_distrib])));
paulson@3730
   182
by (Clarify_tac 1);
paulson@2111
   183
(*Remaining case: YM3*)
paulson@2111
   184
by (expand_case_tac "K = ?y" 1);
paulson@2111
   185
by (REPEAT (ares_tac [refl,exI,impI,conjI] 2));
paulson@2516
   186
(*...we assume X is a recent message and handle this case by contradiction*)
wenzelm@4091
   187
by (blast_tac (claset() addSEs spies_partsEs
paulson@4199
   188
                        delrules [conjI]    (*prevent splitup into 4 subgoals*)
paulson@4199
   189
                        addss (simpset() addsimps [parts_insertI])) 1);
paulson@2111
   190
val lemma = result();
paulson@2111
   191
paulson@2111
   192
goal thy 
paulson@2111
   193
"!!evs. [| Says Server A                                            \
paulson@3683
   194
\            {|nb, Crypt (shrK A) {|Agent B, Key K, na|}, X|} : set evs; \
paulson@2111
   195
\          Says Server A'                                           \
paulson@3683
   196
\            {|nb', Crypt (shrK A') {|Agent B', Key K, na'|}, X'|} : set evs; \
paulson@3519
   197
\          evs : yahalom |]                                         \
paulson@3450
   198
\       ==> A=A' & B=B' & na=na' & nb=nb'";
paulson@2451
   199
by (prove_unique_tac lemma 1);
paulson@2111
   200
qed "unique_session_keys";
paulson@2111
   201
paulson@2111
   202
paulson@2111
   203
(** Crucial secrecy property: Spy does not see the keys sent in msg YM3 **)
paulson@2111
   204
paulson@2111
   205
goal thy 
paulson@3683
   206
 "!!evs. [| A ~: bad;  B ~: bad;  A ~= B;                     \
paulson@3519
   207
\           evs : yahalom |]                                    \
paulson@3519
   208
\        ==> Says Server A                                      \
paulson@3519
   209
\              {|nb, Crypt (shrK A) {|Agent B, Key K, na|},     \
paulson@3519
   210
\                    Crypt (shrK B) {|nb, Key K, Agent A|}|}    \
paulson@3519
   211
\             : set evs -->                                     \
paulson@4537
   212
\            Notes Spy {|na, nb, Key K|} ~: set evs -->         \
paulson@3683
   213
\            Key K ~: analz (spies evs)";
paulson@2111
   214
by (etac yahalom.induct 1);
paulson@3683
   215
by analz_spies_tac;
paulson@2111
   216
by (ALLGOALS
paulson@2111
   217
    (asm_simp_tac 
wenzelm@4091
   218
     (simpset() addsimps expand_ifs
paulson@4199
   219
	        addsimps [analz_insert_eq, analz_insert_freshK]
paulson@4199
   220
                addsplits [expand_if])));
paulson@3450
   221
(*Oops*)
wenzelm@4091
   222
by (blast_tac (claset() addDs [unique_session_keys]) 3);
paulson@2111
   223
(*YM3*)
wenzelm@4091
   224
by (blast_tac (claset() delrules [impCE]
paulson@4199
   225
                        addSEs spies_partsEs
paulson@4199
   226
                        addIs [impOfSubs analz_subset_parts]) 2);
paulson@3450
   227
(*Fake*) 
paulson@3450
   228
by (spy_analz_tac 1);
paulson@2111
   229
val lemma = result() RS mp RS mp RSN(2,rev_notE);
paulson@2111
   230
paulson@2111
   231
paulson@3432
   232
(*Final version*)
paulson@2111
   233
goal thy 
paulson@3519
   234
 "!!evs. [| Says Server A                                    \
paulson@3519
   235
\              {|nb, Crypt (shrK A) {|Agent B, Key K, na|},  \
paulson@3519
   236
\                    Crypt (shrK B) {|nb, Key K, Agent A|}|} \
paulson@3519
   237
\           : set evs;                                       \
paulson@4537
   238
\           Notes Spy {|na, nb, Key K|} ~: set evs;          \
paulson@4537
   239
\           A ~: bad;  B ~: bad;  evs : yahalom |]           \
paulson@3683
   240
\        ==> Key K ~: analz (spies evs)";
paulson@2111
   241
by (forward_tac [Says_Server_message_form] 1 THEN assume_tac 1);
wenzelm@4091
   242
by (blast_tac (claset() addSEs [lemma]) 1);
paulson@2111
   243
qed "Spy_not_see_encrypted_key";
paulson@2111
   244
paulson@2111
   245
paulson@3450
   246
(** Security Guarantee for A upon receiving YM3 **)
paulson@2155
   247
paulson@3432
   248
(*If the encrypted message appears then it originated with the Server.
paulson@3432
   249
  May now apply Spy_not_see_encrypted_key, subject to its conditions.*)
paulson@2155
   250
goal thy
paulson@3450
   251
 "!!evs. [| Crypt (shrK A) {|Agent B, Key K, na|}                      \
paulson@4537
   252
\            : parts (spies evs);                                      \
paulson@4537
   253
\           A ~: bad;  evs : yahalom |]                                \
paulson@3450
   254
\         ==> EX nb. Says Server A                                     \
paulson@3450
   255
\                      {|nb, Crypt (shrK A) {|Agent B, Key K, na|},    \
paulson@3450
   256
\                            Crypt (shrK B) {|nb, Key K, Agent A|}|}   \
nipkow@3465
   257
\                    : set evs";
paulson@2155
   258
by (etac rev_mp 1);
paulson@3519
   259
by (parts_induct_tac 1);
paulson@3121
   260
by (Fake_parts_insert_tac 1);
paulson@3121
   261
by (Blast_tac 1);
paulson@2323
   262
qed "A_trusts_YM3";
paulson@2155
   263
paulson@2111
   264
paulson@3450
   265
(** Security Guarantee for B upon receiving YM4 **)
paulson@3450
   266
paulson@2111
   267
(*B knows, by the first part of A's message, that the Server distributed 
paulson@3450
   268
  the key for A and B, and has associated it with NB. *)
paulson@2111
   269
goal thy 
paulson@3683
   270
 "!!evs. [| Crypt (shrK B) {|Nonce NB, Key K, Agent A|} : parts (spies evs); \
paulson@3683
   271
\           B ~: bad;  evs : yahalom |]                             \
paulson@2111
   272
\        ==> EX NA. Says Server A                                    \
paulson@2155
   273
\                    {|Nonce NB,                                     \
paulson@2284
   274
\                      Crypt (shrK A) {|Agent B, Key K, Nonce NA|},  \
paulson@2284
   275
\                      Crypt (shrK B) {|Nonce NB, Key K, Agent A|}|} \
nipkow@3465
   276
\                       : set evs";
paulson@2111
   277
by (etac rev_mp 1);
paulson@3519
   278
by (parts_induct_tac 1);
paulson@3121
   279
by (Fake_parts_insert_tac 1);
paulson@2111
   280
(*YM3*)
paulson@3121
   281
by (Blast_tac 1);
paulson@2111
   282
qed "B_trusts_YM4_shrK";
paulson@2111
   283
paulson@3450
   284
paulson@3450
   285
(*With this protocol variant, we don't need the 2nd part of YM4 at all:
paulson@3450
   286
  Nonce NB is available in the first part.*)
paulson@2111
   287
paulson@2155
   288
(*What can B deduce from receipt of YM4?  Stronger and simpler than Yahalom
paulson@2155
   289
  because we do not have to show that NB is secret. *)
paulson@2111
   290
goal thy 
paulson@3450
   291
 "!!evs. [| Says A' B {|Crypt (shrK B) {|Nonce NB, Key K, Agent A|}, X|} \
paulson@3466
   292
\             : set evs;                                                 \
paulson@3683
   293
\           A ~: bad;  B ~: bad;  evs : yahalom |]                     \
paulson@3450
   294
\        ==> EX NA. Says Server A                                        \
paulson@3450
   295
\                    {|Nonce NB,                                         \
paulson@3450
   296
\                      Crypt (shrK A) {|Agent B, Key K, Nonce NA|},      \
paulson@3450
   297
\                      Crypt (shrK B) {|Nonce NB, Key K, Agent A|}|}     \
nipkow@3465
   298
\                   : set evs";
paulson@3683
   299
by (etac (Says_imp_spies RS parts.Inj RS MPair_parts) 1);
wenzelm@4091
   300
by (blast_tac (claset() addSDs [B_trusts_YM4_shrK]) 1);
paulson@2323
   301
qed "B_trusts_YM4";
paulson@3432
   302
paulson@3432
   303
paulson@3432
   304
paulson@3432
   305
(*** Authenticating B to A ***)
paulson@3432
   306
paulson@3432
   307
(*The encryption in message YM2 tells us it cannot be faked.*)
paulson@3432
   308
goal thy 
paulson@3519
   309
 "!!evs. evs : yahalom                                                  \
paulson@3683
   310
\  ==> Crypt (shrK B) {|Agent A, Nonce NA|} : parts (spies evs) -->  \
paulson@3683
   311
\      B ~: bad -->                                                    \
paulson@3519
   312
\      (EX NB. Says B Server {|Agent B, Nonce NB,                       \
paulson@3519
   313
\                              Crypt (shrK B) {|Agent A, Nonce NA|}|}   \
nipkow@3465
   314
\         : set evs)";
paulson@3519
   315
by (parts_induct_tac 1);
paulson@3432
   316
by (Fake_parts_insert_tac 1);
paulson@3432
   317
(*YM2*)
paulson@3432
   318
by (Blast_tac 1);
paulson@3432
   319
bind_thm ("B_Said_YM2", result() RSN (2, rev_mp) RS mp);
paulson@3432
   320
paulson@3432
   321
(*If the server sends YM3 then B sent YM2, perhaps with a different NB*)
paulson@3432
   322
goal thy 
paulson@3519
   323
 "!!evs. evs : yahalom                                                   \
paulson@3432
   324
\  ==> Says Server A {|nb, Crypt (shrK A) {|Agent B, Key K, Nonce NA|}, X|} \
paulson@3466
   325
\         : set evs -->                                                  \
paulson@3683
   326
\      B ~: bad -->                                                     \
paulson@3432
   327
\      (EX nb'. Says B Server {|Agent B, nb',                            \
paulson@3432
   328
\                               Crypt (shrK B) {|Agent A, Nonce NA|}|}   \
nipkow@3465
   329
\                 : set evs)";
paulson@3432
   330
by (etac yahalom.induct 1);
paulson@3432
   331
by (ALLGOALS Asm_simp_tac);
paulson@3432
   332
(*YM3*)
wenzelm@4091
   333
by (blast_tac (claset() addSDs [B_Said_YM2]
paulson@4199
   334
 		        addSEs [MPair_parts]
paulson@4199
   335
	 	        addDs [Says_imp_spies RS parts.Inj]) 3);
paulson@3432
   336
(*Fake, YM2*)
paulson@3432
   337
by (ALLGOALS Blast_tac);
paulson@3450
   338
val lemma = result() RSN (2, rev_mp) RS mp |> standard;
paulson@3432
   339
paulson@3432
   340
(*If A receives YM3 then B has used nonce NA (and therefore is alive)*)
paulson@3432
   341
goal thy
paulson@3450
   342
 "!!evs. [| Says S A {|nb, Crypt (shrK A) {|Agent B, Key K, Nonce NA|}, X|} \
paulson@3466
   343
\             : set evs;                                                    \
paulson@3683
   344
\           A ~: bad;  B ~: bad;  evs : yahalom |]                   \
paulson@3450
   345
\   ==> EX nb'. Says B Server                                               \
paulson@3450
   346
\                    {|Agent B, nb', Crypt (shrK B) {|Agent A, Nonce NA|}|} \
nipkow@3465
   347
\                 : set evs";
wenzelm@4091
   348
by (blast_tac (claset() addSDs [A_trusts_YM3, lemma]
paulson@4199
   349
		        addEs spies_partsEs) 1);
paulson@3432
   350
qed "YM3_auth_B_to_A";
paulson@3432
   351
paulson@3432
   352
paulson@3450
   353
(*** Authenticating A to B using the certificate Crypt K (Nonce NB) ***)
paulson@3450
   354
paulson@3450
   355
(*Assuming the session key is secure, if both certificates are present then
paulson@3432
   356
  A has said NB.  We can't be sure about the rest of A's message, but only
paulson@3432
   357
  NB matters for freshness.*)  
paulson@3432
   358
goal thy 
paulson@3519
   359
 "!!evs. evs : yahalom                                        \
paulson@3683
   360
\        ==> Key K ~: analz (spies evs) -->                \
paulson@3683
   361
\            Crypt K (Nonce NB) : parts (spies evs) -->    \
paulson@3519
   362
\            Crypt (shrK B) {|Nonce NB, Key K, Agent A|}      \
paulson@3683
   363
\              : parts (spies evs) -->                     \
paulson@3683
   364
\            B ~: bad -->                                    \
paulson@3683
   365
\            (EX X. Says A B {|X, Crypt K (Nonce NB)|} : set evs)";
paulson@3519
   366
by (parts_induct_tac 1);
paulson@3432
   367
(*Fake*)
paulson@3432
   368
by (Fake_parts_insert_tac 1);
paulson@3432
   369
(*YM3: by new_keys_not_used we note that Crypt K (Nonce NB) could not exist*)
paulson@4238
   370
by (fast_tac (claset() addSDs [Crypt_imp_keysFor] addss (simpset())) 1); 
paulson@3450
   371
(*YM4: was Crypt K (Nonce NB) the very last message?  If not, use ind. hyp.*)
wenzelm@4091
   372
by (asm_simp_tac (simpset() addsimps [ex_disj_distrib]) 1);
paulson@3450
   373
(*yes: apply unicity of session keys*)
paulson@3683
   374
by (not_bad_tac "Aa" 1);
wenzelm@4091
   375
by (blast_tac (claset() addSEs [MPair_parts]
paulson@4199
   376
			addSDs [A_trusts_YM3, B_trusts_YM4_shrK]
paulson@4199
   377
			addDs  [Says_imp_spies RS parts.Inj,
paulson@4199
   378
				unique_session_keys]) 1);
paulson@3450
   379
val lemma = normalize_thm [RSspec, RSmp] (result()) |> standard;
paulson@3432
   380
paulson@3432
   381
(*If B receives YM4 then A has used nonce NB (and therefore is alive).
paulson@3450
   382
  Moreover, A associates K with NB (thus is talking about the same run).
paulson@3432
   383
  Other premises guarantee secrecy of K.*)
paulson@3432
   384
goal thy 
paulson@3432
   385
 "!!evs. [| Says A' B {|Crypt (shrK B) {|Nonce NB, Key K, Agent A|},    \
paulson@3466
   386
\                       Crypt K (Nonce NB)|} : set evs;                 \
paulson@4537
   387
\           (ALL NA. Notes Spy {|Nonce NA, Nonce NB, Key K|} ~: set evs); \
paulson@3683
   388
\           A ~: bad;  B ~: bad;  evs : yahalom |]                    \
nipkow@3465
   389
\        ==> EX X. Says A B {|X, Crypt K (Nonce NB)|} : set evs";
paulson@3683
   390
by (etac (Says_imp_spies RS parts.Inj RS MPair_parts) 1);
paulson@3450
   391
by (dtac B_trusts_YM4_shrK 1);
paulson@4153
   392
by Safe_tac;
paulson@3450
   393
by (rtac lemma 1);
paulson@3450
   394
by (rtac Spy_not_see_encrypted_key 2);
paulson@3432
   395
by (REPEAT_FIRST assume_tac);
wenzelm@4091
   396
by (ALLGOALS (blast_tac (claset() addSEs [MPair_parts]
paulson@4199
   397
			          addDs [Says_imp_spies RS parts.Inj])));
paulson@3432
   398
qed_spec_mp "YM4_imp_A_Said_YM3";