src/Pure/tctical.ML
author oheimb
Sat Feb 15 16:05:07 1997 +0100 (1997-02-15)
changeset 2627 4ee01bb55a44
parent 2580 e3f680709487
child 2672 85d7e800d754
permissions -rw-r--r--
added THEN_MAYBE and THEN_MAYBE'
paulson@2244
     1
(*  Title:      tctical
clasohm@0
     2
    ID:         $Id$
paulson@2244
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
clasohm@0
     6
Tacticals
clasohm@0
     7
*)
clasohm@0
     8
oheimb@2627
     9
infix 1 THEN THEN' THEN_MAYBE THEN_MAYBE';
clasohm@0
    10
infix 0 ORELSE APPEND INTLEAVE ORELSE' APPEND' INTLEAVE';
lcp@671
    11
infix 0 THEN_ELSE;
lcp@671
    12
clasohm@0
    13
clasohm@0
    14
signature TACTICAL =
clasohm@0
    15
  sig
paulson@1502
    16
  type tactic  (* = thm -> thm Sequence.seq*)
paulson@2244
    17
  val all_tac           : tactic
paulson@2244
    18
  val ALLGOALS          : (int -> tactic) -> tactic   
paulson@2244
    19
  val APPEND            : tactic * tactic -> tactic
paulson@2244
    20
  val APPEND'           : ('a -> tactic) * ('a -> tactic) -> 'a -> tactic
paulson@2244
    21
  val CHANGED           : tactic -> tactic
paulson@2244
    22
  val COND              : (thm -> bool) -> tactic -> tactic -> tactic   
paulson@2244
    23
  val DETERM            : tactic -> tactic
paulson@2244
    24
  val EVERY             : tactic list -> tactic   
paulson@2244
    25
  val EVERY'            : ('a -> tactic) list -> 'a -> tactic
paulson@2244
    26
  val EVERY1            : (int -> tactic) list -> tactic
paulson@2244
    27
  val FILTER            : (thm -> bool) -> tactic -> tactic
paulson@2244
    28
  val FIRST             : tactic list -> tactic   
paulson@2244
    29
  val FIRST'            : ('a -> tactic) list -> 'a -> tactic
paulson@2244
    30
  val FIRST1            : (int -> tactic) list -> tactic
paulson@2244
    31
  val FIRSTGOAL         : (int -> tactic) -> tactic
paulson@2244
    32
  val goals_limit       : int ref
paulson@2244
    33
  val INTLEAVE          : tactic * tactic -> tactic
paulson@2244
    34
  val INTLEAVE'         : ('a -> tactic) * ('a -> tactic) -> 'a -> tactic
paulson@2244
    35
  val METAHYPS          : (thm list -> tactic) -> int -> tactic
paulson@2244
    36
  val no_tac            : tactic
paulson@2244
    37
  val ORELSE            : tactic * tactic -> tactic
paulson@2244
    38
  val ORELSE'           : ('a -> tactic) * ('a -> tactic) -> 'a -> tactic
paulson@2244
    39
  val pause_tac         : tactic
paulson@2244
    40
  val print_tac         : tactic
paulson@2244
    41
  val REPEAT            : tactic -> tactic
paulson@2244
    42
  val REPEAT1           : tactic -> tactic
paulson@2244
    43
  val REPEAT_DETERM_N   : int -> tactic -> tactic
paulson@2244
    44
  val REPEAT_DETERM     : tactic -> tactic
paulson@2244
    45
  val REPEAT_DETERM1    : tactic -> tactic
lcp@703
    46
  val REPEAT_DETERM_FIRST: (int -> tactic) -> tactic
lcp@703
    47
  val REPEAT_DETERM_SOME: (int -> tactic) -> tactic
paulson@2244
    48
  val REPEAT_FIRST      : (int -> tactic) -> tactic
paulson@2244
    49
  val REPEAT_SOME       : (int -> tactic) -> tactic
paulson@2244
    50
  val SELECT_GOAL       : tactic -> int -> tactic
paulson@2244
    51
  val SOMEGOAL          : (int -> tactic) -> tactic   
paulson@2244
    52
  val STATE             : (thm -> tactic) -> tactic
paulson@2244
    53
  val strip_context     : term -> (string * typ) list * term list * term
paulson@2244
    54
  val SUBGOAL           : ((term*int) -> tactic) -> int -> tactic
paulson@2244
    55
  val suppress_tracing  : bool ref
paulson@2244
    56
  val THEN              : tactic * tactic -> tactic
paulson@2244
    57
  val THEN'             : ('a -> tactic) * ('a -> tactic) -> 'a -> tactic
oheimb@2627
    58
  val THEN_MAYBE	: tactic * tactic -> tactic
oheimb@2627
    59
  val THEN_MAYBE'	: ('a -> tactic) * ('a -> tactic) -> ('a -> tactic)
paulson@2244
    60
  val THEN_ELSE         : tactic * (tactic*tactic) -> tactic
paulson@2244
    61
  val traced_tac        : (thm -> (thm * thm Sequence.seq) option) -> tactic
paulson@2244
    62
  val tracify           : bool ref -> tactic -> thm -> thm Sequence.seq
paulson@2244
    63
  val trace_REPEAT      : bool ref
paulson@2244
    64
  val TRY               : tactic -> tactic
paulson@2244
    65
  val TRYALL            : (int -> tactic) -> tactic   
clasohm@0
    66
  end;
clasohm@0
    67
clasohm@0
    68
paulson@1502
    69
structure Tactical : TACTICAL = 
clasohm@0
    70
struct
clasohm@0
    71
clasohm@0
    72
(**** Tactics ****)
clasohm@0
    73
clasohm@0
    74
(*A tactic maps a proof tree to a sequence of proof trees:
clasohm@0
    75
    if length of sequence = 0 then the tactic does not apply;
clasohm@0
    76
    if length > 1 then backtracking on the alternatives can occur.*)
clasohm@0
    77
paulson@1502
    78
type tactic = thm -> thm Sequence.seq;
clasohm@0
    79
clasohm@0
    80
(*Makes a tactic from one that uses the components of the state.*)
paulson@1502
    81
fun STATE tacfun st = tacfun st st;
clasohm@0
    82
clasohm@0
    83
clasohm@0
    84
(*** LCF-style tacticals ***)
clasohm@0
    85
clasohm@0
    86
(*the tactical THEN performs one tactic followed by another*)
paulson@1502
    87
fun (tac1 THEN tac2) st = Sequence.flats (Sequence.maps tac2 (tac1 st));
clasohm@0
    88
clasohm@0
    89
clasohm@0
    90
(*The tactical ORELSE uses the first tactic that returns a nonempty sequence.
clasohm@0
    91
  Like in LCF, ORELSE commits to either tac1 or tac2 immediately.
clasohm@0
    92
  Does not backtrack to tac2 if tac1 was initially chosen. *)
paulson@1502
    93
fun (tac1 ORELSE tac2) st =
paulson@1502
    94
    case Sequence.pull(tac1 st) of
paulson@2244
    95
        None       => tac2 st
paulson@1502
    96
      | sequencecell => Sequence.seqof(fn()=> sequencecell);
clasohm@0
    97
clasohm@0
    98
clasohm@0
    99
(*The tactical APPEND combines the results of two tactics.
clasohm@0
   100
  Like ORELSE, but allows backtracking on both tac1 and tac2.
clasohm@0
   101
  The tactic tac2 is not applied until needed.*)
paulson@1502
   102
fun (tac1 APPEND tac2) st = 
paulson@1502
   103
  Sequence.append(tac1 st,
paulson@2244
   104
                  Sequence.seqof(fn()=> Sequence.pull (tac2 st)));
clasohm@0
   105
clasohm@0
   106
(*Like APPEND, but interleaves results of tac1 and tac2.*)
paulson@1502
   107
fun (tac1 INTLEAVE tac2) st = 
paulson@1502
   108
    Sequence.interleave(tac1 st,
paulson@2244
   109
                        Sequence.seqof(fn()=> Sequence.pull (tac2 st)));
clasohm@0
   110
lcp@671
   111
(*Conditional tactic.
paulson@2244
   112
        tac1 ORELSE tac2 = tac1 THEN_ELSE (all_tac, tac2)
paulson@2244
   113
        tac1 THEN tac2   = tac1 THEN_ELSE (tac2, no_tac)
lcp@671
   114
*)
paulson@1502
   115
fun (tac THEN_ELSE (tac1, tac2)) st = 
paulson@1502
   116
    case Sequence.pull(tac st) of
paulson@2244
   117
        None    => tac2 st              (*failed; try tactic 2*)
paulson@2244
   118
      | seqcell => Sequence.flats       (*succeeded; use tactic 1*)
paulson@2244
   119
                    (Sequence.maps tac1 (Sequence.seqof(fn()=> seqcell)));
lcp@671
   120
lcp@671
   121
clasohm@0
   122
(*Versions for combining tactic-valued functions, as in
clasohm@0
   123
     SOMEGOAL (resolve_tac rls THEN' assume_tac) *)
paulson@1502
   124
fun (tac1 THEN' tac2) x = tac1 x THEN tac2 x;
paulson@1502
   125
fun (tac1 ORELSE' tac2) x = tac1 x ORELSE tac2 x;
paulson@1502
   126
fun (tac1 APPEND' tac2) x = tac1 x APPEND tac2 x;
paulson@1502
   127
fun (tac1 INTLEAVE' tac2) x = tac1 x INTLEAVE tac2 x;
clasohm@0
   128
clasohm@0
   129
(*passes all proofs through unchanged;  identity of THEN*)
paulson@1502
   130
fun all_tac st = Sequence.single st;
clasohm@0
   131
clasohm@0
   132
(*passes no proofs through;  identity of ORELSE and APPEND*)
paulson@1502
   133
fun no_tac st  = Sequence.null;
clasohm@0
   134
clasohm@0
   135
clasohm@0
   136
(*Make a tactic deterministic by chopping the tail of the proof sequence*)
paulson@1502
   137
fun DETERM tac st =  
paulson@1502
   138
      case Sequence.pull (tac st) of
paulson@2244
   139
              None => Sequence.null
paulson@1502
   140
            | Some(x,_) => Sequence.cons(x, Sequence.null);
clasohm@0
   141
clasohm@0
   142
clasohm@0
   143
(*Conditional tactical: testfun controls which tactic to use next.
clasohm@0
   144
  Beware: due to eager evaluation, both thentac and elsetac are evaluated.*)
paulson@1502
   145
fun COND testfun thenf elsef = (fn prf =>
clasohm@0
   146
    if testfun prf then  thenf prf   else  elsef prf);
clasohm@0
   147
clasohm@0
   148
(*Do the tactic or else do nothing*)
clasohm@0
   149
fun TRY tac = tac ORELSE all_tac;
clasohm@0
   150
oheimb@2627
   151
(*Execute tac1, but only execute tac2 if there are at least as many subgoals
oheimb@2627
   152
  as before.  This ensures that tac2 is only applied to an outcome of tac1.*)
oheimb@2627
   153
fun tac1 THEN_MAYBE tac2 = let fun has_fewer_prems n rule = (nprems_of rule < n)
oheimb@2627
   154
in STATE (fn state => tac1  THEN  
oheimb@2627
   155
	 COND (has_fewer_prems (nprems_of state)) all_tac tac2) end;
oheimb@2627
   156
fun (tac1 THEN_MAYBE' tac2) x = tac1 x THEN_MAYBE tac2 x;
oheimb@2627
   157
clasohm@0
   158
clasohm@0
   159
(*** List-oriented tactics ***)
clasohm@0
   160
clasohm@0
   161
(* EVERY [tac1,...,tacn]   equals    tac1 THEN ... THEN tacn   *)
clasohm@0
   162
fun EVERY tacs = foldr (op THEN) (tacs, all_tac);
clasohm@0
   163
paulson@1502
   164
(* EVERY' [tac1,...,tacn] i  equals    tac1 i THEN ... THEN tacn i   *)
paulson@1502
   165
fun EVERY' tacs = foldr (op THEN') (tacs, K all_tac);
clasohm@0
   166
clasohm@0
   167
(*Apply every tactic to 1*)
paulson@1502
   168
fun EVERY1 tacs = EVERY' tacs 1;
clasohm@0
   169
clasohm@0
   170
(* FIRST [tac1,...,tacn]   equals    tac1 ORELSE ... ORELSE tacn   *)
clasohm@0
   171
fun FIRST tacs = foldr (op ORELSE) (tacs, no_tac);
clasohm@0
   172
paulson@1502
   173
(* FIRST' [tac1,...,tacn] i  equals    tac1 i ORELSE ... ORELSE tacn i   *)
paulson@1502
   174
fun FIRST' tacs = foldr (op ORELSE') (tacs, K no_tac);
clasohm@0
   175
clasohm@0
   176
(*Apply first tactic to 1*)
paulson@1502
   177
fun FIRST1 tacs = FIRST' tacs 1;
clasohm@0
   178
clasohm@0
   179
clasohm@0
   180
(*** Tracing tactics ***)
clasohm@0
   181
clasohm@0
   182
(*Max number of goals to print -- set by user*)
clasohm@0
   183
val goals_limit = ref 10;
clasohm@0
   184
clasohm@0
   185
(*Print the current proof state and pass it on.*)
paulson@1502
   186
val print_tac = 
paulson@1502
   187
    (fn st => 
paulson@1502
   188
     (!print_goals_ref (!goals_limit) st;   Sequence.single st));
clasohm@0
   189
clasohm@0
   190
(*Pause until a line is typed -- if non-empty then fail. *)
paulson@1502
   191
fun pause_tac st =  
clasohm@0
   192
  (prs"** Press RETURN to continue: ";
paulson@2244
   193
   if TextIO.inputLine TextIO.stdIn = "\n" then Sequence.single st
paulson@1502
   194
   else (prs"Goodbye\n";  Sequence.null));
clasohm@0
   195
clasohm@0
   196
exception TRACE_EXIT of thm
clasohm@0
   197
and TRACE_QUIT;
clasohm@0
   198
lcp@631
   199
(*Tracing flags*)
lcp@631
   200
val trace_REPEAT= ref false
lcp@631
   201
and suppress_tracing = ref false;
lcp@631
   202
clasohm@0
   203
(*Handle all tracing commands for current state and tactic *)
paulson@1502
   204
fun exec_trace_command flag (tac, st) = 
paulson@2244
   205
   case TextIO.inputLine(TextIO.stdIn) of
paulson@1502
   206
       "\n" => tac st
clasohm@0
   207
     | "f\n" => Sequence.null
paulson@1502
   208
     | "o\n" => (flag:=false;  tac st)
paulson@1502
   209
     | "s\n" => (suppress_tracing:=true;  tac st)
paulson@1502
   210
     | "x\n" => (prs"Exiting now\n";  raise (TRACE_EXIT st))
clasohm@0
   211
     | "quit\n" => raise TRACE_QUIT
clasohm@0
   212
     | _     => (prs
clasohm@0
   213
"Type RETURN to continue or...\n\
clasohm@0
   214
\     f    - to fail here\n\
clasohm@0
   215
\     o    - to switch tracing off\n\
lcp@631
   216
\     s    - to suppress tracing until next entry to a tactical\n\
clasohm@0
   217
\     x    - to exit at this point\n\
clasohm@0
   218
\     quit - to abort this tracing run\n\
paulson@1502
   219
\** Well? "     ;  exec_trace_command flag (tac, st));
clasohm@0
   220
clasohm@0
   221
clasohm@0
   222
(*Extract from a tactic, a thm->thm seq function that handles tracing*)
paulson@1502
   223
fun tracify flag tac st =
lcp@631
   224
  if !flag andalso not (!suppress_tracing)
paulson@1502
   225
           then (!print_goals_ref (!goals_limit) st;  
paulson@2244
   226
                 prs"** Press RETURN to continue: ";
paulson@2244
   227
                 exec_trace_command flag (tac,st))
paulson@1502
   228
  else tac st;
clasohm@0
   229
clasohm@0
   230
(*Create a tactic whose outcome is given by seqf, handling TRACE_EXIT*)
paulson@1502
   231
fun traced_tac seqf st = 
lcp@631
   232
    (suppress_tracing := false;
lcp@631
   233
     Sequence.seqof (fn()=> seqf st
paulson@2244
   234
                         handle TRACE_EXIT st' => Some(st', Sequence.null)));
clasohm@0
   235
clasohm@0
   236
clasohm@0
   237
(*Deterministic REPEAT: only retains the first outcome; 
lcp@703
   238
  uses less space than REPEAT; tail recursive.
lcp@703
   239
  If non-negative, n bounds the number of repetitions.*)
lcp@703
   240
fun REPEAT_DETERM_N n tac = 
paulson@1502
   241
  let val tac = tracify trace_REPEAT tac
lcp@703
   242
      fun drep 0 st = Some(st, Sequence.null)
paulson@2244
   243
        | drep n st =
paulson@2244
   244
           (case Sequence.pull(tac st) of
paulson@2244
   245
                None       => Some(st, Sequence.null)
paulson@2244
   246
              | Some(st',_) => drep (n-1) st')
lcp@703
   247
  in  traced_tac (drep n)  end;
lcp@703
   248
lcp@703
   249
(*Allows any number of repetitions*)
lcp@703
   250
val REPEAT_DETERM = REPEAT_DETERM_N ~1;
clasohm@0
   251
clasohm@0
   252
(*General REPEAT: maintains a stack of alternatives; tail recursive*)
clasohm@0
   253
fun REPEAT tac = 
paulson@1502
   254
  let val tac = tracify trace_REPEAT tac
clasohm@0
   255
      fun rep qs st = 
paulson@2244
   256
        case Sequence.pull(tac st) of
paulson@2244
   257
            None       => Some(st, Sequence.seqof(fn()=> repq qs))
clasohm@0
   258
          | Some(st',q) => rep (q::qs) st'
clasohm@0
   259
      and repq [] = None
clasohm@0
   260
        | repq(q::qs) = case Sequence.pull q of
paulson@2244
   261
            None       => repq qs
clasohm@0
   262
          | Some(st,q) => rep (q::qs) st
clasohm@0
   263
  in  traced_tac (rep [])  end;
clasohm@0
   264
clasohm@0
   265
(*Repeat 1 or more times*)
lcp@703
   266
fun REPEAT_DETERM1 tac = DETERM tac THEN REPEAT_DETERM tac;
clasohm@0
   267
fun REPEAT1 tac = tac THEN REPEAT tac;
clasohm@0
   268
clasohm@0
   269
clasohm@0
   270
(** Filtering tacticals **)
clasohm@0
   271
clasohm@0
   272
(*Returns all states satisfying the predicate*)
paulson@1502
   273
fun FILTER pred tac st = Sequence.filters pred (tac st);
clasohm@0
   274
clasohm@0
   275
(*Returns all changed states*)
paulson@1643
   276
fun CHANGED tac st = 
paulson@1643
   277
    let fun diff st' = not (eq_thm(st,st'))
paulson@1643
   278
    in  Sequence.filters diff (tac st)  end;
clasohm@0
   279
clasohm@0
   280
clasohm@0
   281
(*** Tacticals based on subgoal numbering ***)
clasohm@0
   282
paulson@1502
   283
(*For n subgoals, performs tac(n) THEN ... THEN tac(1) 
paulson@1502
   284
  Essential to work backwards since tac(i) may add/delete subgoals at i. *)
paulson@1502
   285
fun ALLGOALS tac st = 
paulson@1502
   286
  let fun doall 0 = all_tac
paulson@2244
   287
        | doall n = tac(n) THEN doall(n-1)
paulson@1502
   288
  in  doall(nprems_of st)st  end;
clasohm@0
   289
paulson@1502
   290
(*For n subgoals, performs tac(n) ORELSE ... ORELSE tac(1)  *)
paulson@1502
   291
fun SOMEGOAL tac st = 
paulson@1502
   292
  let fun find 0 = no_tac
paulson@2244
   293
        | find n = tac(n) ORELSE find(n-1)
paulson@1502
   294
  in  find(nprems_of st)st  end;
clasohm@0
   295
paulson@1502
   296
(*For n subgoals, performs tac(1) ORELSE ... ORELSE tac(n).
clasohm@0
   297
  More appropriate than SOMEGOAL in some cases.*)
paulson@1502
   298
fun FIRSTGOAL tac st = 
paulson@1502
   299
  let fun find (i,n) = if i>n then no_tac else  tac(i) ORELSE find (i+1,n)
paulson@1502
   300
  in  find(1, nprems_of st)st  end;
clasohm@0
   301
paulson@1502
   302
(*Repeatedly solve some using tac. *)
paulson@1502
   303
fun REPEAT_SOME tac = REPEAT1 (SOMEGOAL (REPEAT1 o tac));
paulson@1502
   304
fun REPEAT_DETERM_SOME tac = REPEAT_DETERM1 (SOMEGOAL (REPEAT_DETERM1 o tac));
clasohm@0
   305
paulson@1502
   306
(*Repeatedly solve the first possible subgoal using tac. *)
paulson@1502
   307
fun REPEAT_FIRST tac = REPEAT1 (FIRSTGOAL (REPEAT1 o tac));
paulson@1502
   308
fun REPEAT_DETERM_FIRST tac = REPEAT_DETERM1 (FIRSTGOAL (REPEAT_DETERM1 o tac));
clasohm@0
   309
paulson@1502
   310
(*For n subgoals, tries to apply tac to n,...1  *)
paulson@1502
   311
fun TRYALL tac = ALLGOALS (TRY o tac);
clasohm@0
   312
clasohm@0
   313
clasohm@0
   314
(*Make a tactic for subgoal i, if there is one.  *)
paulson@2580
   315
fun SUBGOAL goalfun i st = goalfun (List.nth(prems_of st, i-1),  i) st
paulson@2580
   316
                             handle Subscript => Sequence.null;
clasohm@0
   317
paulson@2005
   318
paulson@2005
   319
(*** SELECT_GOAL ***)
paulson@2005
   320
clasohm@0
   321
(*Tactical for restricting the effect of a tactic to subgoal i.
paulson@1502
   322
  Works by making a new state from subgoal i, applying tac to it, and
clasohm@0
   323
  composing the resulting metathm with the original state.
clasohm@0
   324
  The "main goal" of the new state will not be atomic, some tactics may fail!
clasohm@0
   325
  DOES NOT work if tactic affects the main goal other than by instantiation.*)
clasohm@0
   326
paulson@2005
   327
(*SELECT_GOAL optimization: replace the conclusion by a variable X,
paulson@2005
   328
  to avoid copying.  Proof states have X==concl as an assuption.*)
paulson@2005
   329
paulson@2005
   330
val prop_equals = cterm_of Sign.proto_pure 
paulson@2005
   331
                    (Const("==", propT-->propT-->propT));
paulson@2005
   332
paulson@2005
   333
fun mk_prop_equals(t,u) = capply (capply prop_equals t) u;
paulson@2005
   334
paulson@2005
   335
(*Like trivial but returns [ct==X] ct==>X instead of ct==>ct, if possible.
paulson@2005
   336
  It is paired with a function to undo the transformation.  If ct contains
paulson@2005
   337
  Vars then it returns ct==>ct.*)
paulson@2005
   338
fun eq_trivial ct =
paulson@2005
   339
  let val xfree = cterm_of Sign.proto_pure (Free (gensym"X", propT))
paulson@2158
   340
      val ct_eq_x = mk_prop_equals (ct, xfree)
paulson@2005
   341
      and refl_ct = reflexive ct
paulson@2005
   342
      fun restore th = 
paulson@2244
   343
          implies_elim 
paulson@2244
   344
            (forall_elim ct (forall_intr xfree (implies_intr ct_eq_x th)))
paulson@2244
   345
            refl_ct
paulson@2005
   346
  in  (equal_elim
paulson@2005
   347
         (combination (combination refl_implies refl_ct) (assume ct_eq_x))
paulson@2005
   348
         (trivial ct),
paulson@2005
   349
       restore)
paulson@2005
   350
  end  (*Fails if there are Vars or TVars*)
paulson@2005
   351
    handle THM _ => (trivial ct, I);
paulson@2005
   352
paulson@2005
   353
(*Does the work of SELECT_GOAL. *)
paulson@2005
   354
fun select tac st0 i =
paulson@2580
   355
  let val (eq_cprem, restore) = (*we hope maxidx goes to ~1*)
paulson@2580
   356
	  eq_trivial (adjust_maxidx (List.nth(cprems_of st0, i-1)))
paulson@2005
   357
      fun next st = bicompose false (false, restore st, nprems_of st) i st0
paulson@2005
   358
  in  Sequence.flats (Sequence.maps next (tac eq_cprem))
paulson@2005
   359
  end;
paulson@2005
   360
paulson@2158
   361
(* (!!selct. PROP ?V) ==> PROP ?V ;  contains NO TYPE VARIABLES.*)
clasohm@0
   362
val dummy_quant_rl = 
paulson@2158
   363
  read_cterm Sign.proto_pure ("!!selct::prop. PROP V",propT) |>
paulson@2158
   364
  assume |> forall_elim_var 0 |> standard;
clasohm@0
   365
clasohm@0
   366
(* Prevent the subgoal's assumptions from becoming additional subgoals in the
clasohm@0
   367
   new proof state by enclosing them by a universal quantification *)
paulson@1502
   368
fun protect_subgoal st i =
paulson@2244
   369
        Sequence.hd (bicompose false (false,dummy_quant_rl,1) i st)
paulson@2244
   370
        handle _ => error"SELECT_GOAL -- impossible error???";
clasohm@0
   371
paulson@1502
   372
fun SELECT_GOAL tac i st = 
paulson@2580
   373
  case (i, List.drop(prems_of st, i-1)) of
clasohm@0
   374
      (_,[]) => Sequence.null
paulson@2244
   375
    | (1,[_]) => tac st         (*If i=1 and only one subgoal do nothing!*)
paulson@1502
   376
    | (_, (Const("==>",_)$_$_) :: _) => select tac (protect_subgoal st i) i
paulson@1502
   377
    | (_, _::_) => select tac st i;
clasohm@0
   378
clasohm@0
   379
clasohm@0
   380
(*Strips assumptions in goal yielding  ( [x1,...,xm], [H1,...,Hn], B )
clasohm@0
   381
    H1,...,Hn are the hypotheses;  x1...xm are variants of the parameters. 
clasohm@0
   382
  Main difference from strip_assums concerns parameters: 
clasohm@0
   383
    it replaces the bound variables by free variables.  *)
clasohm@0
   384
fun strip_context_aux (params, Hs, Const("==>", _) $ H $ B) = 
paulson@2244
   385
        strip_context_aux (params, H::Hs, B)
clasohm@0
   386
  | strip_context_aux (params, Hs, Const("all",_)$Abs(a,T,t)) =
clasohm@0
   387
        let val (b,u) = variant_abs(a,T,t)
paulson@2244
   388
        in  strip_context_aux ((b,T)::params, Hs, u)  end
clasohm@0
   389
  | strip_context_aux (params, Hs, B) = (rev params, rev Hs, B);
clasohm@0
   390
clasohm@0
   391
fun strip_context A = strip_context_aux ([],[],A);
clasohm@0
   392
clasohm@0
   393
clasohm@0
   394
(**** METAHYPS -- tactical for using hypotheses as meta-level assumptions
paulson@1502
   395
       METAHYPS (fn prems => tac prems) i
clasohm@0
   396
clasohm@0
   397
converts subgoal i, of the form !!x1...xm. [| A1;...;An] ==> A into a new
clasohm@0
   398
proof state A==>A, supplying A1,...,An as meta-level assumptions (in
clasohm@0
   399
"prems").  The parameters x1,...,xm become free variables.  If the
clasohm@0
   400
resulting proof state is [| B1;...;Bk] ==> C (possibly assuming A1,...,An)
clasohm@0
   401
then it is lifted back into the original context, yielding k subgoals.
clasohm@0
   402
clasohm@0
   403
Replaces unknowns in the context by Frees having the prefix METAHYP_
clasohm@0
   404
New unknowns in [| B1;...;Bk] ==> C are lifted over x1,...,xm.
clasohm@0
   405
DOES NOT HANDLE TYPE UNKNOWNS.
clasohm@0
   406
****)
clasohm@0
   407
clasohm@0
   408
local 
clasohm@0
   409
clasohm@0
   410
  (*Left-to-right replacements: ctpairs = [...,(vi,ti),...].
clasohm@0
   411
    Instantiates distinct free variables by terms of same type.*)
clasohm@0
   412
  fun free_instantiate ctpairs = 
clasohm@0
   413
      forall_elim_list (map snd ctpairs) o forall_intr_list (map fst ctpairs);
clasohm@0
   414
clasohm@0
   415
  fun free_of s ((a,i), T) =
clasohm@0
   416
        Free(s ^ (case i of 0 => a | _ => a ^ "_" ^ string_of_int i),
paulson@2244
   417
             T)
clasohm@0
   418
clasohm@0
   419
  fun mk_inst (var as Var(v,T))  = (var,  free_of "METAHYP1_" (v,T))
clasohm@0
   420
in
clasohm@0
   421
paulson@1502
   422
fun metahyps_aux_tac tacf (prem,i) state = 
clasohm@0
   423
  let val {sign,maxidx,...} = rep_thm state
lcp@230
   424
      val cterm = cterm_of sign
clasohm@0
   425
      (*find all vars in the hyps -- should find tvars also!*)
paulson@1502
   426
      val hyps_vars = foldr add_term_vars (Logic.strip_assums_hyp prem, [])
clasohm@0
   427
      val insts = map mk_inst hyps_vars
clasohm@0
   428
      (*replace the hyps_vars by Frees*)
clasohm@0
   429
      val prem' = subst_atomic insts prem
clasohm@0
   430
      val (params,hyps,concl) = strip_context prem'
clasohm@0
   431
      val fparams = map Free params
clasohm@0
   432
      val cparams = map cterm fparams
clasohm@0
   433
      and chyps = map cterm hyps
clasohm@0
   434
      val hypths = map assume chyps
clasohm@0
   435
      fun swap_ctpair (t,u) = (cterm u, cterm t)
clasohm@0
   436
      (*Subgoal variables: make Free; lift type over params*)
clasohm@0
   437
      fun mk_subgoal_inst concl_vars (var as Var(v,T)) = 
clasohm@0
   438
          if var mem concl_vars 
paulson@2244
   439
          then (var, true, free_of "METAHYP2_" (v,T))
paulson@2244
   440
          else (var, false,
paulson@2244
   441
                free_of "METAHYP2_" (v, map #2 params --->T))
clasohm@0
   442
      (*Instantiate subgoal vars by Free applied to params*)
clasohm@0
   443
      fun mk_ctpair (t,in_concl,u) = 
paulson@2244
   444
          if in_concl then (cterm t,  cterm u)
clasohm@0
   445
          else (cterm t,  cterm (list_comb (u,fparams)))
clasohm@0
   446
      (*Restore Vars with higher type and index*)
clasohm@0
   447
      fun mk_subgoal_swap_ctpair 
paulson@2244
   448
                (t as Var((a,i),_), in_concl, u as Free(_,U)) = 
paulson@2244
   449
          if in_concl then (cterm u, cterm t)
clasohm@0
   450
          else (cterm u, cterm(Var((a, i+maxidx), U)))
clasohm@0
   451
      (*Embed B in the original context of params and hyps*)
paulson@1502
   452
      fun embed B = list_all_free (params, Logic.list_implies (hyps, B))
clasohm@0
   453
      (*Strip the context using elimination rules*)
clasohm@0
   454
      fun elim Bhyp = implies_elim_list (forall_elim_list cparams Bhyp) hypths
clasohm@0
   455
      (*Embed an ff pair in the original params*)
paulson@1502
   456
      fun embed_ff(t,u) = Logic.mk_flexpair (list_abs_free (params, t), 
paulson@2244
   457
                                             list_abs_free (params, u))
clasohm@0
   458
      (*Remove parameter abstractions from the ff pairs*)
clasohm@0
   459
      fun elim_ff ff = flexpair_abs_elim_list cparams ff
clasohm@0
   460
      (*A form of lifting that discharges assumptions.*)
clasohm@0
   461
      fun relift st = 
paulson@2244
   462
        let val prop = #prop(rep_thm st)
paulson@2244
   463
            val subgoal_vars = (*Vars introduced in the subgoals*)
paulson@2244
   464
                  foldr add_term_vars (Logic.strip_imp_prems prop, [])
paulson@2244
   465
            and concl_vars = add_term_vars (Logic.strip_imp_concl prop, [])
paulson@2244
   466
            val subgoal_insts = map (mk_subgoal_inst concl_vars) subgoal_vars
paulson@2244
   467
            val st' = instantiate ([], map mk_ctpair subgoal_insts) st
paulson@2244
   468
            val emBs = map (cterm o embed) (prems_of st')
clasohm@0
   469
            and ffs = map (cterm o embed_ff) (tpairs_of st')
paulson@2244
   470
            val Cth  = implies_elim_list st' 
paulson@2244
   471
                            (map (elim_ff o assume) ffs @
paulson@2244
   472
                             map (elim o assume) emBs)
paulson@2244
   473
        in  (*restore the unknowns to the hypotheses*)
paulson@2244
   474
            free_instantiate (map swap_ctpair insts @
paulson@2244
   475
                              map mk_subgoal_swap_ctpair subgoal_insts)
paulson@2244
   476
                (*discharge assumptions from state in same order*)
paulson@2244
   477
                (implies_intr_list (ffs@emBs)
paulson@2244
   478
                  (forall_intr_list cparams (implies_intr_list chyps Cth)))
paulson@2244
   479
        end
clasohm@0
   480
      val subprems = map (forall_elim_vars 0) hypths
clasohm@0
   481
      and st0 = trivial (cterm concl)
clasohm@0
   482
      (*function to replace the current subgoal*)
clasohm@0
   483
      fun next st = bicompose false (false, relift st, nprems_of st)
paulson@2244
   484
                    i state
paulson@1502
   485
  in  Sequence.flats (Sequence.maps next (tacf subprems st0))
paulson@1502
   486
  end;
clasohm@0
   487
end;
clasohm@0
   488
clasohm@0
   489
fun METAHYPS tacf = SUBGOAL (metahyps_aux_tac tacf);
clasohm@0
   490
clasohm@0
   491
end;
paulson@1502
   492
paulson@1502
   493
open Tactical;