src/HOL/Library/Float.thy
author haftmann
Thu Apr 09 09:12:47 2015 +0200 (2015-04-09)
changeset 59984 4f1eccec320c
parent 59554 4044f53326c9
child 60017 b785d6d06430
permissions -rw-r--r--
conversion between division on nat/int and division in archmedean fields
hoelzl@47615
     1
(*  Title:      HOL/Library/Float.thy
hoelzl@47615
     2
    Author:     Johannes Hölzl, Fabian Immler
hoelzl@47615
     3
    Copyright   2012  TU München
hoelzl@47615
     4
*)
hoelzl@47615
     5
wenzelm@58881
     6
section {* Floating-Point Numbers *}
huffman@29988
     7
haftmann@20485
     8
theory Float
wenzelm@51542
     9
imports Complex_Main Lattice_Algebras
haftmann@20485
    10
begin
obua@16782
    11
wenzelm@49812
    12
definition "float = {m * 2 powr e | (m :: int) (e :: int). True}"
wenzelm@49812
    13
wenzelm@49834
    14
typedef float = float
hoelzl@47599
    15
  morphisms real_of_float float_of
wenzelm@49812
    16
  unfolding float_def by auto
obua@16782
    17
hoelzl@58042
    18
instantiation float :: real_of
hoelzl@58042
    19
begin
hoelzl@58042
    20
hoelzl@58042
    21
definition real_float :: "float \<Rightarrow> real" where
hoelzl@47601
    22
  real_of_float_def[code_unfold]: "real \<equiv> real_of_float"
hoelzl@47601
    23
hoelzl@58042
    24
instance ..
hoelzl@58042
    25
end
hoelzl@58042
    26
hoelzl@47601
    27
lemma type_definition_float': "type_definition real float_of float"
hoelzl@47601
    28
  using type_definition_float unfolding real_of_float_def .
hoelzl@47601
    29
haftmann@59487
    30
setup_lifting type_definition_float'
hoelzl@47599
    31
hoelzl@47599
    32
lemmas float_of_inject[simp]
hoelzl@47599
    33
hoelzl@47600
    34
declare [[coercion "real :: float \<Rightarrow> real"]]
hoelzl@47600
    35
hoelzl@47600
    36
lemma real_of_float_eq:
hoelzl@47600
    37
  fixes f1 f2 :: float shows "f1 = f2 \<longleftrightarrow> real f1 = real f2"
hoelzl@47599
    38
  unfolding real_of_float_def real_of_float_inject ..
hoelzl@47599
    39
hoelzl@47599
    40
lemma float_of_real[simp]: "float_of (real x) = x"
hoelzl@47599
    41
  unfolding real_of_float_def by (rule real_of_float_inverse)
hoelzl@29804
    42
hoelzl@47599
    43
lemma real_float[simp]: "x \<in> float \<Longrightarrow> real (float_of x) = x"
hoelzl@47599
    44
  unfolding real_of_float_def by (rule float_of_inverse)
obua@16782
    45
hoelzl@47599
    46
subsection {* Real operations preserving the representation as floating point number *}
hoelzl@47599
    47
hoelzl@47599
    48
lemma floatI: fixes m e :: int shows "m * 2 powr e = x \<Longrightarrow> x \<in> float"
hoelzl@47599
    49
  by (auto simp: float_def)
wenzelm@19765
    50
hoelzl@47599
    51
lemma zero_float[simp]: "0 \<in> float" by (auto simp: float_def)
hoelzl@47599
    52
lemma one_float[simp]: "1 \<in> float" by (intro floatI[of 1 0]) simp
wenzelm@53381
    53
lemma numeral_float[simp]: "numeral i \<in> float" by (intro floatI[of "numeral i" 0]) simp
haftmann@54489
    54
lemma neg_numeral_float[simp]: "- numeral i \<in> float" by (intro floatI[of "- numeral i" 0]) simp
hoelzl@47599
    55
lemma real_of_int_float[simp]: "real (x :: int) \<in> float" by (intro floatI[of x 0]) simp
hoelzl@47600
    56
lemma real_of_nat_float[simp]: "real (x :: nat) \<in> float" by (intro floatI[of x 0]) simp
hoelzl@47599
    57
lemma two_powr_int_float[simp]: "2 powr (real (i::int)) \<in> float" by (intro floatI[of 1 i]) simp
hoelzl@47599
    58
lemma two_powr_nat_float[simp]: "2 powr (real (i::nat)) \<in> float" by (intro floatI[of 1 i]) simp
hoelzl@47599
    59
lemma two_powr_minus_int_float[simp]: "2 powr - (real (i::int)) \<in> float" by (intro floatI[of 1 "-i"]) simp
hoelzl@47599
    60
lemma two_powr_minus_nat_float[simp]: "2 powr - (real (i::nat)) \<in> float" by (intro floatI[of 1 "-i"]) simp
hoelzl@47599
    61
lemma two_powr_numeral_float[simp]: "2 powr numeral i \<in> float" by (intro floatI[of 1 "numeral i"]) simp
haftmann@54489
    62
lemma two_powr_neg_numeral_float[simp]: "2 powr - numeral i \<in> float" by (intro floatI[of 1 "- numeral i"]) simp
hoelzl@47599
    63
lemma two_pow_float[simp]: "2 ^ n \<in> float" by (intro floatI[of 1 "n"]) (simp add: powr_realpow)
hoelzl@47599
    64
lemma real_of_float_float[simp]: "real (f::float) \<in> float" by (cases f) simp
hoelzl@45495
    65
hoelzl@47599
    66
lemma plus_float[simp]: "r \<in> float \<Longrightarrow> p \<in> float \<Longrightarrow> r + p \<in> float"
hoelzl@47599
    67
  unfolding float_def
hoelzl@47599
    68
proof (safe, simp)
hoelzl@47599
    69
  fix e1 m1 e2 m2 :: int
hoelzl@47599
    70
  { fix e1 m1 e2 m2 :: int assume "e1 \<le> e2"
hoelzl@47599
    71
    then have "m1 * 2 powr e1 + m2 * 2 powr e2 = (m1 + m2 * 2 ^ nat (e2 - e1)) * 2 powr e1"
hoelzl@47599
    72
      by (simp add: powr_realpow[symmetric] powr_divide2[symmetric] field_simps)
hoelzl@47599
    73
    then have "\<exists>(m::int) (e::int). m1 * 2 powr e1 + m2 * 2 powr e2 = m * 2 powr e"
hoelzl@47599
    74
      by blast }
hoelzl@47599
    75
  note * = this
hoelzl@47599
    76
  show "\<exists>(m::int) (e::int). m1 * 2 powr e1 + m2 * 2 powr e2 = m * 2 powr e"
hoelzl@47599
    77
  proof (cases e1 e2 rule: linorder_le_cases)
hoelzl@47599
    78
    assume "e2 \<le> e1" from *[OF this, of m2 m1] show ?thesis by (simp add: ac_simps)
hoelzl@47599
    79
  qed (rule *)
hoelzl@47599
    80
qed
obua@16782
    81
hoelzl@47599
    82
lemma uminus_float[simp]: "x \<in> float \<Longrightarrow> -x \<in> float"
hoelzl@47599
    83
  apply (auto simp: float_def)
thomas@57492
    84
  apply hypsubst_thin
hoelzl@47599
    85
  apply (rule_tac x="-x" in exI)
hoelzl@47599
    86
  apply (rule_tac x="xa" in exI)
hoelzl@47599
    87
  apply (simp add: field_simps)
hoelzl@47599
    88
  done
hoelzl@29804
    89
hoelzl@47599
    90
lemma times_float[simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> x * y \<in> float"
hoelzl@47599
    91
  apply (auto simp: float_def)
thomas@57492
    92
  apply hypsubst_thin
hoelzl@47599
    93
  apply (rule_tac x="x * xa" in exI)
hoelzl@47599
    94
  apply (rule_tac x="xb + xc" in exI)
hoelzl@47599
    95
  apply (simp add: powr_add)
hoelzl@47599
    96
  done
hoelzl@29804
    97
hoelzl@47599
    98
lemma minus_float[simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> x - y \<in> float"
haftmann@54230
    99
  using plus_float [of x "- y"] by simp
hoelzl@47599
   100
hoelzl@47599
   101
lemma abs_float[simp]: "x \<in> float \<Longrightarrow> abs x \<in> float"
hoelzl@47599
   102
  by (cases x rule: linorder_cases[of 0]) auto
hoelzl@47599
   103
hoelzl@47599
   104
lemma sgn_of_float[simp]: "x \<in> float \<Longrightarrow> sgn x \<in> float"
hoelzl@47599
   105
  by (cases x rule: linorder_cases[of 0]) (auto intro!: uminus_float)
wenzelm@21404
   106
hoelzl@47599
   107
lemma div_power_2_float[simp]: "x \<in> float \<Longrightarrow> x / 2^d \<in> float"
hoelzl@47599
   108
  apply (auto simp add: float_def)
thomas@57492
   109
  apply hypsubst_thin
hoelzl@47599
   110
  apply (rule_tac x="x" in exI)
hoelzl@47599
   111
  apply (rule_tac x="xa - d" in exI)
hoelzl@47599
   112
  apply (simp add: powr_realpow[symmetric] field_simps powr_add[symmetric])
hoelzl@47599
   113
  done
hoelzl@47599
   114
hoelzl@47599
   115
lemma div_power_2_int_float[simp]: "x \<in> float \<Longrightarrow> x / (2::int)^d \<in> float"
hoelzl@47599
   116
  apply (auto simp add: float_def)
thomas@57492
   117
  apply hypsubst_thin
hoelzl@47599
   118
  apply (rule_tac x="x" in exI)
hoelzl@47599
   119
  apply (rule_tac x="xa - d" in exI)
hoelzl@47599
   120
  apply (simp add: powr_realpow[symmetric] field_simps powr_add[symmetric])
hoelzl@47599
   121
  done
obua@16782
   122
hoelzl@47599
   123
lemma div_numeral_Bit0_float[simp]:
hoelzl@47599
   124
  assumes x: "x / numeral n \<in> float" shows "x / (numeral (Num.Bit0 n)) \<in> float"
hoelzl@47599
   125
proof -
hoelzl@47599
   126
  have "(x / numeral n) / 2^1 \<in> float"
hoelzl@47599
   127
    by (intro x div_power_2_float)
hoelzl@47599
   128
  also have "(x / numeral n) / 2^1 = x / (numeral (Num.Bit0 n))"
hoelzl@47599
   129
    by (induct n) auto
hoelzl@47599
   130
  finally show ?thesis .
hoelzl@47599
   131
qed
hoelzl@47599
   132
hoelzl@47599
   133
lemma div_neg_numeral_Bit0_float[simp]:
haftmann@54489
   134
  assumes x: "x / numeral n \<in> float" shows "x / (- numeral (Num.Bit0 n)) \<in> float"
hoelzl@47599
   135
proof -
hoelzl@47599
   136
  have "- (x / numeral (Num.Bit0 n)) \<in> float" using x by simp
haftmann@54489
   137
  also have "- (x / numeral (Num.Bit0 n)) = x / - numeral (Num.Bit0 n)"
haftmann@54489
   138
    by simp
hoelzl@47599
   139
  finally show ?thesis .
hoelzl@29804
   140
qed
obua@16782
   141
immler@58985
   142
lemma power_float[simp]: assumes "a \<in> float" shows "a ^ b \<in> float"
immler@58985
   143
proof -
immler@58985
   144
  from assms obtain m e::int where "a = m * 2 powr e"
immler@58985
   145
    by (auto simp: float_def)
immler@58985
   146
  thus ?thesis
immler@58985
   147
    by (auto intro!: floatI[where m="m^b" and e = "e*b"]
immler@58985
   148
      simp: power_mult_distrib powr_realpow[symmetric] powr_powr)
immler@58985
   149
qed
immler@58985
   150
hoelzl@47600
   151
lift_definition Float :: "int \<Rightarrow> int \<Rightarrow> float" is "\<lambda>(m::int) (e::int). m * 2 powr e" by simp
hoelzl@47601
   152
declare Float.rep_eq[simp]
hoelzl@47601
   153
hoelzl@47780
   154
lemma compute_real_of_float[code]:
hoelzl@47780
   155
  "real_of_float (Float m e) = (if e \<ge> 0 then m * 2 ^ nat e else m / 2 ^ (nat (-e)))"
hoelzl@47780
   156
by (simp add: real_of_float_def[symmetric] powr_int)
hoelzl@47780
   157
hoelzl@47601
   158
code_datatype Float
hoelzl@47600
   159
hoelzl@47599
   160
subsection {* Arithmetic operations on floating point numbers *}
hoelzl@47599
   161
hoelzl@47600
   162
instantiation float :: "{ring_1, linorder, linordered_ring, linordered_idom, numeral, equal}"
hoelzl@47599
   163
begin
hoelzl@47599
   164
hoelzl@47600
   165
lift_definition zero_float :: float is 0 by simp
hoelzl@47601
   166
declare zero_float.rep_eq[simp]
hoelzl@47600
   167
lift_definition one_float :: float is 1 by simp
hoelzl@47601
   168
declare one_float.rep_eq[simp]
hoelzl@47600
   169
lift_definition plus_float :: "float \<Rightarrow> float \<Rightarrow> float" is "op +" by simp
hoelzl@47601
   170
declare plus_float.rep_eq[simp]
hoelzl@47600
   171
lift_definition times_float :: "float \<Rightarrow> float \<Rightarrow> float" is "op *" by simp
hoelzl@47601
   172
declare times_float.rep_eq[simp]
hoelzl@47600
   173
lift_definition minus_float :: "float \<Rightarrow> float \<Rightarrow> float" is "op -" by simp
hoelzl@47601
   174
declare minus_float.rep_eq[simp]
hoelzl@47600
   175
lift_definition uminus_float :: "float \<Rightarrow> float" is "uminus" by simp
hoelzl@47601
   176
declare uminus_float.rep_eq[simp]
hoelzl@47599
   177
hoelzl@47600
   178
lift_definition abs_float :: "float \<Rightarrow> float" is abs by simp
hoelzl@47601
   179
declare abs_float.rep_eq[simp]
hoelzl@47600
   180
lift_definition sgn_float :: "float \<Rightarrow> float" is sgn by simp
hoelzl@47601
   181
declare sgn_float.rep_eq[simp]
obua@16782
   182
kuncar@55565
   183
lift_definition equal_float :: "float \<Rightarrow> float \<Rightarrow> bool" is "op = :: real \<Rightarrow> real \<Rightarrow> bool" .
hoelzl@47599
   184
kuncar@55565
   185
lift_definition less_eq_float :: "float \<Rightarrow> float \<Rightarrow> bool" is "op \<le>" .
hoelzl@47601
   186
declare less_eq_float.rep_eq[simp]
kuncar@55565
   187
lift_definition less_float :: "float \<Rightarrow> float \<Rightarrow> bool" is "op <" .
hoelzl@47601
   188
declare less_float.rep_eq[simp]
obua@16782
   189
hoelzl@47599
   190
instance
hoelzl@47600
   191
  proof qed (transfer, fastforce simp add: field_simps intro: mult_left_mono mult_right_mono)+
hoelzl@47599
   192
end
hoelzl@29804
   193
immler@58985
   194
lemma Float_0_eq_0[simp]: "Float 0 e = 0"
immler@58985
   195
  by transfer simp
immler@58985
   196
hoelzl@47599
   197
lemma real_of_float_power[simp]: fixes f::float shows "real (f^n) = real f^n"
hoelzl@47599
   198
  by (induct n) simp_all
hoelzl@45495
   199
wenzelm@53381
   200
lemma fixes x y::float
hoelzl@47600
   201
  shows real_of_float_min: "real (min x y) = min (real x) (real y)"
hoelzl@47600
   202
    and real_of_float_max: "real (max x y) = max (real x) (real y)"
hoelzl@47600
   203
  by (simp_all add: min_def max_def)
hoelzl@47599
   204
hoelzl@53215
   205
instance float :: unbounded_dense_linorder
hoelzl@47599
   206
proof
hoelzl@47599
   207
  fix a b :: float
hoelzl@47599
   208
  show "\<exists>c. a < c"
hoelzl@47599
   209
    apply (intro exI[of _ "a + 1"])
hoelzl@47600
   210
    apply transfer
hoelzl@47599
   211
    apply simp
hoelzl@47599
   212
    done
hoelzl@47599
   213
  show "\<exists>c. c < a"
hoelzl@47599
   214
    apply (intro exI[of _ "a - 1"])
hoelzl@47600
   215
    apply transfer
hoelzl@47599
   216
    apply simp
hoelzl@47599
   217
    done
hoelzl@47599
   218
  assume "a < b"
hoelzl@47599
   219
  then show "\<exists>c. a < c \<and> c < b"
haftmann@58410
   220
    apply (intro exI[of _ "(a + b) * Float 1 (- 1)"])
hoelzl@47600
   221
    apply transfer
haftmann@54489
   222
    apply (simp add: powr_minus)
hoelzl@29804
   223
    done
hoelzl@29804
   224
qed
hoelzl@29804
   225
hoelzl@47600
   226
instantiation float :: lattice_ab_group_add
wenzelm@46573
   227
begin
hoelzl@47599
   228
hoelzl@47600
   229
definition inf_float::"float\<Rightarrow>float\<Rightarrow>float"
hoelzl@47600
   230
where "inf_float a b = min a b"
hoelzl@29804
   231
hoelzl@47600
   232
definition sup_float::"float\<Rightarrow>float\<Rightarrow>float"
hoelzl@47600
   233
where "sup_float a b = max a b"
hoelzl@29804
   234
hoelzl@47599
   235
instance
hoelzl@47600
   236
  by default
hoelzl@47600
   237
     (transfer, simp_all add: inf_float_def sup_float_def real_of_float_min real_of_float_max)+
hoelzl@29804
   238
end
hoelzl@29804
   239
hoelzl@47600
   240
lemma float_numeral[simp]: "real (numeral x :: float) = numeral x"
hoelzl@47600
   241
  apply (induct x)
hoelzl@47600
   242
  apply simp
hoelzl@47600
   243
  apply (simp_all only: numeral_Bit0 numeral_Bit1 real_of_float_eq real_float
hoelzl@47601
   244
                  plus_float.rep_eq one_float.rep_eq plus_float numeral_float one_float)
hoelzl@47600
   245
  done
hoelzl@29804
   246
wenzelm@53381
   247
lemma transfer_numeral [transfer_rule]:
blanchet@55945
   248
  "rel_fun (op =) pcr_float (numeral :: _ \<Rightarrow> real) (numeral :: _ \<Rightarrow> float)"
blanchet@55945
   249
  unfolding rel_fun_def float.pcr_cr_eq  cr_float_def by simp
hoelzl@47599
   250
haftmann@54489
   251
lemma float_neg_numeral[simp]: "real (- numeral x :: float) = - numeral x"
haftmann@54489
   252
  by simp
huffman@47108
   253
wenzelm@53381
   254
lemma transfer_neg_numeral [transfer_rule]:
blanchet@55945
   255
  "rel_fun (op =) pcr_float (- numeral :: _ \<Rightarrow> real) (- numeral :: _ \<Rightarrow> float)"
blanchet@55945
   256
  unfolding rel_fun_def float.pcr_cr_eq cr_float_def by simp
hoelzl@47600
   257
hoelzl@47599
   258
lemma
hoelzl@47600
   259
  shows float_of_numeral[simp]: "numeral k = float_of (numeral k)"
haftmann@54489
   260
    and float_of_neg_numeral[simp]: "- numeral k = float_of (- numeral k)"
hoelzl@47600
   261
  unfolding real_of_float_eq by simp_all
huffman@47108
   262
immler@58987
   263
subsection {* Quickcheck *}
immler@58987
   264
immler@58987
   265
instantiation float :: exhaustive
immler@58987
   266
begin
immler@58987
   267
immler@58987
   268
definition exhaustive_float where
immler@58987
   269
  "exhaustive_float f d =
immler@58987
   270
    Quickcheck_Exhaustive.exhaustive (%x. Quickcheck_Exhaustive.exhaustive (%y. f (Float x y)) d) d"
immler@58987
   271
immler@58987
   272
instance ..
immler@58987
   273
immler@58987
   274
end
immler@58987
   275
immler@58987
   276
definition (in term_syntax) [code_unfold]:
immler@58987
   277
  "valtermify_float x y = Code_Evaluation.valtermify Float {\<cdot>} x {\<cdot>} y"
immler@58987
   278
immler@58987
   279
instantiation float :: full_exhaustive
immler@58987
   280
begin
immler@58987
   281
immler@58987
   282
definition full_exhaustive_float where
immler@58987
   283
  "full_exhaustive_float f d =
immler@58987
   284
    Quickcheck_Exhaustive.full_exhaustive
immler@58987
   285
      (\<lambda>x. Quickcheck_Exhaustive.full_exhaustive (\<lambda>y. f (valtermify_float x y)) d) d"
immler@58987
   286
immler@58987
   287
instance ..
immler@58987
   288
immler@58987
   289
end
immler@58987
   290
immler@58987
   291
instantiation float :: random
immler@58987
   292
begin
immler@58987
   293
immler@58987
   294
definition "Quickcheck_Random.random i =
immler@58987
   295
  scomp (Quickcheck_Random.random (2 ^ nat_of_natural i))
immler@58987
   296
    (\<lambda>man. scomp (Quickcheck_Random.random i) (\<lambda>exp. Pair (valtermify_float man exp)))"
immler@58987
   297
immler@58987
   298
instance ..
immler@58987
   299
immler@58987
   300
end
immler@58987
   301
immler@58987
   302
hoelzl@47599
   303
subsection {* Represent floats as unique mantissa and exponent *}
huffman@47108
   304
hoelzl@47599
   305
lemma int_induct_abs[case_names less]:
hoelzl@47599
   306
  fixes j :: int
hoelzl@47599
   307
  assumes H: "\<And>n. (\<And>i. \<bar>i\<bar> < \<bar>n\<bar> \<Longrightarrow> P i) \<Longrightarrow> P n"
hoelzl@47599
   308
  shows "P j"
hoelzl@47599
   309
proof (induct "nat \<bar>j\<bar>" arbitrary: j rule: less_induct)
hoelzl@47599
   310
  case less show ?case by (rule H[OF less]) simp
hoelzl@47599
   311
qed
hoelzl@47599
   312
hoelzl@47599
   313
lemma int_cancel_factors:
hoelzl@47599
   314
  fixes n :: int assumes "1 < r" shows "n = 0 \<or> (\<exists>k i. n = k * r ^ i \<and> \<not> r dvd k)"
hoelzl@47599
   315
proof (induct n rule: int_induct_abs)
hoelzl@47599
   316
  case (less n)
hoelzl@47599
   317
  { fix m assume n: "n \<noteq> 0" "n = m * r"
hoelzl@47599
   318
    then have "\<bar>m \<bar> < \<bar>n\<bar>"
haftmann@59554
   319
      using `1 < r` by (simp add: abs_mult)
hoelzl@47599
   320
    from less[OF this] n have "\<exists>k i. n = k * r ^ Suc i \<and> \<not> r dvd k" by auto }
hoelzl@47599
   321
  then show ?case
haftmann@59554
   322
    by (metis dvd_def monoid_mult_class.mult.right_neutral mult.commute power_0)
hoelzl@47599
   323
qed
hoelzl@47599
   324
hoelzl@47599
   325
lemma mult_powr_eq_mult_powr_iff_asym:
hoelzl@47599
   326
  fixes m1 m2 e1 e2 :: int
hoelzl@47599
   327
  assumes m1: "\<not> 2 dvd m1" and "e1 \<le> e2"
hoelzl@47599
   328
  shows "m1 * 2 powr e1 = m2 * 2 powr e2 \<longleftrightarrow> m1 = m2 \<and> e1 = e2"
hoelzl@47599
   329
proof
hoelzl@47599
   330
  have "m1 \<noteq> 0" using m1 unfolding dvd_def by auto
hoelzl@47599
   331
  assume eq: "m1 * 2 powr e1 = m2 * 2 powr e2"
hoelzl@47599
   332
  with `e1 \<le> e2` have "m1 = m2 * 2 powr nat (e2 - e1)"
hoelzl@47599
   333
    by (simp add: powr_divide2[symmetric] field_simps)
hoelzl@47599
   334
  also have "\<dots> = m2 * 2^nat (e2 - e1)"
hoelzl@47599
   335
    by (simp add: powr_realpow)
hoelzl@47599
   336
  finally have m1_eq: "m1 = m2 * 2^nat (e2 - e1)"
hoelzl@47599
   337
    unfolding real_of_int_inject .
hoelzl@47599
   338
  with m1 have "m1 = m2"
hoelzl@47599
   339
    by (cases "nat (e2 - e1)") (auto simp add: dvd_def)
hoelzl@47599
   340
  then show "m1 = m2 \<and> e1 = e2"
hoelzl@47599
   341
    using eq `m1 \<noteq> 0` by (simp add: powr_inj)
hoelzl@47599
   342
qed simp
hoelzl@47599
   343
hoelzl@47599
   344
lemma mult_powr_eq_mult_powr_iff:
hoelzl@47599
   345
  fixes m1 m2 e1 e2 :: int
hoelzl@47599
   346
  shows "\<not> 2 dvd m1 \<Longrightarrow> \<not> 2 dvd m2 \<Longrightarrow> m1 * 2 powr e1 = m2 * 2 powr e2 \<longleftrightarrow> m1 = m2 \<and> e1 = e2"
hoelzl@47599
   347
  using mult_powr_eq_mult_powr_iff_asym[of m1 e1 e2 m2]
hoelzl@47599
   348
  using mult_powr_eq_mult_powr_iff_asym[of m2 e2 e1 m1]
hoelzl@47599
   349
  by (cases e1 e2 rule: linorder_le_cases) auto
hoelzl@47599
   350
hoelzl@47599
   351
lemma floatE_normed:
hoelzl@47599
   352
  assumes x: "x \<in> float"
hoelzl@47599
   353
  obtains (zero) "x = 0"
hoelzl@47599
   354
   | (powr) m e :: int where "x = m * 2 powr e" "\<not> 2 dvd m" "x \<noteq> 0"
hoelzl@47599
   355
proof atomize_elim
hoelzl@47599
   356
  { assume "x \<noteq> 0"
hoelzl@47599
   357
    from x obtain m e :: int where x: "x = m * 2 powr e" by (auto simp: float_def)
hoelzl@47599
   358
    with `x \<noteq> 0` int_cancel_factors[of 2 m] obtain k i where "m = k * 2 ^ i" "\<not> 2 dvd k"
hoelzl@47599
   359
      by auto
hoelzl@47599
   360
    with `\<not> 2 dvd k` x have "\<exists>(m::int) (e::int). x = m * 2 powr e \<and> \<not> (2::int) dvd m"
hoelzl@47599
   361
      by (rule_tac exI[of _ "k"], rule_tac exI[of _ "e + int i"])
hoelzl@47599
   362
         (simp add: powr_add powr_realpow) }
hoelzl@47599
   363
  then show "x = 0 \<or> (\<exists>(m::int) (e::int). x = m * 2 powr e \<and> \<not> (2::int) dvd m \<and> x \<noteq> 0)"
hoelzl@47599
   364
    by blast
hoelzl@47599
   365
qed
hoelzl@47599
   366
hoelzl@47599
   367
lemma float_normed_cases:
hoelzl@47599
   368
  fixes f :: float
hoelzl@47599
   369
  obtains (zero) "f = 0"
hoelzl@47599
   370
   | (powr) m e :: int where "real f = m * 2 powr e" "\<not> 2 dvd m" "f \<noteq> 0"
hoelzl@47599
   371
proof (atomize_elim, induct f)
hoelzl@47599
   372
  case (float_of y) then show ?case
hoelzl@47600
   373
    by (cases rule: floatE_normed) (auto simp: zero_float_def)
hoelzl@47599
   374
qed
hoelzl@47599
   375
hoelzl@47599
   376
definition mantissa :: "float \<Rightarrow> int" where
hoelzl@47599
   377
  "mantissa f = fst (SOME p::int \<times> int. (f = 0 \<and> fst p = 0 \<and> snd p = 0)
hoelzl@47599
   378
   \<or> (f \<noteq> 0 \<and> real f = real (fst p) * 2 powr real (snd p) \<and> \<not> 2 dvd fst p))"
hoelzl@47599
   379
hoelzl@47599
   380
definition exponent :: "float \<Rightarrow> int" where
hoelzl@47599
   381
  "exponent f = snd (SOME p::int \<times> int. (f = 0 \<and> fst p = 0 \<and> snd p = 0)
hoelzl@47599
   382
   \<or> (f \<noteq> 0 \<and> real f = real (fst p) * 2 powr real (snd p) \<and> \<not> 2 dvd fst p))"
hoelzl@47599
   383
wenzelm@53381
   384
lemma
hoelzl@47599
   385
  shows exponent_0[simp]: "exponent (float_of 0) = 0" (is ?E)
hoelzl@47599
   386
    and mantissa_0[simp]: "mantissa (float_of 0) = 0" (is ?M)
hoelzl@47599
   387
proof -
hoelzl@47599
   388
  have "\<And>p::int \<times> int. fst p = 0 \<and> snd p = 0 \<longleftrightarrow> p = (0, 0)" by auto
hoelzl@47599
   389
  then show ?E ?M
hoelzl@47600
   390
    by (auto simp add: mantissa_def exponent_def zero_float_def)
hoelzl@29804
   391
qed
hoelzl@29804
   392
hoelzl@47599
   393
lemma
hoelzl@47599
   394
  shows mantissa_exponent: "real f = mantissa f * 2 powr exponent f" (is ?E)
hoelzl@47599
   395
    and mantissa_not_dvd: "f \<noteq> (float_of 0) \<Longrightarrow> \<not> 2 dvd mantissa f" (is "_ \<Longrightarrow> ?D")
hoelzl@47599
   396
proof cases
hoelzl@47599
   397
  assume [simp]: "f \<noteq> (float_of 0)"
hoelzl@47599
   398
  have "f = mantissa f * 2 powr exponent f \<and> \<not> 2 dvd mantissa f"
hoelzl@47599
   399
  proof (cases f rule: float_normed_cases)
hoelzl@47599
   400
    case (powr m e)
hoelzl@47599
   401
    then have "\<exists>p::int \<times> int. (f = 0 \<and> fst p = 0 \<and> snd p = 0)
hoelzl@47599
   402
     \<or> (f \<noteq> 0 \<and> real f = real (fst p) * 2 powr real (snd p) \<and> \<not> 2 dvd fst p)"
hoelzl@47599
   403
      by auto
hoelzl@47599
   404
    then show ?thesis
hoelzl@47599
   405
      unfolding exponent_def mantissa_def
hoelzl@47600
   406
      by (rule someI2_ex) (simp add: zero_float_def)
hoelzl@47600
   407
  qed (simp add: zero_float_def)
hoelzl@47599
   408
  then show ?E ?D by auto
hoelzl@47599
   409
qed simp
hoelzl@47599
   410
hoelzl@47599
   411
lemma mantissa_noteq_0: "f \<noteq> float_of 0 \<Longrightarrow> mantissa f \<noteq> 0"
hoelzl@47599
   412
  using mantissa_not_dvd[of f] by auto
hoelzl@47599
   413
wenzelm@53381
   414
lemma
hoelzl@47599
   415
  fixes m e :: int
hoelzl@47599
   416
  defines "f \<equiv> float_of (m * 2 powr e)"
hoelzl@47599
   417
  assumes dvd: "\<not> 2 dvd m"
hoelzl@47599
   418
  shows mantissa_float: "mantissa f = m" (is "?M")
hoelzl@47599
   419
    and exponent_float: "m \<noteq> 0 \<Longrightarrow> exponent f = e" (is "_ \<Longrightarrow> ?E")
hoelzl@47599
   420
proof cases
hoelzl@47599
   421
  assume "m = 0" with dvd show "mantissa f = m" by auto
hoelzl@47599
   422
next
hoelzl@47599
   423
  assume "m \<noteq> 0"
hoelzl@47599
   424
  then have f_not_0: "f \<noteq> float_of 0" by (simp add: f_def)
hoelzl@47599
   425
  from mantissa_exponent[of f]
hoelzl@47599
   426
  have "m * 2 powr e = mantissa f * 2 powr exponent f"
hoelzl@47599
   427
    by (auto simp add: f_def)
hoelzl@47599
   428
  then show "?M" "?E"
hoelzl@47599
   429
    using mantissa_not_dvd[OF f_not_0] dvd
hoelzl@47599
   430
    by (auto simp: mult_powr_eq_mult_powr_iff)
hoelzl@47599
   431
qed
hoelzl@47599
   432
hoelzl@47600
   433
subsection {* Compute arithmetic operations *}
hoelzl@47600
   434
hoelzl@47600
   435
lemma Float_mantissa_exponent: "Float (mantissa f) (exponent f) = f"
hoelzl@47600
   436
  unfolding real_of_float_eq mantissa_exponent[of f] by simp
hoelzl@47600
   437
hoelzl@47600
   438
lemma Float_cases[case_names Float, cases type: float]:
hoelzl@47600
   439
  fixes f :: float
hoelzl@47600
   440
  obtains (Float) m e :: int where "f = Float m e"
hoelzl@47600
   441
  using Float_mantissa_exponent[symmetric]
hoelzl@47600
   442
  by (atomize_elim) auto
hoelzl@47600
   443
hoelzl@47599
   444
lemma denormalize_shift:
hoelzl@47599
   445
  assumes f_def: "f \<equiv> Float m e" and not_0: "f \<noteq> float_of 0"
hoelzl@47599
   446
  obtains i where "m = mantissa f * 2 ^ i" "e = exponent f - i"
hoelzl@47599
   447
proof
hoelzl@47599
   448
  from mantissa_exponent[of f] f_def
hoelzl@47599
   449
  have "m * 2 powr e = mantissa f * 2 powr exponent f"
hoelzl@47599
   450
    by simp
hoelzl@47599
   451
  then have eq: "m = mantissa f * 2 powr (exponent f - e)"
hoelzl@47599
   452
    by (simp add: powr_divide2[symmetric] field_simps)
hoelzl@47599
   453
  moreover
hoelzl@47599
   454
  have "e \<le> exponent f"
hoelzl@47599
   455
  proof (rule ccontr)
hoelzl@47599
   456
    assume "\<not> e \<le> exponent f"
hoelzl@47599
   457
    then have pos: "exponent f < e" by simp
hoelzl@47599
   458
    then have "2 powr (exponent f - e) = 2 powr - real (e - exponent f)"
hoelzl@47599
   459
      by simp
hoelzl@47599
   460
    also have "\<dots> = 1 / 2^nat (e - exponent f)"
hoelzl@47599
   461
      using pos by (simp add: powr_realpow[symmetric] powr_divide2[symmetric])
hoelzl@47599
   462
    finally have "m * 2^nat (e - exponent f) = real (mantissa f)"
hoelzl@47599
   463
      using eq by simp
hoelzl@47599
   464
    then have "mantissa f = m * 2^nat (e - exponent f)"
hoelzl@47599
   465
      unfolding real_of_int_inject by simp
hoelzl@47599
   466
    with `exponent f < e` have "2 dvd mantissa f"
hoelzl@47599
   467
      apply (intro dvdI[where k="m * 2^(nat (e-exponent f)) div 2"])
hoelzl@47599
   468
      apply (cases "nat (e - exponent f)")
hoelzl@47599
   469
      apply auto
hoelzl@47599
   470
      done
hoelzl@47599
   471
    then show False using mantissa_not_dvd[OF not_0] by simp
hoelzl@47599
   472
  qed
hoelzl@47599
   473
  ultimately have "real m = mantissa f * 2^nat (exponent f - e)"
hoelzl@47599
   474
    by (simp add: powr_realpow[symmetric])
hoelzl@47599
   475
  with `e \<le> exponent f`
hoelzl@47599
   476
  show "m = mantissa f * 2 ^ nat (exponent f - e)" "e = exponent f - nat (exponent f - e)"
hoelzl@47599
   477
    unfolding real_of_int_inject by auto
hoelzl@29804
   478
qed
hoelzl@29804
   479
hoelzl@47621
   480
lemma compute_float_zero[code_unfold, code]: "0 = Float 0 0"
hoelzl@47600
   481
  by transfer simp
hoelzl@47621
   482
hide_fact (open) compute_float_zero
hoelzl@47600
   483
hoelzl@47621
   484
lemma compute_float_one[code_unfold, code]: "1 = Float 1 0"
hoelzl@47600
   485
  by transfer simp
hoelzl@47621
   486
hide_fact (open) compute_float_one
hoelzl@47600
   487
immler@58982
   488
lift_definition normfloat :: "float \<Rightarrow> float" is "\<lambda>x. x" .
immler@58982
   489
lemma normloat_id[simp]: "normfloat x = x" by transfer rule
hoelzl@47600
   490
hoelzl@47600
   491
lemma compute_normfloat[code]: "normfloat (Float m e) =
hoelzl@47600
   492
  (if m mod 2 = 0 \<and> m \<noteq> 0 then normfloat (Float (m div 2) (e + 1))
hoelzl@47600
   493
                           else if m = 0 then 0 else Float m e)"
hoelzl@47600
   494
  by transfer (auto simp add: powr_add zmod_eq_0_iff)
hoelzl@47621
   495
hide_fact (open) compute_normfloat
hoelzl@47599
   496
hoelzl@47599
   497
lemma compute_float_numeral[code_abbrev]: "Float (numeral k) 0 = numeral k"
hoelzl@47600
   498
  by transfer simp
hoelzl@47621
   499
hide_fact (open) compute_float_numeral
hoelzl@47599
   500
haftmann@54489
   501
lemma compute_float_neg_numeral[code_abbrev]: "Float (- numeral k) 0 = - numeral k"
hoelzl@47600
   502
  by transfer simp
hoelzl@47621
   503
hide_fact (open) compute_float_neg_numeral
hoelzl@47599
   504
hoelzl@47599
   505
lemma compute_float_uminus[code]: "- Float m1 e1 = Float (- m1) e1"
hoelzl@47600
   506
  by transfer simp
hoelzl@47621
   507
hide_fact (open) compute_float_uminus
hoelzl@47599
   508
hoelzl@47599
   509
lemma compute_float_times[code]: "Float m1 e1 * Float m2 e2 = Float (m1 * m2) (e1 + e2)"
hoelzl@47600
   510
  by transfer (simp add: field_simps powr_add)
hoelzl@47621
   511
hide_fact (open) compute_float_times
hoelzl@47599
   512
hoelzl@47599
   513
lemma compute_float_plus[code]: "Float m1 e1 + Float m2 e2 =
immler@54783
   514
  (if m1 = 0 then Float m2 e2 else if m2 = 0 then Float m1 e1 else
immler@54783
   515
  if e1 \<le> e2 then Float (m1 + m2 * 2^nat (e2 - e1)) e1
hoelzl@47599
   516
              else Float (m2 + m1 * 2^nat (e1 - e2)) e2)"
hoelzl@47600
   517
  by transfer (simp add: field_simps powr_realpow[symmetric] powr_divide2[symmetric])
hoelzl@47621
   518
hide_fact (open) compute_float_plus
hoelzl@47599
   519
hoelzl@47600
   520
lemma compute_float_minus[code]: fixes f g::float shows "f - g = f + (-g)"
hoelzl@47600
   521
  by simp
hoelzl@47621
   522
hide_fact (open) compute_float_minus
hoelzl@47599
   523
hoelzl@47599
   524
lemma compute_float_sgn[code]: "sgn (Float m1 e1) = (if 0 < m1 then 1 else if m1 < 0 then -1 else 0)"
hoelzl@47600
   525
  by transfer (simp add: sgn_times)
hoelzl@47621
   526
hide_fact (open) compute_float_sgn
hoelzl@47599
   527
kuncar@55565
   528
lift_definition is_float_pos :: "float \<Rightarrow> bool" is "op < 0 :: real \<Rightarrow> bool" .
hoelzl@47599
   529
hoelzl@47599
   530
lemma compute_is_float_pos[code]: "is_float_pos (Float m e) \<longleftrightarrow> 0 < m"
hoelzl@47600
   531
  by transfer (auto simp add: zero_less_mult_iff not_le[symmetric, of _ 0])
hoelzl@47621
   532
hide_fact (open) compute_is_float_pos
hoelzl@47599
   533
hoelzl@47599
   534
lemma compute_float_less[code]: "a < b \<longleftrightarrow> is_float_pos (b - a)"
hoelzl@47600
   535
  by transfer (simp add: field_simps)
hoelzl@47621
   536
hide_fact (open) compute_float_less
hoelzl@47599
   537
kuncar@55565
   538
lift_definition is_float_nonneg :: "float \<Rightarrow> bool" is "op \<le> 0 :: real \<Rightarrow> bool" .
hoelzl@47599
   539
hoelzl@47599
   540
lemma compute_is_float_nonneg[code]: "is_float_nonneg (Float m e) \<longleftrightarrow> 0 \<le> m"
hoelzl@47600
   541
  by transfer (auto simp add: zero_le_mult_iff not_less[symmetric, of _ 0])
hoelzl@47621
   542
hide_fact (open) compute_is_float_nonneg
hoelzl@47599
   543
hoelzl@47599
   544
lemma compute_float_le[code]: "a \<le> b \<longleftrightarrow> is_float_nonneg (b - a)"
hoelzl@47600
   545
  by transfer (simp add: field_simps)
hoelzl@47621
   546
hide_fact (open) compute_float_le
hoelzl@47599
   547
kuncar@55565
   548
lift_definition is_float_zero :: "float \<Rightarrow> bool"  is "op = 0 :: real \<Rightarrow> bool" .
hoelzl@47599
   549
hoelzl@47599
   550
lemma compute_is_float_zero[code]: "is_float_zero (Float m e) \<longleftrightarrow> 0 = m"
hoelzl@47600
   551
  by transfer (auto simp add: is_float_zero_def)
hoelzl@47621
   552
hide_fact (open) compute_is_float_zero
hoelzl@47599
   553
hoelzl@47600
   554
lemma compute_float_abs[code]: "abs (Float m e) = Float (abs m) e"
hoelzl@47600
   555
  by transfer (simp add: abs_mult)
hoelzl@47621
   556
hide_fact (open) compute_float_abs
hoelzl@47599
   557
hoelzl@47600
   558
lemma compute_float_eq[code]: "equal_class.equal f g = is_float_zero (f - g)"
hoelzl@47600
   559
  by transfer simp
hoelzl@47621
   560
hide_fact (open) compute_float_eq
hoelzl@47599
   561
immler@58982
   562
immler@58982
   563
subsection {* Lemmas for types @{typ real}, @{typ nat}, @{typ int}*}
immler@58982
   564
immler@58982
   565
lemmas real_of_ints =
immler@58982
   566
  real_of_int_zero
immler@58982
   567
  real_of_one
immler@58982
   568
  real_of_int_add
immler@58982
   569
  real_of_int_minus
immler@58982
   570
  real_of_int_diff
immler@58982
   571
  real_of_int_mult
immler@58982
   572
  real_of_int_power
immler@58982
   573
  real_numeral
immler@58982
   574
lemmas real_of_nats =
immler@58982
   575
  real_of_nat_zero
immler@58982
   576
  real_of_nat_one
immler@58982
   577
  real_of_nat_1
immler@58982
   578
  real_of_nat_add
immler@58982
   579
  real_of_nat_mult
immler@58982
   580
  real_of_nat_power
immler@58989
   581
  real_of_nat_numeral
immler@58982
   582
immler@58982
   583
lemmas int_of_reals = real_of_ints[symmetric]
immler@58982
   584
lemmas nat_of_reals = real_of_nats[symmetric]
immler@58982
   585
immler@58982
   586
immler@58985
   587
subsection {* Rounding Real Numbers *}
hoelzl@47599
   588
hoelzl@47599
   589
definition round_down :: "int \<Rightarrow> real \<Rightarrow> real" where
hoelzl@47599
   590
  "round_down prec x = floor (x * 2 powr prec) * 2 powr -prec"
hoelzl@47599
   591
hoelzl@47599
   592
definition round_up :: "int \<Rightarrow> real \<Rightarrow> real" where
hoelzl@47599
   593
  "round_up prec x = ceiling (x * 2 powr prec) * 2 powr -prec"
hoelzl@47599
   594
hoelzl@47599
   595
lemma round_down_float[simp]: "round_down prec x \<in> float"
hoelzl@47599
   596
  unfolding round_down_def
hoelzl@47599
   597
  by (auto intro!: times_float simp: real_of_int_minus[symmetric] simp del: real_of_int_minus)
hoelzl@47599
   598
hoelzl@47599
   599
lemma round_up_float[simp]: "round_up prec x \<in> float"
hoelzl@47599
   600
  unfolding round_up_def
hoelzl@47599
   601
  by (auto intro!: times_float simp: real_of_int_minus[symmetric] simp del: real_of_int_minus)
hoelzl@47599
   602
hoelzl@47599
   603
lemma round_up: "x \<le> round_up prec x"
hoelzl@47599
   604
  by (simp add: powr_minus_divide le_divide_eq round_up_def)
hoelzl@47599
   605
hoelzl@47599
   606
lemma round_down: "round_down prec x \<le> x"
hoelzl@47599
   607
  by (simp add: powr_minus_divide divide_le_eq round_down_def)
hoelzl@47599
   608
hoelzl@47599
   609
lemma round_up_0[simp]: "round_up p 0 = 0"
hoelzl@47599
   610
  unfolding round_up_def by simp
hoelzl@47599
   611
hoelzl@47599
   612
lemma round_down_0[simp]: "round_down p 0 = 0"
hoelzl@47599
   613
  unfolding round_down_def by simp
hoelzl@47599
   614
hoelzl@47599
   615
lemma round_up_diff_round_down:
hoelzl@47599
   616
  "round_up prec x - round_down prec x \<le> 2 powr -prec"
hoelzl@47599
   617
proof -
hoelzl@47599
   618
  have "round_up prec x - round_down prec x =
hoelzl@47599
   619
    (ceiling (x * 2 powr prec) - floor (x * 2 powr prec)) * 2 powr -prec"
hoelzl@47599
   620
    by (simp add: round_up_def round_down_def field_simps)
hoelzl@47599
   621
  also have "\<dots> \<le> 1 * 2 powr -prec"
hoelzl@47599
   622
    by (rule mult_mono)
hoelzl@47599
   623
       (auto simp del: real_of_int_diff
hoelzl@47599
   624
             simp: real_of_int_diff[symmetric] real_of_int_le_one_cancel_iff ceiling_diff_floor_le_1)
hoelzl@47599
   625
  finally show ?thesis by simp
hoelzl@29804
   626
qed
hoelzl@29804
   627
hoelzl@47599
   628
lemma round_down_shift: "round_down p (x * 2 powr k) = 2 powr k * round_down (p + k) x"
hoelzl@47599
   629
  unfolding round_down_def
hoelzl@47599
   630
  by (simp add: powr_add powr_mult field_simps powr_divide2[symmetric])
hoelzl@47599
   631
    (simp add: powr_add[symmetric])
hoelzl@29804
   632
hoelzl@47599
   633
lemma round_up_shift: "round_up p (x * 2 powr k) = 2 powr k * round_up (p + k) x"
hoelzl@47599
   634
  unfolding round_up_def
hoelzl@47599
   635
  by (simp add: powr_add powr_mult field_simps powr_divide2[symmetric])
hoelzl@47599
   636
    (simp add: powr_add[symmetric])
hoelzl@47599
   637
immler@58982
   638
lemma round_up_uminus_eq: "round_up p (-x) = - round_down p x"
immler@58982
   639
  and round_down_uminus_eq: "round_down p (-x) = - round_up p x"
immler@58982
   640
  by (auto simp: round_up_def round_down_def ceiling_def)
immler@58982
   641
immler@58982
   642
lemma round_up_mono: "x \<le> y \<Longrightarrow> round_up p x \<le> round_up p y"
immler@58982
   643
  by (auto intro!: ceiling_mono simp: round_up_def)
immler@58982
   644
immler@58982
   645
lemma round_up_le1:
immler@58982
   646
  assumes "x \<le> 1" "prec \<ge> 0"
immler@58982
   647
  shows "round_up prec x \<le> 1"
immler@58982
   648
proof -
immler@58982
   649
  have "real \<lceil>x * 2 powr prec\<rceil> \<le> real \<lceil>2 powr real prec\<rceil>"
immler@58982
   650
    using assms by (auto intro!: ceiling_mono)
immler@58982
   651
  also have "\<dots> = 2 powr prec" using assms by (auto simp: powr_int intro!: exI[where x="2^nat prec"])
immler@58982
   652
  finally show ?thesis
immler@58982
   653
    by (simp add: round_up_def) (simp add: powr_minus inverse_eq_divide)
immler@58982
   654
qed
immler@58982
   655
immler@58982
   656
lemma round_up_less1:
immler@58982
   657
  assumes "x < 1 / 2" "p > 0"
immler@58982
   658
  shows "round_up p x < 1"
immler@58982
   659
proof -
immler@58982
   660
  have "x * 2 powr p < 1 / 2 * 2 powr p"
immler@58982
   661
    using assms by simp
immler@58989
   662
  also have "\<dots> \<le> 2 powr p - 1" using `p > 0`
immler@58989
   663
    by (auto simp: powr_divide2[symmetric] powr_int field_simps self_le_power)
immler@58989
   664
  finally show ?thesis using `p > 0`
immler@58989
   665
    by (simp add: round_up_def field_simps powr_minus powr_int ceiling_less_eq)
immler@58982
   666
qed
immler@58982
   667
immler@58982
   668
lemma round_down_ge1:
immler@58982
   669
  assumes x: "x \<ge> 1"
immler@58982
   670
  assumes prec: "p \<ge> - log 2 x"
immler@58982
   671
  shows "1 \<le> round_down p x"
immler@58982
   672
proof cases
immler@58982
   673
  assume nonneg: "0 \<le> p"
immler@58985
   674
  have "2 powr p = real \<lfloor>2 powr real p\<rfloor>"
immler@58985
   675
    using nonneg by (auto simp: powr_int)
immler@58985
   676
  also have "\<dots> \<le> real \<lfloor>x * 2 powr p\<rfloor>"
immler@58985
   677
    using assms by (auto intro!: floor_mono)
immler@58985
   678
  finally show ?thesis
immler@58985
   679
    by (simp add: round_down_def) (simp add: powr_minus inverse_eq_divide)
immler@58982
   680
next
immler@58982
   681
  assume neg: "\<not> 0 \<le> p"
immler@58982
   682
  have "x = 2 powr (log 2 x)"
immler@58982
   683
    using x by simp
immler@58982
   684
  also have "2 powr (log 2 x) \<ge> 2 powr - p"
immler@58982
   685
    using prec by auto
immler@58982
   686
  finally have x_le: "x \<ge> 2 powr -p" .
immler@58982
   687
immler@58982
   688
  from neg have "2 powr real p \<le> 2 powr 0"
immler@58982
   689
    by (intro powr_mono) auto
immler@58982
   690
  also have "\<dots> \<le> \<lfloor>2 powr 0\<rfloor>" by simp
immler@58982
   691
  also have "\<dots> \<le> \<lfloor>x * 2 powr real p\<rfloor>" unfolding real_of_int_le_iff
immler@58982
   692
    using x x_le by (intro floor_mono) (simp add: powr_minus_divide field_simps)
immler@58982
   693
  finally show ?thesis
immler@58982
   694
    using prec x
immler@58982
   695
    by (simp add: round_down_def powr_minus_divide pos_le_divide_eq)
immler@58982
   696
qed
immler@58982
   697
immler@58982
   698
lemma round_up_le0: "x \<le> 0 \<Longrightarrow> round_up p x \<le> 0"
immler@58982
   699
  unfolding round_up_def
immler@58982
   700
  by (auto simp: field_simps mult_le_0_iff zero_le_mult_iff)
immler@58982
   701
immler@58982
   702
hoelzl@47599
   703
subsection {* Rounding Floats *}
hoelzl@29804
   704
immler@58985
   705
definition div_twopow::"int \<Rightarrow> nat \<Rightarrow> int" where [simp]: "div_twopow x n = x div (2 ^ n)"
immler@58985
   706
immler@58985
   707
definition mod_twopow::"int \<Rightarrow> nat \<Rightarrow> int" where [simp]: "mod_twopow x n = x mod (2 ^ n)"
immler@58985
   708
immler@58985
   709
lemma compute_div_twopow[code]:
immler@58985
   710
  "div_twopow x n = (if x = 0 \<or> x = -1 \<or> n = 0 then x else div_twopow (x div 2) (n - 1))"
immler@58985
   711
  by (cases n) (auto simp: zdiv_zmult2_eq div_eq_minus1)
immler@58985
   712
immler@58985
   713
lemma compute_mod_twopow[code]:
immler@58985
   714
  "mod_twopow x n = (if n = 0 then 0 else x mod 2 + 2 * mod_twopow (x div 2) (n - 1))"
immler@58985
   715
  by (cases n) (auto simp: zmod_zmult2_eq)
immler@58985
   716
hoelzl@47600
   717
lift_definition float_up :: "int \<Rightarrow> float \<Rightarrow> float" is round_up by simp
hoelzl@47601
   718
declare float_up.rep_eq[simp]
hoelzl@29804
   719
immler@54782
   720
lemma round_up_correct:
immler@54782
   721
  shows "round_up e f - f \<in> {0..2 powr -e}"
hoelzl@47599
   722
unfolding atLeastAtMost_iff
hoelzl@47599
   723
proof
hoelzl@47599
   724
  have "round_up e f - f \<le> round_up e f - round_down e f" using round_down by simp
hoelzl@47599
   725
  also have "\<dots> \<le> 2 powr -e" using round_up_diff_round_down by simp
immler@54782
   726
  finally show "round_up e f - f \<le> 2 powr real (- e)"
hoelzl@47600
   727
    by simp
hoelzl@47600
   728
qed (simp add: algebra_simps round_up)
hoelzl@29804
   729
immler@54782
   730
lemma float_up_correct:
immler@54782
   731
  shows "real (float_up e f) - real f \<in> {0..2 powr -e}"
immler@54782
   732
  by transfer (rule round_up_correct)
immler@54782
   733
hoelzl@47600
   734
lift_definition float_down :: "int \<Rightarrow> float \<Rightarrow> float" is round_down by simp
hoelzl@47601
   735
declare float_down.rep_eq[simp]
obua@16782
   736
immler@54782
   737
lemma round_down_correct:
immler@54782
   738
  shows "f - (round_down e f) \<in> {0..2 powr -e}"
hoelzl@47599
   739
unfolding atLeastAtMost_iff
hoelzl@47599
   740
proof
hoelzl@47599
   741
  have "f - round_down e f \<le> round_up e f - round_down e f" using round_up by simp
hoelzl@47599
   742
  also have "\<dots> \<le> 2 powr -e" using round_up_diff_round_down by simp
immler@54782
   743
  finally show "f - round_down e f \<le> 2 powr real (- e)"
hoelzl@47600
   744
    by simp
hoelzl@47600
   745
qed (simp add: algebra_simps round_down)
obua@24301
   746
immler@54782
   747
lemma float_down_correct:
immler@54782
   748
  shows "real f - real (float_down e f) \<in> {0..2 powr -e}"
immler@54782
   749
  by transfer (rule round_down_correct)
immler@54782
   750
hoelzl@47599
   751
lemma compute_float_down[code]:
hoelzl@47599
   752
  "float_down p (Float m e) =
immler@58985
   753
    (if p + e < 0 then Float (div_twopow m (nat (-(p + e)))) (-p) else Float m e)"
hoelzl@47599
   754
proof cases
hoelzl@47599
   755
  assume "p + e < 0"
hoelzl@47599
   756
  hence "real ((2::int) ^ nat (-(p + e))) = 2 powr (-(p + e))"
hoelzl@47599
   757
    using powr_realpow[of 2 "nat (-(p + e))"] by simp
hoelzl@47599
   758
  also have "... = 1 / 2 powr p / 2 powr e"
hoelzl@47600
   759
    unfolding powr_minus_divide real_of_int_minus by (simp add: powr_add)
hoelzl@47599
   760
  finally show ?thesis
hoelzl@47600
   761
    using `p + e < 0`
hoelzl@47600
   762
    by transfer (simp add: ac_simps round_down_def floor_divide_eq_div[symmetric])
hoelzl@47599
   763
next
hoelzl@47600
   764
  assume "\<not> p + e < 0"
hoelzl@47600
   765
  then have r: "real e + real p = real (nat (e + p))" by simp
hoelzl@47600
   766
  have r: "\<lfloor>(m * 2 powr e) * 2 powr real p\<rfloor> = (m * 2 powr e) * 2 powr real p"
hoelzl@47600
   767
    by (auto intro: exI[where x="m*2^nat (e+p)"]
hoelzl@47600
   768
             simp add: ac_simps powr_add[symmetric] r powr_realpow)
hoelzl@47600
   769
  with `\<not> p + e < 0` show ?thesis
wenzelm@57862
   770
    by transfer (auto simp add: round_down_def field_simps powr_add powr_minus)
hoelzl@47599
   771
qed
hoelzl@47621
   772
hide_fact (open) compute_float_down
obua@24301
   773
immler@54782
   774
lemma abs_round_down_le: "\<bar>f - (round_down e f)\<bar> \<le> 2 powr -e"
immler@54782
   775
  using round_down_correct[of f e] by simp
immler@54782
   776
immler@54782
   777
lemma abs_round_up_le: "\<bar>f - (round_up e f)\<bar> \<le> 2 powr -e"
immler@54782
   778
  using round_up_correct[of e f] by simp
immler@54782
   779
immler@54782
   780
lemma round_down_nonneg: "0 \<le> s \<Longrightarrow> 0 \<le> round_down p s"
nipkow@56536
   781
  by (auto simp: round_down_def)
immler@54782
   782
hoelzl@47599
   783
lemma ceil_divide_floor_conv:
hoelzl@47599
   784
assumes "b \<noteq> 0"
hoelzl@47599
   785
shows "\<lceil>real a / real b\<rceil> = (if b dvd a then a div b else \<lfloor>real a / real b\<rfloor> + 1)"
hoelzl@47599
   786
proof cases
hoelzl@47599
   787
  assume "\<not> b dvd a"
hoelzl@47599
   788
  hence "a mod b \<noteq> 0" by auto
hoelzl@47599
   789
  hence ne: "real (a mod b) / real b \<noteq> 0" using `b \<noteq> 0` by auto
hoelzl@47599
   790
  have "\<lceil>real a / real b\<rceil> = \<lfloor>real a / real b\<rfloor> + 1"
hoelzl@47599
   791
  apply (rule ceiling_eq) apply (auto simp: floor_divide_eq_div[symmetric])
hoelzl@47599
   792
  proof -
hoelzl@47599
   793
    have "real \<lfloor>real a / real b\<rfloor> \<le> real a / real b" by simp
hoelzl@47599
   794
    moreover have "real \<lfloor>real a / real b\<rfloor> \<noteq> real a / real b"
hoelzl@47599
   795
    apply (subst (2) real_of_int_div_aux) unfolding floor_divide_eq_div using ne `b \<noteq> 0` by auto
hoelzl@47599
   796
    ultimately show "real \<lfloor>real a / real b\<rfloor> < real a / real b" by arith
hoelzl@47599
   797
  qed
hoelzl@47599
   798
  thus ?thesis using `\<not> b dvd a` by simp
hoelzl@47599
   799
qed (simp add: ceiling_def real_of_int_minus[symmetric] divide_minus_left[symmetric]
hoelzl@56479
   800
  floor_divide_eq_div dvd_neg_div del: divide_minus_left real_of_int_minus)
wenzelm@19765
   801
hoelzl@47599
   802
lemma compute_float_up[code]:
immler@58982
   803
  "float_up p x = - float_down p (-x)"
immler@58982
   804
  by transfer (simp add: round_down_uminus_eq)
hoelzl@47621
   805
hide_fact (open) compute_float_up
hoelzl@29804
   806
hoelzl@47599
   807
hoelzl@47599
   808
subsection {* Compute bitlen of integers *}
hoelzl@47599
   809
hoelzl@47600
   810
definition bitlen :: "int \<Rightarrow> int" where
hoelzl@47600
   811
  "bitlen a = (if a > 0 then \<lfloor>log 2 a\<rfloor> + 1 else 0)"
hoelzl@47599
   812
hoelzl@47599
   813
lemma bitlen_nonneg: "0 \<le> bitlen x"
hoelzl@29804
   814
proof -
hoelzl@47599
   815
  {
hoelzl@47599
   816
    assume "0 > x"
hoelzl@47599
   817
    have "-1 = log 2 (inverse 2)" by (subst log_inverse) simp_all
hoelzl@47599
   818
    also have "... < log 2 (-x)" using `0 > x` by auto
hoelzl@47599
   819
    finally have "-1 < log 2 (-x)" .
hoelzl@47599
   820
  } thus "0 \<le> bitlen x" unfolding bitlen_def by (auto intro!: add_nonneg_nonneg)
hoelzl@47599
   821
qed
hoelzl@47599
   822
hoelzl@47599
   823
lemma bitlen_bounds:
hoelzl@47599
   824
  assumes "x > 0"
hoelzl@47599
   825
  shows "2 ^ nat (bitlen x - 1) \<le> x \<and> x < 2 ^ nat (bitlen x)"
hoelzl@47599
   826
proof
hoelzl@47599
   827
  have "(2::real) ^ nat \<lfloor>log 2 (real x)\<rfloor> = 2 powr real (floor (log 2 (real x)))"
hoelzl@47599
   828
    using powr_realpow[symmetric, of 2 "nat \<lfloor>log 2 (real x)\<rfloor>"] `x > 0`
hoelzl@47599
   829
    using real_nat_eq_real[of "floor (log 2 (real x))"]
hoelzl@47599
   830
    by simp
hoelzl@47599
   831
  also have "... \<le> 2 powr log 2 (real x)"
hoelzl@47599
   832
    by simp
hoelzl@47599
   833
  also have "... = real x"
hoelzl@47599
   834
    using `0 < x` by simp
hoelzl@47599
   835
  finally have "2 ^ nat \<lfloor>log 2 (real x)\<rfloor> \<le> real x" by simp
hoelzl@47599
   836
  thus "2 ^ nat (bitlen x - 1) \<le> x" using `x > 0`
hoelzl@47599
   837
    by (simp add: bitlen_def)
hoelzl@47599
   838
next
hoelzl@47599
   839
  have "x \<le> 2 powr (log 2 x)" using `x > 0` by simp
hoelzl@47599
   840
  also have "... < 2 ^ nat (\<lfloor>log 2 (real x)\<rfloor> + 1)"
hoelzl@47599
   841
    apply (simp add: powr_realpow[symmetric])
hoelzl@47599
   842
    using `x > 0` by simp
hoelzl@47599
   843
  finally show "x < 2 ^ nat (bitlen x)" using `x > 0`
immler@58989
   844
    by (simp add: bitlen_def ac_simps)
hoelzl@47599
   845
qed
hoelzl@47599
   846
hoelzl@47599
   847
lemma bitlen_pow2[simp]:
hoelzl@47599
   848
  assumes "b > 0"
hoelzl@47599
   849
  shows "bitlen (b * 2 ^ c) = bitlen b + c"
hoelzl@47599
   850
proof -
nipkow@56544
   851
  from assms have "b * 2 ^ c > 0" by auto
hoelzl@47599
   852
  thus ?thesis
hoelzl@47599
   853
    using floor_add[of "log 2 b" c] assms
hoelzl@47599
   854
    by (auto simp add: log_mult log_nat_power bitlen_def)
hoelzl@29804
   855
qed
hoelzl@29804
   856
hoelzl@47599
   857
lemma bitlen_Float:
wenzelm@53381
   858
  fixes m e
wenzelm@53381
   859
  defines "f \<equiv> Float m e"
wenzelm@53381
   860
  shows "bitlen (\<bar>mantissa f\<bar>) + exponent f = (if m = 0 then 0 else bitlen \<bar>m\<bar> + e)"
wenzelm@53381
   861
proof (cases "m = 0")
wenzelm@53381
   862
  case True
wenzelm@53381
   863
  then show ?thesis by (simp add: f_def bitlen_def Float_def)
wenzelm@53381
   864
next
wenzelm@53381
   865
  case False
hoelzl@47600
   866
  hence "f \<noteq> float_of 0"
hoelzl@47600
   867
    unfolding real_of_float_eq by (simp add: f_def)
hoelzl@47600
   868
  hence "mantissa f \<noteq> 0"
hoelzl@47599
   869
    by (simp add: mantissa_noteq_0)
hoelzl@47599
   870
  moreover
wenzelm@53381
   871
  obtain i where "m = mantissa f * 2 ^ i" "e = exponent f - int i"
wenzelm@53381
   872
    by (rule f_def[THEN denormalize_shift, OF `f \<noteq> float_of 0`])
hoelzl@47599
   873
  ultimately show ?thesis by (simp add: abs_mult)
wenzelm@53381
   874
qed
hoelzl@29804
   875
hoelzl@47599
   876
lemma compute_bitlen[code]:
hoelzl@47599
   877
  shows "bitlen x = (if x > 0 then bitlen (x div 2) + 1 else 0)"
hoelzl@47599
   878
proof -
hoelzl@47599
   879
  { assume "2 \<le> x"
hoelzl@47599
   880
    then have "\<lfloor>log 2 (x div 2)\<rfloor> + 1 = \<lfloor>log 2 (x - x mod 2)\<rfloor>"
hoelzl@47599
   881
      by (simp add: log_mult zmod_zdiv_equality')
hoelzl@47599
   882
    also have "\<dots> = \<lfloor>log 2 (real x)\<rfloor>"
hoelzl@47599
   883
    proof cases
hoelzl@47599
   884
      assume "x mod 2 = 0" then show ?thesis by simp
hoelzl@47599
   885
    next
hoelzl@47599
   886
      def n \<equiv> "\<lfloor>log 2 (real x)\<rfloor>"
hoelzl@47599
   887
      then have "0 \<le> n"
hoelzl@47599
   888
        using `2 \<le> x` by simp
hoelzl@47599
   889
      assume "x mod 2 \<noteq> 0"
hoelzl@47599
   890
      with `2 \<le> x` have "x mod 2 = 1" "\<not> 2 dvd x" by (auto simp add: dvd_eq_mod_eq_0)
hoelzl@47599
   891
      with `2 \<le> x` have "x \<noteq> 2^nat n" by (cases "nat n") auto
hoelzl@47599
   892
      moreover
hoelzl@47599
   893
      { have "real (2^nat n :: int) = 2 powr (nat n)"
hoelzl@47599
   894
          by (simp add: powr_realpow)
hoelzl@47599
   895
        also have "\<dots> \<le> 2 powr (log 2 x)"
hoelzl@47599
   896
          using `2 \<le> x` by (simp add: n_def del: powr_log_cancel)
hoelzl@47599
   897
        finally have "2^nat n \<le> x" using `2 \<le> x` by simp }
hoelzl@47599
   898
      ultimately have "2^nat n \<le> x - 1" by simp
hoelzl@47599
   899
      then have "2^nat n \<le> real (x - 1)"
hoelzl@47599
   900
        unfolding real_of_int_le_iff[symmetric] by simp
hoelzl@47599
   901
      { have "n = \<lfloor>log 2 (2^nat n)\<rfloor>"
hoelzl@47599
   902
          using `0 \<le> n` by (simp add: log_nat_power)
hoelzl@47599
   903
        also have "\<dots> \<le> \<lfloor>log 2 (x - 1)\<rfloor>"
hoelzl@47599
   904
          using `2^nat n \<le> real (x - 1)` `0 \<le> n` `2 \<le> x` by (auto intro: floor_mono)
hoelzl@47599
   905
        finally have "n \<le> \<lfloor>log 2 (x - 1)\<rfloor>" . }
hoelzl@47599
   906
      moreover have "\<lfloor>log 2 (x - 1)\<rfloor> \<le> n"
hoelzl@47599
   907
        using `2 \<le> x` by (auto simp add: n_def intro!: floor_mono)
hoelzl@47599
   908
      ultimately show "\<lfloor>log 2 (x - x mod 2)\<rfloor> = \<lfloor>log 2 x\<rfloor>"
hoelzl@47599
   909
        unfolding n_def `x mod 2 = 1` by auto
hoelzl@47599
   910
    qed
hoelzl@47599
   911
    finally have "\<lfloor>log 2 (x div 2)\<rfloor> + 1 = \<lfloor>log 2 x\<rfloor>" . }
hoelzl@47599
   912
  moreover
hoelzl@47599
   913
  { assume "x < 2" "0 < x"
hoelzl@47599
   914
    then have "x = 1" by simp
hoelzl@47599
   915
    then have "\<lfloor>log 2 (real x)\<rfloor> = 0" by simp }
hoelzl@47599
   916
  ultimately show ?thesis
hoelzl@47599
   917
    unfolding bitlen_def
hoelzl@47599
   918
    by (auto simp: pos_imp_zdiv_pos_iff not_le)
hoelzl@47599
   919
qed
hoelzl@47621
   920
hide_fact (open) compute_bitlen
hoelzl@29804
   921
hoelzl@47599
   922
lemma float_gt1_scale: assumes "1 \<le> Float m e"
hoelzl@47599
   923
  shows "0 \<le> e + (bitlen m - 1)"
hoelzl@47599
   924
proof -
hoelzl@47599
   925
  have "0 < Float m e" using assms by auto
hoelzl@47599
   926
  hence "0 < m" using powr_gt_zero[of 2 e]
hoelzl@47600
   927
    by (auto simp: zero_less_mult_iff)
hoelzl@47599
   928
  hence "m \<noteq> 0" by auto
hoelzl@47599
   929
  show ?thesis
hoelzl@47599
   930
  proof (cases "0 \<le> e")
hoelzl@47599
   931
    case True thus ?thesis using `0 < m`  by (simp add: bitlen_def)
hoelzl@29804
   932
  next
hoelzl@47599
   933
    have "(1::int) < 2" by simp
hoelzl@47599
   934
    case False let ?S = "2^(nat (-e))"
hoelzl@47599
   935
    have "inverse (2 ^ nat (- e)) = 2 powr e" using assms False powr_realpow[of 2 "nat (-e)"]
wenzelm@57862
   936
      by (auto simp: powr_minus field_simps)
hoelzl@47599
   937
    hence "1 \<le> real m * inverse ?S" using assms False powr_realpow[of 2 "nat (-e)"]
hoelzl@47599
   938
      by (auto simp: powr_minus)
hoelzl@47599
   939
    hence "1 * ?S \<le> real m * inverse ?S * ?S" by (rule mult_right_mono, auto)
haftmann@57512
   940
    hence "?S \<le> real m" unfolding mult.assoc by auto
hoelzl@47599
   941
    hence "?S \<le> m" unfolding real_of_int_le_iff[symmetric] by auto
hoelzl@47599
   942
    from this bitlen_bounds[OF `0 < m`, THEN conjunct2]
immler@58985
   943
    have "nat (-e) < (nat (bitlen m))" unfolding power_strict_increasing_iff[OF `1 < 2`, symmetric]
immler@58985
   944
      by (rule order_le_less_trans)
hoelzl@47599
   945
    hence "-e < bitlen m" using False by auto
hoelzl@47599
   946
    thus ?thesis by auto
hoelzl@29804
   947
  qed
hoelzl@47599
   948
qed
hoelzl@29804
   949
immler@58985
   950
lemma bitlen_div:
immler@58985
   951
  assumes "0 < m"
immler@58985
   952
  shows "1 \<le> real m / 2^nat (bitlen m - 1)" and "real m / 2^nat (bitlen m - 1) < 2"
hoelzl@29804
   953
proof -
hoelzl@29804
   954
  let ?B = "2^nat(bitlen m - 1)"
hoelzl@29804
   955
hoelzl@29804
   956
  have "?B \<le> m" using bitlen_bounds[OF `0 <m`] ..
hoelzl@29804
   957
  hence "1 * ?B \<le> real m" unfolding real_of_int_le_iff[symmetric] by auto
hoelzl@29804
   958
  thus "1 \<le> real m / ?B" by auto
hoelzl@29804
   959
hoelzl@29804
   960
  have "m \<noteq> 0" using assms by auto
hoelzl@47599
   961
  have "0 \<le> bitlen m - 1" using `0 < m` by (auto simp: bitlen_def)
obua@16782
   962
hoelzl@29804
   963
  have "m < 2^nat(bitlen m)" using bitlen_bounds[OF `0 <m`] ..
hoelzl@47599
   964
  also have "\<dots> = 2^nat(bitlen m - 1 + 1)" using `0 < m` by (auto simp: bitlen_def)
hoelzl@29804
   965
  also have "\<dots> = ?B * 2" unfolding nat_add_distrib[OF `0 \<le> bitlen m - 1` zero_le_one] by auto
hoelzl@29804
   966
  finally have "real m < 2 * ?B" unfolding real_of_int_less_iff[symmetric] by auto
hoelzl@29804
   967
  hence "real m / ?B < 2 * ?B / ?B" by (rule divide_strict_right_mono, auto)
hoelzl@29804
   968
  thus "real m / ?B < 2" by auto
hoelzl@29804
   969
qed
hoelzl@29804
   970
immler@58985
   971
subsection {* Truncating Real Numbers*}
immler@58985
   972
immler@58985
   973
definition truncate_down::"nat \<Rightarrow> real \<Rightarrow> real" where
immler@58985
   974
  "truncate_down prec x = round_down (prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1) x"
immler@58985
   975
immler@58985
   976
lemma truncate_down: "truncate_down prec x \<le> x"
immler@58985
   977
  using round_down by (simp add: truncate_down_def)
immler@58985
   978
immler@58985
   979
lemma truncate_down_le: "x \<le> y \<Longrightarrow> truncate_down prec x \<le> y"
immler@58985
   980
  by (rule order_trans[OF truncate_down])
immler@58985
   981
immler@58985
   982
lemma truncate_down_zero[simp]: "truncate_down prec 0 = 0"
immler@58985
   983
  by (simp add: truncate_down_def)
immler@58985
   984
immler@58985
   985
lemma truncate_down_float[simp]: "truncate_down p x \<in> float"
immler@58985
   986
  by (auto simp: truncate_down_def)
immler@58985
   987
immler@58985
   988
definition truncate_up::"nat \<Rightarrow> real \<Rightarrow> real" where
immler@58985
   989
  "truncate_up prec x = round_up (prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1) x"
immler@58985
   990
immler@58985
   991
lemma truncate_up: "x \<le> truncate_up prec x"
immler@58985
   992
  using round_up by (simp add: truncate_up_def)
immler@58985
   993
immler@58985
   994
lemma truncate_up_le: "x \<le> y \<Longrightarrow> x \<le> truncate_up prec y"
immler@58985
   995
  by (rule order_trans[OF _ truncate_up])
immler@58985
   996
immler@58985
   997
lemma truncate_up_zero[simp]: "truncate_up prec 0 = 0"
immler@58985
   998
  by (simp add: truncate_up_def)
immler@58985
   999
immler@58985
  1000
lemma truncate_up_uminus_eq: "truncate_up prec (-x) = - truncate_down prec x"
immler@58985
  1001
  and truncate_down_uminus_eq: "truncate_down prec (-x) = - truncate_up prec x"
immler@58985
  1002
  by (auto simp: truncate_up_def round_up_def truncate_down_def round_down_def ceiling_def)
immler@58985
  1003
immler@58985
  1004
lemma truncate_up_float[simp]: "truncate_up p x \<in> float"
immler@58985
  1005
  by (auto simp: truncate_up_def)
immler@58985
  1006
immler@58985
  1007
lemma mult_powr_eq: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> x * b powr y = b powr (y + log b x)"
immler@58985
  1008
  by (simp_all add: powr_add)
immler@58985
  1009
immler@58985
  1010
lemma truncate_down_pos:
immler@58985
  1011
  assumes "x > 0" "p > 0"
immler@58985
  1012
  shows "truncate_down p x > 0"
immler@58985
  1013
proof -
immler@58985
  1014
  have "0 \<le> log 2 x - real \<lfloor>log 2 x\<rfloor>"
immler@58985
  1015
    by (simp add: algebra_simps)
immler@58985
  1016
  from this assms
immler@58985
  1017
  show ?thesis
immler@58985
  1018
    by (auto simp: truncate_down_def round_down_def mult_powr_eq
immler@58985
  1019
      intro!: ge_one_powr_ge_zero mult_pos_pos)
immler@58985
  1020
qed
immler@58985
  1021
immler@58985
  1022
lemma truncate_down_nonneg: "0 \<le> y \<Longrightarrow> 0 \<le> truncate_down prec y"
immler@58985
  1023
  by (auto simp: truncate_down_def round_down_def)
immler@58985
  1024
immler@58985
  1025
lemma truncate_down_ge1: "1 \<le> x \<Longrightarrow> 1 \<le> p \<Longrightarrow> 1 \<le> truncate_down p x"
immler@58985
  1026
  by (auto simp: truncate_down_def algebra_simps intro!: round_down_ge1 add_mono)
immler@58985
  1027
immler@58985
  1028
lemma truncate_up_nonpos: "x \<le> 0 \<Longrightarrow> truncate_up prec x \<le> 0"
immler@58985
  1029
  by (auto simp: truncate_up_def round_up_def intro!: mult_nonpos_nonneg)
hoelzl@47599
  1030
immler@58985
  1031
lemma truncate_up_le1:
immler@58985
  1032
  assumes "x \<le> 1" "1 \<le> p" shows "truncate_up p x \<le> 1"
immler@58985
  1033
proof -
immler@58985
  1034
  {
immler@58985
  1035
    assume "x \<le> 0"
immler@58985
  1036
    with truncate_up_nonpos[OF this, of p] have ?thesis by simp
immler@58985
  1037
  } moreover {
immler@58985
  1038
    assume "x > 0"
immler@58985
  1039
    hence le: "\<lfloor>log 2 \<bar>x\<bar>\<rfloor> \<le> 0"
immler@58985
  1040
      using assms by (auto simp: log_less_iff)
immler@58985
  1041
    from assms have "1 \<le> int p" by simp
immler@58985
  1042
    from add_mono[OF this le]
immler@58985
  1043
    have ?thesis using assms
immler@58985
  1044
      by (simp add: truncate_up_def round_up_le1 add_mono)
immler@58985
  1045
  } ultimately show ?thesis by arith
immler@58985
  1046
qed
immler@58985
  1047
immler@58985
  1048
subsection {* Truncating Floats*}
immler@58985
  1049
immler@58985
  1050
lift_definition float_round_up :: "nat \<Rightarrow> float \<Rightarrow> float" is truncate_up
immler@58985
  1051
  by (simp add: truncate_up_def)
immler@58985
  1052
immler@58985
  1053
lemma float_round_up: "real x \<le> real (float_round_up prec x)"
immler@58985
  1054
  using truncate_up by transfer simp
immler@58985
  1055
immler@58985
  1056
lemma float_round_up_zero[simp]: "float_round_up prec 0 = 0"
immler@58985
  1057
  by transfer simp
immler@58985
  1058
immler@58985
  1059
lift_definition float_round_down :: "nat \<Rightarrow> float \<Rightarrow> float" is truncate_down
immler@58985
  1060
  by (simp add: truncate_down_def)
immler@58985
  1061
immler@58985
  1062
lemma float_round_down: "real (float_round_down prec x) \<le> real x"
immler@58985
  1063
  using truncate_down by transfer simp
immler@58985
  1064
immler@58985
  1065
lemma float_round_down_zero[simp]: "float_round_down prec 0 = 0"
immler@58985
  1066
  by transfer simp
immler@58985
  1067
immler@58985
  1068
lemmas float_round_up_le = order_trans[OF _ float_round_up]
immler@58985
  1069
  and float_round_down_le = order_trans[OF float_round_down]
immler@58985
  1070
immler@58985
  1071
lemma minus_float_round_up_eq: "- float_round_up prec x = float_round_down prec (- x)"
immler@58985
  1072
  and minus_float_round_down_eq: "- float_round_down prec x = float_round_up prec (- x)"
immler@58985
  1073
  by (transfer, simp add: truncate_down_uminus_eq truncate_up_uminus_eq)+
immler@58985
  1074
immler@58985
  1075
lemma compute_float_round_down[code]:
immler@58985
  1076
  "float_round_down prec (Float m e) = (let d = bitlen (abs m) - int prec in
immler@58985
  1077
    if 0 < d then Float (div_twopow m (nat d)) (e + d)
immler@58985
  1078
             else Float m e)"
immler@58985
  1079
  using Float.compute_float_down[of "prec - bitlen \<bar>m\<bar> - e" m e, symmetric]
immler@58985
  1080
  by transfer (simp add: field_simps abs_mult log_mult bitlen_def truncate_down_def
immler@58985
  1081
    cong del: if_weak_cong)
immler@58985
  1082
hide_fact (open) compute_float_round_down
immler@58985
  1083
immler@58985
  1084
lemma compute_float_round_up[code]:
immler@58985
  1085
  "float_round_up prec x = - float_round_down prec (-x)"
immler@58985
  1086
  by transfer (simp add: truncate_down_uminus_eq)
immler@58985
  1087
hide_fact (open) compute_float_round_up
immler@58985
  1088
immler@58985
  1089
immler@58985
  1090
subsection {* Approximation of positive rationals *}
hoelzl@29804
  1091
hoelzl@47599
  1092
lemma div_mult_twopow_eq: fixes a b::nat shows "a div ((2::nat) ^ n) div b = a div (b * 2 ^ n)"
hoelzl@47599
  1093
  by (cases "b=0") (simp_all add: div_mult2_eq[symmetric] ac_simps)
hoelzl@29804
  1094
hoelzl@47599
  1095
lemma real_div_nat_eq_floor_of_divide:
haftmann@59984
  1096
  fixes a b :: nat
haftmann@59984
  1097
  shows "a div b = real \<lfloor>a / b\<rfloor>"
haftmann@59984
  1098
  by (simp add: floor_divide_of_nat_eq [of a b] real_eq_of_nat)
hoelzl@29804
  1099
hoelzl@47599
  1100
definition "rat_precision prec x y = int prec - (bitlen x - bitlen y)"
hoelzl@29804
  1101
hoelzl@47600
  1102
lift_definition lapprox_posrat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float"
hoelzl@47600
  1103
  is "\<lambda>prec (x::nat) (y::nat). round_down (rat_precision prec x y) (x / y)" by simp
obua@16782
  1104
hoelzl@47599
  1105
lemma compute_lapprox_posrat[code]:
wenzelm@53381
  1106
  fixes prec x y
wenzelm@53381
  1107
  shows "lapprox_posrat prec x y =
wenzelm@53381
  1108
   (let
hoelzl@47599
  1109
       l = rat_precision prec x y;
hoelzl@47599
  1110
       d = if 0 \<le> l then x * 2^nat l div y else x div 2^nat (- l) div y
hoelzl@47599
  1111
    in normfloat (Float d (- l)))"
immler@58982
  1112
    unfolding div_mult_twopow_eq
hoelzl@47600
  1113
    by transfer
hoelzl@47615
  1114
       (simp add: round_down_def powr_int real_div_nat_eq_floor_of_divide field_simps Let_def
hoelzl@47599
  1115
             del: two_powr_minus_int_float)
hoelzl@47621
  1116
hide_fact (open) compute_lapprox_posrat
hoelzl@29804
  1117
hoelzl@47600
  1118
lift_definition rapprox_posrat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float"
hoelzl@47600
  1119
  is "\<lambda>prec (x::nat) (y::nat). round_up (rat_precision prec x y) (x / y)" by simp
hoelzl@29804
  1120
hoelzl@47599
  1121
lemma compute_rapprox_posrat[code]:
hoelzl@47599
  1122
  fixes prec x y
immler@58982
  1123
  notes divmod_int_mod_div[simp]
hoelzl@47599
  1124
  defines "l \<equiv> rat_precision prec x y"
hoelzl@47599
  1125
  shows "rapprox_posrat prec x y = (let
hoelzl@47599
  1126
     l = l ;
hoelzl@47599
  1127
     X = if 0 \<le> l then (x * 2^nat l, y) else (x, y * 2^nat(-l)) ;
immler@58982
  1128
     (d, m) = divmod_int (fst X) (snd X)
hoelzl@47599
  1129
   in normfloat (Float (d + (if m = 0 \<or> y = 0 then 0 else 1)) (- l)))"
hoelzl@47599
  1130
proof (cases "y = 0")
immler@58982
  1131
  assume "y = 0" thus ?thesis by transfer simp
hoelzl@47599
  1132
next
hoelzl@47599
  1133
  assume "y \<noteq> 0"
hoelzl@29804
  1134
  show ?thesis
hoelzl@47599
  1135
  proof (cases "0 \<le> l")
hoelzl@47599
  1136
    assume "0 \<le> l"
wenzelm@56777
  1137
    def x' \<equiv> "x * 2 ^ nat l"
hoelzl@47599
  1138
    have "int x * 2 ^ nat l = x'" by (simp add: x'_def int_mult int_power)
hoelzl@47599
  1139
    moreover have "real x * 2 powr real l = real x'"
hoelzl@47599
  1140
      by (simp add: powr_realpow[symmetric] `0 \<le> l` x'_def)
hoelzl@47599
  1141
    ultimately show ?thesis
hoelzl@47599
  1142
      using ceil_divide_floor_conv[of y x'] powr_realpow[of 2 "nat l"] `0 \<le> l` `y \<noteq> 0`
hoelzl@47600
  1143
        l_def[symmetric, THEN meta_eq_to_obj_eq]
haftmann@58834
  1144
      by transfer (auto simp add: floor_divide_eq_div [symmetric] round_up_def)
hoelzl@47599
  1145
   next
hoelzl@47599
  1146
    assume "\<not> 0 \<le> l"
wenzelm@56777
  1147
    def y' \<equiv> "y * 2 ^ nat (- l)"
hoelzl@47599
  1148
    from `y \<noteq> 0` have "y' \<noteq> 0" by (simp add: y'_def)
hoelzl@47599
  1149
    have "int y * 2 ^ nat (- l) = y'" by (simp add: y'_def int_mult int_power)
hoelzl@47599
  1150
    moreover have "real x * real (2::int) powr real l / real y = x / real y'"
hoelzl@47599
  1151
      using `\<not> 0 \<le> l`
wenzelm@57862
  1152
      by (simp add: powr_realpow[symmetric] powr_minus y'_def field_simps)
hoelzl@47599
  1153
    ultimately show ?thesis
hoelzl@47599
  1154
      using ceil_divide_floor_conv[of y' x] `\<not> 0 \<le> l` `y' \<noteq> 0` `y \<noteq> 0`
hoelzl@47600
  1155
        l_def[symmetric, THEN meta_eq_to_obj_eq]
hoelzl@47600
  1156
      by transfer
haftmann@58834
  1157
         (auto simp add: round_up_def ceil_divide_floor_conv floor_divide_eq_div [symmetric])
hoelzl@29804
  1158
  qed
hoelzl@29804
  1159
qed
hoelzl@47621
  1160
hide_fact (open) compute_rapprox_posrat
hoelzl@29804
  1161
hoelzl@47599
  1162
lemma rat_precision_pos:
hoelzl@47599
  1163
  assumes "0 \<le> x" and "0 < y" and "2 * x < y" and "0 < n"
hoelzl@47599
  1164
  shows "rat_precision n (int x) (int y) > 0"
hoelzl@29804
  1165
proof -
hoelzl@47599
  1166
  { assume "0 < x" hence "log 2 x + 1 = log 2 (2 * x)" by (simp add: log_mult) }
hoelzl@47599
  1167
  hence "bitlen (int x) < bitlen (int y)" using assms
hoelzl@47599
  1168
    by (simp add: bitlen_def del: floor_add_one)
hoelzl@47599
  1169
      (auto intro!: floor_mono simp add: floor_add_one[symmetric] simp del: floor_add floor_add_one)
hoelzl@47599
  1170
  thus ?thesis
hoelzl@47599
  1171
    using assms by (auto intro!: pos_add_strict simp add: field_simps rat_precision_def)
hoelzl@29804
  1172
qed
obua@16782
  1173
hoelzl@47601
  1174
lemma rapprox_posrat_less1:
immler@58982
  1175
  shows "0 \<le> x \<Longrightarrow> 0 < y \<Longrightarrow> 2 * x < y \<Longrightarrow> 0 < n \<Longrightarrow> real (rapprox_posrat n x y) < 1"
immler@58982
  1176
  by transfer (simp add: rat_precision_pos round_up_less1)
hoelzl@29804
  1177
hoelzl@47600
  1178
lift_definition lapprox_rat :: "nat \<Rightarrow> int \<Rightarrow> int \<Rightarrow> float" is
hoelzl@47600
  1179
  "\<lambda>prec (x::int) (y::int). round_down (rat_precision prec \<bar>x\<bar> \<bar>y\<bar>) (x / y)" by simp
obua@16782
  1180
hoelzl@29804
  1181
lemma compute_lapprox_rat[code]:
hoelzl@47599
  1182
  "lapprox_rat prec x y =
hoelzl@47599
  1183
    (if y = 0 then 0
hoelzl@47599
  1184
    else if 0 \<le> x then
hoelzl@47599
  1185
      (if 0 < y then lapprox_posrat prec (nat x) (nat y)
wenzelm@53381
  1186
      else - (rapprox_posrat prec (nat x) (nat (-y))))
hoelzl@47599
  1187
      else (if 0 < y
hoelzl@47599
  1188
        then - (rapprox_posrat prec (nat (-x)) (nat y))
hoelzl@47599
  1189
        else lapprox_posrat prec (nat (-x)) (nat (-y))))"
hoelzl@56479
  1190
  by transfer (auto simp: round_up_def round_down_def ceiling_def ac_simps)
hoelzl@47621
  1191
hide_fact (open) compute_lapprox_rat
hoelzl@47599
  1192
hoelzl@47600
  1193
lift_definition rapprox_rat :: "nat \<Rightarrow> int \<Rightarrow> int \<Rightarrow> float" is
hoelzl@47600
  1194
  "\<lambda>prec (x::int) (y::int). round_up (rat_precision prec \<bar>x\<bar> \<bar>y\<bar>) (x / y)" by simp
hoelzl@47599
  1195
immler@58982
  1196
lemma "rapprox_rat = rapprox_posrat"
immler@58982
  1197
  by transfer auto
immler@58982
  1198
immler@58982
  1199
lemma "lapprox_rat = lapprox_posrat"
immler@58982
  1200
  by transfer auto
immler@58982
  1201
hoelzl@47599
  1202
lemma compute_rapprox_rat[code]:
immler@58982
  1203
  "rapprox_rat prec x y = - lapprox_rat prec (-x) y"
immler@58982
  1204
  by transfer (simp add: round_down_uminus_eq)
hoelzl@47621
  1205
hide_fact (open) compute_rapprox_rat
hoelzl@47599
  1206
hoelzl@47599
  1207
subsection {* Division *}
hoelzl@47599
  1208
immler@54782
  1209
definition "real_divl prec a b = round_down (int prec + \<lfloor> log 2 \<bar>b\<bar> \<rfloor> - \<lfloor> log 2 \<bar>a\<bar> \<rfloor>) (a / b)"
immler@54782
  1210
immler@54782
  1211
definition "real_divr prec a b = round_up (int prec + \<lfloor> log 2 \<bar>b\<bar> \<rfloor> - \<lfloor> log 2 \<bar>a\<bar> \<rfloor>) (a / b)"
immler@54782
  1212
immler@54782
  1213
lift_definition float_divl :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float" is real_divl
immler@54782
  1214
  by (simp add: real_divl_def)
hoelzl@47599
  1215
hoelzl@47599
  1216
lemma compute_float_divl[code]:
hoelzl@47600
  1217
  "float_divl prec (Float m1 s1) (Float m2 s2) = lapprox_rat prec m1 m2 * Float 1 (s1 - s2)"
hoelzl@47599
  1218
proof cases
hoelzl@47601
  1219
  let ?f1 = "real m1 * 2 powr real s1" and ?f2 = "real m2 * 2 powr real s2"
hoelzl@47601
  1220
  let ?m = "real m1 / real m2" and ?s = "2 powr real (s1 - s2)"
hoelzl@47601
  1221
  assume not_0: "m1 \<noteq> 0 \<and> m2 \<noteq> 0"
hoelzl@47601
  1222
  then have eq2: "(int prec + \<lfloor>log 2 \<bar>?f2\<bar>\<rfloor> - \<lfloor>log 2 \<bar>?f1\<bar>\<rfloor>) = rat_precision prec \<bar>m1\<bar> \<bar>m2\<bar> + (s2 - s1)"
hoelzl@47601
  1223
    by (simp add: abs_mult log_mult rat_precision_def bitlen_def)
hoelzl@47601
  1224
  have eq1: "real m1 * 2 powr real s1 / (real m2 * 2 powr real s2) = ?m * ?s"
hoelzl@47601
  1225
    by (simp add: field_simps powr_divide2[symmetric])
hoelzl@47599
  1226
hoelzl@47601
  1227
  show ?thesis
wenzelm@53381
  1228
    using not_0
immler@54782
  1229
    by (transfer fixing: m1 s1 m2 s2 prec) (unfold eq1 eq2 round_down_shift real_divl_def,
immler@54782
  1230
      simp add: field_simps)
immler@54782
  1231
qed (transfer, auto simp: real_divl_def)
hoelzl@47621
  1232
hide_fact (open) compute_float_divl
hoelzl@47600
  1233
immler@54782
  1234
lift_definition float_divr :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float" is real_divr
immler@54782
  1235
  by (simp add: real_divr_def)
hoelzl@47599
  1236
hoelzl@47599
  1237
lemma compute_float_divr[code]:
immler@58982
  1238
  "float_divr prec x y = - float_divl prec (-x) y"
immler@58982
  1239
  by transfer (simp add: real_divr_def real_divl_def round_down_uminus_eq)
immler@58982
  1240
hide_fact (open) compute_float_divr
hoelzl@47600
  1241
obua@16782
  1242
immler@58985
  1243
subsection {* Approximate Power *}
immler@58985
  1244
immler@58985
  1245
lemma div2_less_self[termination_simp]: fixes n::nat shows "odd n \<Longrightarrow> n div 2 < n"
immler@58985
  1246
  by (simp add: odd_pos)
immler@58985
  1247
immler@58985
  1248
fun power_down :: "nat \<Rightarrow> real \<Rightarrow> nat \<Rightarrow> real" where
immler@58985
  1249
  "power_down p x 0 = 1"
immler@58985
  1250
| "power_down p x (Suc n) =
immler@58985
  1251
    (if odd n then truncate_down (Suc p) ((power_down p x (Suc n div 2))\<^sup>2) else truncate_down (Suc p) (x * power_down p x n))"
immler@58985
  1252
immler@58985
  1253
fun power_up :: "nat \<Rightarrow> real \<Rightarrow> nat \<Rightarrow> real" where
immler@58985
  1254
  "power_up p x 0 = 1"
immler@58985
  1255
| "power_up p x (Suc n) =
immler@58985
  1256
    (if odd n then truncate_up p ((power_up p x (Suc n div 2))\<^sup>2) else truncate_up p (x * power_up p x n))"
immler@58985
  1257
immler@58985
  1258
lift_definition power_up_fl :: "nat \<Rightarrow> float \<Rightarrow> nat \<Rightarrow> float" is power_up
immler@58985
  1259
  by (induct_tac rule: power_up.induct) simp_all
immler@58985
  1260
immler@58985
  1261
lift_definition power_down_fl :: "nat \<Rightarrow> float \<Rightarrow> nat \<Rightarrow> float" is power_down
immler@58985
  1262
  by (induct_tac rule: power_down.induct) simp_all
immler@58985
  1263
immler@58985
  1264
lemma power_float_transfer[transfer_rule]:
immler@58985
  1265
  "(rel_fun pcr_float (rel_fun op = pcr_float)) op ^ op ^"
immler@58985
  1266
  unfolding power_def
immler@58985
  1267
  by transfer_prover
immler@58985
  1268
immler@58985
  1269
lemma compute_power_up_fl[code]:
immler@58985
  1270
  "power_up_fl p x 0 = 1"
immler@58985
  1271
  "power_up_fl p x (Suc n) =
immler@58985
  1272
    (if odd n then float_round_up p ((power_up_fl p x (Suc n div 2))\<^sup>2) else float_round_up p (x * power_up_fl p x n))"
immler@58985
  1273
  and compute_power_down_fl[code]:
immler@58985
  1274
  "power_down_fl p x 0 = 1"
immler@58985
  1275
  "power_down_fl p x (Suc n) =
immler@58985
  1276
    (if odd n then float_round_down (Suc p) ((power_down_fl p x (Suc n div 2))\<^sup>2) else float_round_down (Suc p) (x * power_down_fl p x n))"
immler@58985
  1277
  unfolding atomize_conj
immler@58985
  1278
  by transfer simp
immler@58985
  1279
immler@58985
  1280
lemma power_down_pos: "0 < x \<Longrightarrow> 0 < power_down p x n"
immler@58985
  1281
  by (induct p x n rule: power_down.induct)
immler@58985
  1282
    (auto simp del: odd_Suc_div_two intro!: truncate_down_pos)
immler@58985
  1283
immler@58985
  1284
lemma power_down_nonneg: "0 \<le> x \<Longrightarrow> 0 \<le> power_down p x n"
immler@58985
  1285
  by (induct p x n rule: power_down.induct)
immler@58985
  1286
    (auto simp del: odd_Suc_div_two intro!: truncate_down_nonneg mult_nonneg_nonneg)
immler@58985
  1287
immler@58985
  1288
lemma power_down: "0 \<le> x \<Longrightarrow> power_down p x n \<le> x ^ n"
immler@58985
  1289
proof (induct p x n rule: power_down.induct)
immler@58985
  1290
  case (2 p x n)
immler@58985
  1291
  {
immler@58985
  1292
    assume "odd n"
immler@58985
  1293
    hence "(power_down p x (Suc n div 2)) ^ 2 \<le> (x ^ (Suc n div 2)) ^ 2"
immler@58985
  1294
      using 2
immler@58985
  1295
      by (auto intro: power_mono power_down_nonneg simp del: odd_Suc_div_two)
immler@58985
  1296
    also have "\<dots> = x ^ (Suc n div 2 * 2)"
immler@58985
  1297
      by (simp add: power_mult[symmetric])
immler@58985
  1298
    also have "Suc n div 2 * 2 = Suc n"
immler@58985
  1299
      using `odd n` by presburger
immler@58985
  1300
    finally have ?case
immler@58985
  1301
      using `odd n`
immler@58985
  1302
      by (auto intro!: truncate_down_le simp del: odd_Suc_div_two)
immler@58985
  1303
  } thus ?case
immler@58985
  1304
    by (auto intro!: truncate_down_le mult_left_mono 2 mult_nonneg_nonneg power_down_nonneg)
immler@58985
  1305
qed simp
immler@58985
  1306
immler@58985
  1307
lemma power_up: "0 \<le> x \<Longrightarrow> x ^ n \<le> power_up p x n"
immler@58985
  1308
proof (induct p x n rule: power_up.induct)
immler@58985
  1309
  case (2 p x n)
immler@58985
  1310
  {
immler@58985
  1311
    assume "odd n"
immler@58985
  1312
    hence "Suc n = Suc n div 2 * 2"
immler@58985
  1313
      using `odd n` even_Suc by presburger
immler@58985
  1314
    hence "x ^ Suc n \<le> (x ^ (Suc n div 2))\<^sup>2"
immler@58985
  1315
      by (simp add: power_mult[symmetric])
immler@58985
  1316
    also have "\<dots> \<le> (power_up p x (Suc n div 2))\<^sup>2"
immler@58985
  1317
      using 2 `odd n`
immler@58985
  1318
      by (auto intro: power_mono simp del: odd_Suc_div_two )
immler@58985
  1319
    finally have ?case
immler@58985
  1320
      using `odd n`
immler@58985
  1321
      by (auto intro!: truncate_up_le simp del: odd_Suc_div_two )
immler@58985
  1322
  } thus ?case
immler@58985
  1323
    by (auto intro!: truncate_up_le mult_left_mono 2)
immler@58985
  1324
qed simp
immler@58985
  1325
immler@58985
  1326
lemmas power_up_le = order_trans[OF _ power_up]
immler@58985
  1327
  and power_up_less = less_le_trans[OF _ power_up]
immler@58985
  1328
  and power_down_le = order_trans[OF power_down]
immler@58985
  1329
immler@58985
  1330
lemma power_down_fl: "0 \<le> x \<Longrightarrow> power_down_fl p x n \<le> x ^ n"
immler@58985
  1331
  by transfer (rule power_down)
immler@58985
  1332
immler@58985
  1333
lemma power_up_fl: "0 \<le> x \<Longrightarrow> x ^ n \<le> power_up_fl p x n"
immler@58985
  1334
  by transfer (rule power_up)
immler@58985
  1335
immler@58985
  1336
lemma real_power_up_fl: "real (power_up_fl p x n) = power_up p x n"
immler@58985
  1337
  by transfer simp
immler@58985
  1338
immler@58985
  1339
lemma real_power_down_fl: "real (power_down_fl p x n) = power_down p x n"
immler@58985
  1340
  by transfer simp
immler@58985
  1341
immler@58985
  1342
immler@58985
  1343
subsection {* Approximate Addition *}
immler@58985
  1344
immler@58985
  1345
definition "plus_down prec x y = truncate_down prec (x + y)"
immler@58985
  1346
immler@58985
  1347
definition "plus_up prec x y = truncate_up prec (x + y)"
immler@58985
  1348
immler@58985
  1349
lemma float_plus_down_float[intro, simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> plus_down p x y \<in> float"
immler@58985
  1350
  by (simp add: plus_down_def)
immler@58985
  1351
immler@58985
  1352
lemma float_plus_up_float[intro, simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> plus_up p x y \<in> float"
immler@58985
  1353
  by (simp add: plus_up_def)
immler@58985
  1354
immler@58985
  1355
lift_definition float_plus_down::"nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float" is plus_down ..
immler@58985
  1356
immler@58985
  1357
lift_definition float_plus_up::"nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float" is plus_up ..
immler@58985
  1358
immler@58985
  1359
lemma plus_down: "plus_down prec x y \<le> x + y"
immler@58985
  1360
  and plus_up: "x + y \<le> plus_up prec x y"
immler@58985
  1361
  by (auto simp: plus_down_def truncate_down plus_up_def truncate_up)
immler@58985
  1362
immler@58985
  1363
lemma float_plus_down: "real (float_plus_down prec x y) \<le> x + y"
immler@58985
  1364
  and float_plus_up: "x + y \<le> real (float_plus_up prec x y)"
immler@58985
  1365
  by (transfer, rule plus_down plus_up)+
immler@58985
  1366
immler@58985
  1367
lemmas plus_down_le = order_trans[OF plus_down]
immler@58985
  1368
  and plus_up_le = order_trans[OF _ plus_up]
immler@58985
  1369
  and float_plus_down_le = order_trans[OF float_plus_down]
immler@58985
  1370
  and float_plus_up_le = order_trans[OF _ float_plus_up]
immler@58985
  1371
immler@58985
  1372
lemma compute_plus_up[code]: "plus_up p x y = - plus_down p (-x) (-y)"
immler@58985
  1373
  using truncate_down_uminus_eq[of p "x + y"]
immler@58985
  1374
  by (auto simp: plus_down_def plus_up_def)
immler@58985
  1375
immler@58985
  1376
lemma
immler@58985
  1377
  truncate_down_log2_eqI:
immler@58985
  1378
  assumes "\<lfloor>log 2 \<bar>x\<bar>\<rfloor> = \<lfloor>log 2 \<bar>y\<bar>\<rfloor>"
immler@58985
  1379
  assumes "\<lfloor>x * 2 powr (p - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1)\<rfloor> = \<lfloor>y * 2 powr (p - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1)\<rfloor>"
immler@58985
  1380
  shows "truncate_down p x = truncate_down p y"
immler@58985
  1381
  using assms by (auto simp: truncate_down_def round_down_def)
immler@58985
  1382
immler@58985
  1383
lemma bitlen_eq_zero_iff: "bitlen x = 0 \<longleftrightarrow> x \<le> 0"
immler@58985
  1384
  by (clarsimp simp add: bitlen_def)
immler@58985
  1385
    (metis Float.compute_bitlen add.commute bitlen_def bitlen_nonneg less_add_same_cancel2 not_less
immler@58985
  1386
      zero_less_one)
immler@58985
  1387
immler@58985
  1388
lemma
immler@58985
  1389
  sum_neq_zeroI:
immler@58985
  1390
  fixes a k::real
immler@58985
  1391
  shows "abs a \<ge> k \<Longrightarrow> abs b < k \<Longrightarrow> a + b \<noteq> 0"
immler@58985
  1392
    and "abs a > k \<Longrightarrow> abs b \<le> k \<Longrightarrow> a + b \<noteq> 0"
immler@58985
  1393
  by auto
immler@58985
  1394
immler@58985
  1395
lemma
immler@58985
  1396
  abs_real_le_2_powr_bitlen[simp]:
immler@58985
  1397
  "\<bar>real m2\<bar> < 2 powr real (bitlen \<bar>m2\<bar>)"
immler@58985
  1398
proof cases
immler@58985
  1399
  assume "m2 \<noteq> 0"
immler@58985
  1400
  hence "\<bar>m2\<bar> < 2 ^ nat (bitlen \<bar>m2\<bar>)"
immler@58985
  1401
    using bitlen_bounds[of "\<bar>m2\<bar>"]
immler@58985
  1402
    by (auto simp: powr_add bitlen_nonneg)
immler@58985
  1403
  thus ?thesis
immler@58985
  1404
    by (simp add: powr_int bitlen_nonneg real_of_int_less_iff[symmetric])
immler@58985
  1405
qed simp
immler@58985
  1406
immler@58985
  1407
lemma floor_sum_times_2_powr_sgn_eq:
immler@58985
  1408
  fixes ai p q::int
immler@58985
  1409
  and a b::real
immler@58985
  1410
  assumes "a * 2 powr p = ai"
immler@58985
  1411
  assumes b_le_1: "abs (b * 2 powr (p + 1)) \<le> 1"
immler@58985
  1412
  assumes leqp: "q \<le> p"
immler@58985
  1413
  shows "\<lfloor>(a + b) * 2 powr q\<rfloor> = \<lfloor>(2 * ai + sgn b) * 2 powr (q - p - 1)\<rfloor>"
immler@58985
  1414
proof -
immler@58985
  1415
  {
immler@58985
  1416
    assume "b = 0"
immler@58985
  1417
    hence ?thesis
immler@58985
  1418
      by (simp add: assms(1)[symmetric] powr_add[symmetric] algebra_simps powr_mult_base)
immler@58985
  1419
  } moreover {
immler@58985
  1420
    assume "b > 0"
immler@58985
  1421
    hence "b * 2 powr p < abs (b * 2 powr (p + 1))" by simp
immler@58985
  1422
    also note b_le_1
immler@58985
  1423
    finally have b_less_1: "b * 2 powr real p < 1" .
immler@58985
  1424
immler@58985
  1425
    from b_less_1 `b > 0` have floor_eq: "\<lfloor>b * 2 powr real p\<rfloor> = 0" "\<lfloor>sgn b / 2\<rfloor> = 0"
immler@58985
  1426
      by (simp_all add: floor_eq_iff)
immler@58985
  1427
immler@58985
  1428
    have "\<lfloor>(a + b) * 2 powr q\<rfloor> = \<lfloor>(a + b) * 2 powr p * 2 powr (q - p)\<rfloor>"
immler@58985
  1429
      by (simp add: algebra_simps powr_realpow[symmetric] powr_add[symmetric])
immler@58985
  1430
    also have "\<dots> = \<lfloor>(ai + b * 2 powr p) * 2 powr (q - p)\<rfloor>"
immler@58985
  1431
      by (simp add: assms algebra_simps)
immler@58985
  1432
    also have "\<dots> = \<lfloor>(ai + b * 2 powr p) / real ((2::int) ^ nat (p - q))\<rfloor>"
immler@58985
  1433
      using assms
immler@58985
  1434
      by (simp add: algebra_simps powr_realpow[symmetric] divide_powr_uminus powr_add[symmetric])
immler@58985
  1435
    also have "\<dots> = \<lfloor>ai / real ((2::int) ^ nat (p - q))\<rfloor>"
immler@58985
  1436
      by (simp del: real_of_int_power add: floor_divide_real_eq_div floor_eq)
immler@58985
  1437
    finally have "\<lfloor>(a + b) * 2 powr real q\<rfloor> = \<lfloor>real ai / real ((2::int) ^ nat (p - q))\<rfloor>" .
immler@58985
  1438
    moreover
immler@58985
  1439
    {
immler@58985
  1440
      have "\<lfloor>(2 * ai + sgn b) * 2 powr (real (q - p) - 1)\<rfloor> = \<lfloor>(ai + sgn b / 2) * 2 powr (q - p)\<rfloor>"
immler@58985
  1441
        by (subst powr_divide2[symmetric]) (simp add: field_simps)
immler@58985
  1442
      also have "\<dots> = \<lfloor>(ai + sgn b / 2) / real ((2::int) ^ nat (p - q))\<rfloor>"
immler@58985
  1443
        using leqp by (simp add: powr_realpow[symmetric] powr_divide2[symmetric])
immler@58985
  1444
      also have "\<dots> = \<lfloor>ai / real ((2::int) ^ nat (p - q))\<rfloor>"
immler@58985
  1445
        by (simp del: real_of_int_power add: floor_divide_real_eq_div floor_eq)
immler@58985
  1446
      finally
immler@58985
  1447
      have "\<lfloor>(2 * ai + (sgn b)) * 2 powr (real (q - p) - 1)\<rfloor> =
immler@58985
  1448
          \<lfloor>real ai / real ((2::int) ^ nat (p - q))\<rfloor>"
immler@58985
  1449
        .
immler@58985
  1450
    } ultimately have ?thesis by simp
immler@58985
  1451
  } moreover {
immler@58985
  1452
    assume "\<not> 0 \<le> b"
immler@58985
  1453
    hence "0 > b" by simp
immler@58985
  1454
    hence floor_eq: "\<lfloor>b * 2 powr (real p + 1)\<rfloor> = -1"
immler@58985
  1455
      using b_le_1
immler@58985
  1456
      by (auto simp: floor_eq_iff algebra_simps pos_divide_le_eq[symmetric] abs_if divide_powr_uminus
immler@58985
  1457
        intro!: mult_neg_pos split: split_if_asm)
immler@58985
  1458
    have "\<lfloor>(a + b) * 2 powr q\<rfloor> = \<lfloor>(2*a + 2*b) * 2 powr p * 2 powr (q - p - 1)\<rfloor>"
immler@58985
  1459
      by (simp add: algebra_simps powr_realpow[symmetric] powr_add[symmetric] powr_mult_base)
immler@58985
  1460
    also have "\<dots> = \<lfloor>(2 * (a * 2 powr p) + 2 * b * 2 powr p) * 2 powr (q - p - 1)\<rfloor>"
immler@58985
  1461
      by (simp add: algebra_simps)
immler@58985
  1462
    also have "\<dots> = \<lfloor>(2 * ai + b * 2 powr (p + 1)) / 2 powr (1 - q + p)\<rfloor>"
immler@58985
  1463
      using assms by (simp add: algebra_simps powr_mult_base divide_powr_uminus)
immler@58985
  1464
    also have "\<dots> = \<lfloor>(2 * ai + b * 2 powr (p + 1)) / real ((2::int) ^ nat (p - q + 1))\<rfloor>"
immler@58985
  1465
      using assms by (simp add: algebra_simps powr_realpow[symmetric])
immler@58985
  1466
    also have "\<dots> = \<lfloor>(2 * ai - 1) / real ((2::int) ^ nat (p - q + 1))\<rfloor>"
immler@58985
  1467
      using `b < 0` assms
immler@58985
  1468
      by (simp add: floor_divide_eq_div floor_eq floor_divide_real_eq_div
immler@58985
  1469
        del: real_of_int_mult real_of_int_power real_of_int_diff)
immler@58985
  1470
    also have "\<dots> = \<lfloor>(2 * ai - 1) * 2 powr (q - p - 1)\<rfloor>"
immler@58985
  1471
      using assms by (simp add: algebra_simps divide_powr_uminus powr_realpow[symmetric])
immler@58985
  1472
    finally have ?thesis using `b < 0` by simp
immler@58985
  1473
  } ultimately show ?thesis by arith
immler@58985
  1474
qed
immler@58985
  1475
immler@58985
  1476
lemma
immler@58985
  1477
  log2_abs_int_add_less_half_sgn_eq:
immler@58985
  1478
  fixes ai::int and b::real
immler@58985
  1479
  assumes "abs b \<le> 1/2" "ai \<noteq> 0"
immler@58985
  1480
  shows "\<lfloor>log 2 \<bar>real ai + b\<bar>\<rfloor> = \<lfloor>log 2 \<bar>ai + sgn b / 2\<bar>\<rfloor>"
immler@58985
  1481
proof cases
immler@58985
  1482
  assume "b = 0" thus ?thesis by simp
immler@58985
  1483
next
immler@58985
  1484
  assume "b \<noteq> 0"
immler@58985
  1485
  def k \<equiv> "\<lfloor>log 2 \<bar>ai\<bar>\<rfloor>"
immler@58985
  1486
  hence "\<lfloor>log 2 \<bar>ai\<bar>\<rfloor> = k" by simp
immler@58985
  1487
  hence k: "2 powr k \<le> \<bar>ai\<bar>" "\<bar>ai\<bar> < 2 powr (k + 1)"
immler@58985
  1488
    by (simp_all add: floor_log_eq_powr_iff `ai \<noteq> 0`)
immler@58985
  1489
  have "k \<ge> 0"
immler@58985
  1490
    using assms by (auto simp: k_def)
immler@58985
  1491
  def r \<equiv> "\<bar>ai\<bar> - 2 ^ nat k"
immler@58985
  1492
  have r: "0 \<le> r" "r < 2 powr k"
immler@58985
  1493
    using `k \<ge> 0` k
immler@58985
  1494
    by (auto simp: r_def k_def algebra_simps powr_add abs_if powr_int)
immler@58985
  1495
  hence "r \<le> (2::int) ^ nat k - 1"
immler@58985
  1496
    using `k \<ge> 0` by (auto simp: powr_int)
immler@58985
  1497
  from this[simplified real_of_int_le_iff[symmetric]] `0 \<le> k`
immler@58985
  1498
  have r_le: "r \<le> 2 powr k - 1"
immler@58985
  1499
    by (auto simp: algebra_simps powr_int simp del: real_of_int_le_iff)
immler@58985
  1500
immler@58985
  1501
  have "\<bar>ai\<bar> = 2 powr k + r"
immler@58985
  1502
    using `k \<ge> 0` by (auto simp: k_def r_def powr_realpow[symmetric])
immler@58985
  1503
immler@58985
  1504
  have pos: "\<And>b::real. abs b < 1 \<Longrightarrow> 0 < 2 powr k + (r + b)"
immler@58985
  1505
    using `0 \<le> k` `ai \<noteq> 0`
immler@58985
  1506
    by (auto simp add: r_def powr_realpow[symmetric] abs_if sgn_if algebra_simps
immler@58985
  1507
      split: split_if_asm)
immler@58985
  1508
  have less: "\<bar>sgn ai * b\<bar> < 1"
immler@58985
  1509
    and less': "\<bar>sgn (sgn ai * b) / 2\<bar> < 1"
immler@58985
  1510
    using `abs b \<le> _` by (auto simp: abs_if sgn_if split: split_if_asm)
immler@58985
  1511
immler@58985
  1512
  have floor_eq: "\<And>b::real. abs b \<le> 1 / 2 \<Longrightarrow>
immler@58985
  1513
      \<lfloor>log 2 (1 + (r + b) / 2 powr k)\<rfloor> = (if r = 0 \<and> b < 0 then -1 else 0)"
immler@58985
  1514
    using `k \<ge> 0` r r_le
immler@58985
  1515
    by (auto simp: floor_log_eq_powr_iff powr_minus_divide field_simps sgn_if)
immler@58985
  1516
immler@58985
  1517
  from `real \<bar>ai\<bar> = _` have "\<bar>ai + b\<bar> = 2 powr k + (r + sgn ai * b)"
immler@58985
  1518
    using `abs b <= _` `0 \<le> k` r
immler@58985
  1519
    by (auto simp add: sgn_if abs_if)
immler@58985
  1520
  also have "\<lfloor>log 2 \<dots>\<rfloor> = \<lfloor>log 2 (2 powr k + r + sgn (sgn ai * b) / 2)\<rfloor>"
immler@58985
  1521
  proof -
immler@58985
  1522
    have "2 powr k + (r + (sgn ai) * b) = 2 powr k * (1 + (r + sgn ai * b) / 2 powr k)"
immler@58985
  1523
      by (simp add: field_simps)
immler@58985
  1524
    also have "\<lfloor>log 2 \<dots>\<rfloor> = k + \<lfloor>log 2 (1 + (r + sgn ai * b) / 2 powr k)\<rfloor>"
immler@58985
  1525
      using pos[OF less]
immler@58985
  1526
      by (subst log_mult) (simp_all add: log_mult powr_mult field_simps)
immler@58985
  1527
    also
immler@58985
  1528
    let ?if = "if r = 0 \<and> sgn ai * b < 0 then -1 else 0"
immler@58985
  1529
    have "\<lfloor>log 2 (1 + (r + sgn ai * b) / 2 powr k)\<rfloor> = ?if"
immler@58985
  1530
      using `abs b <= _`
immler@58985
  1531
      by (intro floor_eq) (auto simp: abs_mult sgn_if)
immler@58985
  1532
    also
immler@58985
  1533
    have "\<dots> = \<lfloor>log 2 (1 + (r + sgn (sgn ai * b) / 2) / 2 powr k)\<rfloor>"
immler@58985
  1534
      by (subst floor_eq) (auto simp: sgn_if)
immler@58985
  1535
    also have "k + \<dots> = \<lfloor>log 2 (2 powr k * (1 + (r + sgn (sgn ai * b) / 2) / 2 powr k))\<rfloor>"
immler@58985
  1536
      unfolding floor_add2[symmetric]
immler@58985
  1537
      using pos[OF less'] `abs b \<le> _`
immler@58985
  1538
      by (simp add: field_simps add_log_eq_powr)
immler@58985
  1539
    also have "2 powr k * (1 + (r + sgn (sgn ai * b) / 2) / 2 powr k) =
immler@58985
  1540
        2 powr k + r + sgn (sgn ai * b) / 2"
immler@58985
  1541
      by (simp add: sgn_if field_simps)
immler@58985
  1542
    finally show ?thesis .
immler@58985
  1543
  qed
immler@58985
  1544
  also have "2 powr k + r + sgn (sgn ai * b) / 2 = \<bar>ai + sgn b / 2\<bar>"
immler@58985
  1545
    unfolding `real \<bar>ai\<bar> = _`[symmetric] using `ai \<noteq> 0`
immler@58985
  1546
    by (auto simp: abs_if sgn_if algebra_simps)
immler@58985
  1547
  finally show ?thesis .
immler@58985
  1548
qed
immler@58985
  1549
immler@58985
  1550
lemma compute_far_float_plus_down:
immler@58985
  1551
  fixes m1 e1 m2 e2::int and p::nat
immler@58985
  1552
  defines "k1 \<equiv> p - nat (bitlen \<bar>m1\<bar>)"
immler@58985
  1553
  assumes H: "bitlen \<bar>m2\<bar> \<le> e1 - e2 - k1 - 2" "m1 \<noteq> 0" "m2 \<noteq> 0" "e1 \<ge> e2"
immler@58985
  1554
  shows "float_plus_down p (Float m1 e1) (Float m2 e2) =
immler@58985
  1555
    float_round_down p (Float (m1 * 2 ^ (Suc (Suc k1)) + sgn m2) (e1 - int k1 - 2))"
immler@58985
  1556
proof -
immler@58985
  1557
  let ?a = "real (Float m1 e1)"
immler@58985
  1558
  let ?b = "real (Float m2 e2)"
immler@58985
  1559
  let ?sum = "?a + ?b"
immler@58985
  1560
  let ?shift = "real e2 - real e1 + real k1 + 1"
immler@58985
  1561
  let ?m1 = "m1 * 2 ^ Suc k1"
immler@58985
  1562
  let ?m2 = "m2 * 2 powr ?shift"
immler@58985
  1563
  let ?m2' = "sgn m2 / 2"
immler@58985
  1564
  let ?e = "e1 - int k1 - 1"
immler@58985
  1565
immler@58985
  1566
  have sum_eq: "?sum = (?m1 + ?m2) * 2 powr ?e"
immler@58985
  1567
    by (auto simp: powr_add[symmetric] powr_mult[symmetric] algebra_simps
immler@58985
  1568
      powr_realpow[symmetric] powr_mult_base)
immler@58985
  1569
immler@58985
  1570
  have "\<bar>?m2\<bar> * 2 < 2 powr (bitlen \<bar>m2\<bar> + ?shift + 1)"
immler@58985
  1571
    by (auto simp: field_simps powr_add powr_mult_base powr_numeral powr_divide2[symmetric] abs_mult)
immler@58985
  1572
  also have "\<dots> \<le> 2 powr 0"
immler@58985
  1573
    using H by (intro powr_mono) auto
immler@58985
  1574
  finally have abs_m2_less_half: "\<bar>?m2\<bar> < 1 / 2"
immler@58985
  1575
    by simp
immler@58985
  1576
immler@58985
  1577
  hence "\<bar>real m2\<bar> < 2 powr -(?shift + 1)"
immler@58985
  1578
    unfolding powr_minus_divide by (auto simp: bitlen_def field_simps powr_mult_base abs_mult)
immler@58985
  1579
  also have "\<dots> \<le> 2 powr real (e1 - e2 - 2)"
immler@58985
  1580
    by simp
immler@58985
  1581
  finally have b_less_quarter: "\<bar>?b\<bar> < 1/4 * 2 powr real e1"
immler@58985
  1582
    by (simp add: powr_add field_simps powr_divide2[symmetric] powr_numeral abs_mult)
immler@58985
  1583
  also have "1/4 < \<bar>real m1\<bar> / 2" using `m1 \<noteq> 0` by simp
immler@58985
  1584
  finally have b_less_half_a: "\<bar>?b\<bar> < 1/2 * \<bar>?a\<bar>"
immler@58985
  1585
    by (simp add: algebra_simps powr_mult_base abs_mult)
immler@58985
  1586
  hence a_half_less_sum: "\<bar>?a\<bar> / 2 < \<bar>?sum\<bar>"
immler@58985
  1587
    by (auto simp: field_simps abs_if split: split_if_asm)
immler@58985
  1588
immler@58985
  1589
  from b_less_half_a have "\<bar>?b\<bar> < \<bar>?a\<bar>" "\<bar>?b\<bar> \<le> \<bar>?a\<bar>"
immler@58985
  1590
    by simp_all
immler@58985
  1591
immler@58985
  1592
  have "\<bar>real (Float m1 e1)\<bar> \<ge> 1/4 * 2 powr real e1"
immler@58985
  1593
    using `m1 \<noteq> 0`
immler@58985
  1594
    by (auto simp: powr_add powr_int bitlen_nonneg divide_right_mono abs_mult)
immler@58985
  1595
  hence "?sum \<noteq> 0" using b_less_quarter
immler@58985
  1596
    by (rule sum_neq_zeroI)
immler@58985
  1597
  hence "?m1 + ?m2 \<noteq> 0"
immler@58985
  1598
    unfolding sum_eq by (simp add: abs_mult zero_less_mult_iff)
immler@58985
  1599
immler@58985
  1600
  have "\<bar>real ?m1\<bar> \<ge> 2 ^ Suc k1" "\<bar>?m2'\<bar> < 2 ^ Suc k1"
immler@58985
  1601
    using `m1 \<noteq> 0` `m2 \<noteq> 0` by (auto simp: sgn_if less_1_mult abs_mult simp del: power.simps)
immler@58985
  1602
  hence sum'_nz: "?m1 + ?m2' \<noteq> 0"
immler@58985
  1603
    by (intro sum_neq_zeroI)
immler@58985
  1604
immler@58985
  1605
  have "\<lfloor>log 2 \<bar>real (Float m1 e1) + real (Float m2 e2)\<bar>\<rfloor> = \<lfloor>log 2 \<bar>?m1 + ?m2\<bar>\<rfloor> + ?e"
immler@58985
  1606
    using `?m1 + ?m2 \<noteq> 0`
immler@58985
  1607
    unfolding floor_add[symmetric] sum_eq
immler@58985
  1608
    by (simp add: abs_mult log_mult)
immler@58985
  1609
  also have "\<lfloor>log 2 \<bar>?m1 + ?m2\<bar>\<rfloor> = \<lfloor>log 2 \<bar>?m1 + sgn (real m2 * 2 powr ?shift) / 2\<bar>\<rfloor>"
immler@58985
  1610
    using abs_m2_less_half `m1 \<noteq> 0`
immler@58985
  1611
    by (intro log2_abs_int_add_less_half_sgn_eq) (auto simp: abs_mult)
immler@58985
  1612
  also have "sgn (real m2 * 2 powr ?shift) = sgn m2"
immler@58985
  1613
    by (auto simp: sgn_if zero_less_mult_iff less_not_sym)
immler@58985
  1614
  also
immler@58985
  1615
  have "\<bar>?m1 + ?m2'\<bar> * 2 powr ?e = \<bar>?m1 * 2 + sgn m2\<bar> * 2 powr (?e - 1)"
immler@58985
  1616
    by (auto simp: field_simps powr_minus[symmetric] powr_divide2[symmetric] powr_mult_base)
immler@58985
  1617
  hence "\<lfloor>log 2 \<bar>?m1 + ?m2'\<bar>\<rfloor> + ?e = \<lfloor>log 2 \<bar>real (Float (?m1 * 2 + sgn m2) (?e - 1))\<bar>\<rfloor>"
immler@58985
  1618
    using `?m1 + ?m2' \<noteq> 0`
immler@58985
  1619
    unfolding floor_add[symmetric]
immler@58985
  1620
    by (simp add: log_add_eq_powr abs_mult_pos)
immler@58985
  1621
  finally
immler@58985
  1622
  have "\<lfloor>log 2 \<bar>?sum\<bar>\<rfloor> = \<lfloor>log 2 \<bar>real (Float (?m1*2 + sgn m2) (?e - 1))\<bar>\<rfloor>" .
immler@58985
  1623
  hence "plus_down p (Float m1 e1) (Float m2 e2) =
immler@58985
  1624
      truncate_down p (Float (?m1*2 + sgn m2) (?e - 1))"
immler@58985
  1625
    unfolding plus_down_def
immler@58985
  1626
  proof (rule truncate_down_log2_eqI)
immler@58985
  1627
    let ?f = "(int p - \<lfloor>log 2 \<bar>real (Float m1 e1) + real (Float m2 e2)\<bar>\<rfloor> - 1)"
immler@58985
  1628
    let ?ai = "m1 * 2 ^ (Suc k1)"
immler@58985
  1629
    have "\<lfloor>(?a + ?b) * 2 powr real ?f\<rfloor> = \<lfloor>(real (2 * ?ai) + sgn ?b) * 2 powr real (?f - - ?e - 1)\<rfloor>"
immler@58985
  1630
    proof (rule floor_sum_times_2_powr_sgn_eq)
immler@58985
  1631
      show "?a * 2 powr real (-?e) = real ?ai"
immler@58985
  1632
        by (simp add: powr_add powr_realpow[symmetric] powr_divide2[symmetric])
immler@58985
  1633
      show "\<bar>?b * 2 powr real (-?e + 1)\<bar> \<le> 1"
immler@58985
  1634
        using abs_m2_less_half
immler@58985
  1635
        by (simp add: abs_mult powr_add[symmetric] algebra_simps powr_mult_base)
immler@58985
  1636
    next
immler@58985
  1637
      have "e1 + \<lfloor>log 2 \<bar>real m1\<bar>\<rfloor> - 1 = \<lfloor>log 2 \<bar>?a\<bar>\<rfloor> - 1"
immler@58985
  1638
        using `m1 \<noteq> 0`
immler@58985
  1639
        by (simp add: floor_add2[symmetric] algebra_simps log_mult abs_mult del: floor_add2)
immler@58985
  1640
      also have "\<dots> \<le> \<lfloor>log 2 \<bar>?a + ?b\<bar>\<rfloor>"
immler@58985
  1641
        using a_half_less_sum `m1 \<noteq> 0` `?sum \<noteq> 0`
immler@58985
  1642
        unfolding floor_subtract[symmetric]
immler@58985
  1643
        by (auto simp add: log_minus_eq_powr powr_minus_divide
immler@58985
  1644
          intro!: floor_mono)
immler@58985
  1645
      finally
immler@58985
  1646
      have "int p - \<lfloor>log 2 \<bar>?a + ?b\<bar>\<rfloor> \<le> p - (bitlen \<bar>m1\<bar>) - e1 + 2"
immler@58985
  1647
        by (auto simp: algebra_simps bitlen_def `m1 \<noteq> 0`)
immler@58985
  1648
      also have "\<dots> \<le> 1 - ?e"
immler@58985
  1649
        using bitlen_nonneg[of "\<bar>m1\<bar>"] by (simp add: k1_def)
immler@58985
  1650
      finally show "?f \<le> - ?e" by simp
immler@58985
  1651
    qed
immler@58985
  1652
    also have "sgn ?b = sgn m2"
immler@58985
  1653
      using powr_gt_zero[of 2 e2]
immler@58985
  1654
      by (auto simp add: sgn_if zero_less_mult_iff simp del: powr_gt_zero)
immler@58985
  1655
    also have "\<lfloor>(real (2 * ?m1) + real (sgn m2)) * 2 powr real (?f - - ?e - 1)\<rfloor> =
immler@58985
  1656
        \<lfloor>Float (?m1 * 2 + sgn m2) (?e - 1) * 2 powr ?f\<rfloor>"
immler@58985
  1657
      by (simp add: powr_add[symmetric] algebra_simps powr_realpow[symmetric])
immler@58985
  1658
    finally
immler@58985
  1659
    show "\<lfloor>(?a + ?b) * 2 powr ?f\<rfloor> = \<lfloor>real (Float (?m1 * 2 + sgn m2) (?e - 1)) * 2 powr ?f\<rfloor>" .
immler@58985
  1660
  qed
immler@58985
  1661
  thus ?thesis
immler@58985
  1662
    by transfer (simp add: plus_down_def ac_simps Let_def)
immler@58985
  1663
qed
immler@58985
  1664
immler@58985
  1665
lemma compute_float_plus_down_naive[code]: "float_plus_down p x y = float_round_down p (x + y)"
immler@58985
  1666
  by transfer (auto simp: plus_down_def)
immler@58985
  1667
immler@58985
  1668
lemma compute_float_plus_down[code]:
immler@58985
  1669
  fixes p::nat and m1 e1 m2 e2::int
immler@58985
  1670
  shows "float_plus_down p (Float m1 e1) (Float m2 e2) =
immler@58985
  1671
    (if m1 = 0 then float_round_down p (Float m2 e2)
immler@58985
  1672
    else if m2 = 0 then float_round_down p (Float m1 e1)
immler@58985
  1673
    else (if e1 \<ge> e2 then
immler@58985
  1674
      (let
immler@58985
  1675
        k1 = p - nat (bitlen \<bar>m1\<bar>)
immler@58985
  1676
      in
immler@58985
  1677
        if bitlen \<bar>m2\<bar> > e1 - e2 - k1 - 2 then float_round_down p ((Float m1 e1) + (Float m2 e2))
immler@58985
  1678
        else float_round_down p (Float (m1 * 2 ^ (Suc (Suc k1)) + sgn m2) (e1 - int k1 - 2)))
immler@58985
  1679
    else float_plus_down p (Float m2 e2) (Float m1 e1)))"
immler@58985
  1680
proof -
immler@58985
  1681
  {
immler@58985
  1682
    assume H: "bitlen \<bar>m2\<bar> \<le> e1 - e2 - (p - nat (bitlen \<bar>m1\<bar>)) - 2" "m1 \<noteq> 0" "m2 \<noteq> 0" "e1 \<ge> e2"
immler@58985
  1683
    note compute_far_float_plus_down[OF H]
immler@58985
  1684
  }
immler@58985
  1685
  thus ?thesis
immler@58985
  1686
    by transfer (simp add: Let_def plus_down_def ac_simps)
immler@58985
  1687
qed
immler@58985
  1688
hide_fact (open) compute_far_float_plus_down
immler@58985
  1689
hide_fact (open) compute_float_plus_down
immler@58985
  1690
immler@58985
  1691
lemma compute_float_plus_up[code]: "float_plus_up p x y = - float_plus_down p (-x) (-y)"
immler@58985
  1692
  using truncate_down_uminus_eq[of p "x + y"]
immler@58985
  1693
  by transfer (simp add: plus_down_def plus_up_def ac_simps)
immler@58985
  1694
hide_fact (open) compute_float_plus_up
immler@58985
  1695
immler@58985
  1696
lemma mantissa_zero[simp]: "mantissa 0 = 0"
immler@58985
  1697
by (metis mantissa_0 zero_float.abs_eq)
immler@58985
  1698
immler@58985
  1699
hoelzl@47599
  1700
subsection {* Lemmas needed by Approximate *}
hoelzl@47599
  1701
hoelzl@47599
  1702
lemma Float_num[simp]: shows
hoelzl@47599
  1703
   "real (Float 1 0) = 1" and "real (Float 1 1) = 2" and "real (Float 1 2) = 4" and
haftmann@58410
  1704
   "real (Float 1 (- 1)) = 1/2" and "real (Float 1 (- 2)) = 1/4" and "real (Float 1 (- 3)) = 1/8" and
haftmann@58410
  1705
   "real (Float (- 1) 0) = -1" and "real (Float (number_of n) 0) = number_of n"
hoelzl@47599
  1706
using two_powr_int_float[of 2] two_powr_int_float[of "-1"] two_powr_int_float[of "-2"] two_powr_int_float[of "-3"]
hoelzl@47599
  1707
using powr_realpow[of 2 2] powr_realpow[of 2 3]
hoelzl@47599
  1708
using powr_minus[of 2 1] powr_minus[of 2 2] powr_minus[of 2 3]
hoelzl@47599
  1709
by auto
hoelzl@47599
  1710
hoelzl@47599
  1711
lemma real_of_Float_int[simp]: "real (Float n 0) = real n" by simp
hoelzl@47599
  1712
hoelzl@47599
  1713
lemma float_zero[simp]: "real (Float 0 e) = 0" by simp
hoelzl@47599
  1714
hoelzl@47599
  1715
lemma abs_div_2_less: "a \<noteq> 0 \<Longrightarrow> a \<noteq> -1 \<Longrightarrow> abs((a::int) div 2) < abs a"
hoelzl@47599
  1716
by arith
hoelzl@29804
  1717
hoelzl@47599
  1718
lemma lapprox_rat:
hoelzl@47599
  1719
  shows "real (lapprox_rat prec x y) \<le> real x / real y"
hoelzl@47599
  1720
  using round_down by (simp add: lapprox_rat_def)
obua@16782
  1721
hoelzl@47599
  1722
lemma mult_div_le: fixes a b:: int assumes "b > 0" shows "a \<ge> b * (a div b)"
hoelzl@47599
  1723
proof -
hoelzl@47599
  1724
  from zmod_zdiv_equality'[of a b]
hoelzl@47599
  1725
  have "a = b * (a div b) + a mod b" by simp
hoelzl@47599
  1726
  also have "... \<ge> b * (a div b) + 0" apply (rule add_left_mono) apply (rule pos_mod_sign)
hoelzl@47599
  1727
  using assms by simp
hoelzl@47599
  1728
  finally show ?thesis by simp
hoelzl@47599
  1729
qed
hoelzl@47599
  1730
hoelzl@47599
  1731
lemma lapprox_rat_nonneg:
hoelzl@47599
  1732
  fixes n x y
immler@58982
  1733
  assumes "0 \<le> x" and "0 \<le> y"
hoelzl@47599
  1734
  shows "0 \<le> real (lapprox_rat n x y)"
immler@58982
  1735
  using assms by (auto simp: lapprox_rat_def simp: round_down_nonneg)
obua@16782
  1736
hoelzl@31098
  1737
lemma rapprox_rat: "real x / real y \<le> real (rapprox_rat prec x y)"
hoelzl@47599
  1738
  using round_up by (simp add: rapprox_rat_def)
hoelzl@47599
  1739
hoelzl@47599
  1740
lemma rapprox_rat_le1:
hoelzl@47599
  1741
  fixes n x y
hoelzl@47599
  1742
  assumes xy: "0 \<le> x" "0 < y" "x \<le> y"
hoelzl@47599
  1743
  shows "real (rapprox_rat n x y) \<le> 1"
hoelzl@47599
  1744
proof -
hoelzl@47599
  1745
  have "bitlen \<bar>x\<bar> \<le> bitlen \<bar>y\<bar>"
hoelzl@47599
  1746
    using xy unfolding bitlen_def by (auto intro!: floor_mono)
immler@58982
  1747
  from this assms show ?thesis
immler@58982
  1748
    by transfer (auto intro!: round_up_le1 simp: rat_precision_def)
hoelzl@29804
  1749
qed
obua@16782
  1750
immler@58982
  1751
lemma rapprox_rat_nonneg_nonpos:
immler@58982
  1752
  "0 \<le> x \<Longrightarrow> y \<le> 0 \<Longrightarrow> real (rapprox_rat n x y) \<le> 0"
immler@58982
  1753
  by transfer (simp add: round_up_le0 divide_nonneg_nonpos)
obua@16782
  1754
immler@58982
  1755
lemma rapprox_rat_nonpos_nonneg:
immler@58982
  1756
  "x \<le> 0 \<Longrightarrow> 0 \<le> y \<Longrightarrow> real (rapprox_rat n x y) \<le> 0"
immler@58982
  1757
  by transfer (simp add: round_up_le0 divide_nonpos_nonneg)
obua@16782
  1758
immler@54782
  1759
lemma real_divl: "real_divl prec x y \<le> x / y"
immler@54782
  1760
  by (simp add: real_divl_def round_down)
immler@54782
  1761
immler@54782
  1762
lemma real_divr: "x / y \<le> real_divr prec x y"
immler@54782
  1763
  using round_up by (simp add: real_divr_def)
immler@54782
  1764
hoelzl@31098
  1765
lemma float_divl: "real (float_divl prec x y) \<le> real x / real y"
immler@54782
  1766
  by transfer (rule real_divl)
immler@54782
  1767
immler@54782
  1768
lemma real_divl_lower_bound:
immler@54782
  1769
  "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> real_divl prec x y"
immler@58982
  1770
  by (simp add: real_divl_def round_down_nonneg)
hoelzl@47599
  1771
hoelzl@47599
  1772
lemma float_divl_lower_bound:
immler@54782
  1773
  "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> real (float_divl prec x y)"
immler@54782
  1774
  by transfer (rule real_divl_lower_bound)
hoelzl@47599
  1775
hoelzl@47599
  1776
lemma exponent_1: "exponent 1 = 0"
hoelzl@47599
  1777
  using exponent_float[of 1 0] by (simp add: one_float_def)
hoelzl@47599
  1778
hoelzl@47599
  1779
lemma mantissa_1: "mantissa 1 = 1"
hoelzl@47599
  1780
  using mantissa_float[of 1 0] by (simp add: one_float_def)
obua@16782
  1781
hoelzl@47599
  1782
lemma bitlen_1: "bitlen 1 = 1"
hoelzl@47599
  1783
  by (simp add: bitlen_def)
hoelzl@47599
  1784
hoelzl@47599
  1785
lemma mantissa_eq_zero_iff: "mantissa x = 0 \<longleftrightarrow> x = 0"
hoelzl@47599
  1786
proof
hoelzl@47599
  1787
  assume "mantissa x = 0" hence z: "0 = real x" using mantissa_exponent by simp
hoelzl@47599
  1788
  show "x = 0" by (simp add: zero_float_def z)
hoelzl@47599
  1789
qed (simp add: zero_float_def)
obua@16782
  1790
hoelzl@47599
  1791
lemma float_upper_bound: "x \<le> 2 powr (bitlen \<bar>mantissa x\<bar> + exponent x)"
hoelzl@47599
  1792
proof (cases "x = 0", simp)
hoelzl@47599
  1793
  assume "x \<noteq> 0" hence "mantissa x \<noteq> 0" using mantissa_eq_zero_iff by auto
hoelzl@47599
  1794
  have "x = mantissa x * 2 powr (exponent x)" by (rule mantissa_exponent)
hoelzl@47599
  1795
  also have "mantissa x \<le> \<bar>mantissa x\<bar>" by simp
hoelzl@47599
  1796
  also have "... \<le> 2 powr (bitlen \<bar>mantissa x\<bar>)"
hoelzl@47599
  1797
    using bitlen_bounds[of "\<bar>mantissa x\<bar>"] bitlen_nonneg `mantissa x \<noteq> 0`
immler@58989
  1798
    by (auto simp del: real_of_int_abs simp add: powr_int)
hoelzl@47599
  1799
  finally show ?thesis by (simp add: powr_add)
hoelzl@29804
  1800
qed
hoelzl@29804
  1801
immler@54782
  1802
lemma real_divl_pos_less1_bound:
immler@58982
  1803
  assumes "0 < x" "x \<le> 1" "prec \<ge> 1"
immler@58982
  1804
  shows "1 \<le> real_divl prec 1 x"
immler@58982
  1805
proof -
immler@58982
  1806
  have "log 2 x \<le> real prec + real \<lfloor>log 2 x\<rfloor>" using `prec \<ge> 1` by arith
immler@58982
  1807
  from this assms show ?thesis
immler@58982
  1808
    by (simp add: real_divl_def log_divide round_down_ge1)
hoelzl@29804
  1809
qed
obua@16782
  1810
immler@54782
  1811
lemma float_divl_pos_less1_bound:
immler@58982
  1812
  "0 < real x \<Longrightarrow> real x \<le> 1 \<Longrightarrow> prec \<ge> 1 \<Longrightarrow> 1 \<le> real (float_divl prec 1 x)"
immler@54782
  1813
  by (transfer, rule real_divl_pos_less1_bound)
obua@16782
  1814
immler@54782
  1815
lemma float_divr: "real x / real y \<le> real (float_divr prec x y)"
immler@54782
  1816
  by transfer (rule real_divr)
immler@54782
  1817
immler@58982
  1818
lemma real_divr_pos_less1_lower_bound: assumes "0 < x" and "x \<le> 1" shows "1 \<le> real_divr prec 1 x"
hoelzl@29804
  1819
proof -
immler@58982
  1820
  have "1 \<le> 1 / x" using `0 < x` and `x <= 1` by auto
immler@54782
  1821
  also have "\<dots> \<le> real_divr prec 1 x" using real_divr[where x=1 and y=x] by auto
hoelzl@47600
  1822
  finally show ?thesis by auto
hoelzl@29804
  1823
qed
hoelzl@29804
  1824
immler@58982
  1825
lemma float_divr_pos_less1_lower_bound: "0 < x \<Longrightarrow> x \<le> 1 \<Longrightarrow> 1 \<le> float_divr prec 1 x"
immler@54782
  1826
  by transfer (rule real_divr_pos_less1_lower_bound)
immler@54782
  1827
immler@54782
  1828
lemma real_divr_nonpos_pos_upper_bound:
immler@58982
  1829
  "x \<le> 0 \<Longrightarrow> 0 \<le> y \<Longrightarrow> real_divr prec x y \<le> 0"
immler@58982
  1830
  by (simp add: real_divr_def round_up_le0 divide_le_0_iff)
immler@54782
  1831
hoelzl@47599
  1832
lemma float_divr_nonpos_pos_upper_bound:
immler@58982
  1833
  "real x \<le> 0 \<Longrightarrow> 0 \<le> real y \<Longrightarrow> real (float_divr prec x y) \<le> 0"
immler@54782
  1834
  by transfer (rule real_divr_nonpos_pos_upper_bound)
immler@54782
  1835
immler@54782
  1836
lemma real_divr_nonneg_neg_upper_bound:
immler@58982
  1837
  "0 \<le> x \<Longrightarrow> y \<le> 0 \<Longrightarrow> real_divr prec x y \<le> 0"
immler@58982
  1838
  by (simp add: real_divr_def round_up_le0 divide_le_0_iff)
obua@16782
  1839
hoelzl@47599
  1840
lemma float_divr_nonneg_neg_upper_bound:
immler@58982
  1841
  "0 \<le> real x \<Longrightarrow> real y \<le> 0 \<Longrightarrow> real (float_divr prec x y) \<le> 0"
immler@54782
  1842
  by transfer (rule real_divr_nonneg_neg_upper_bound)
immler@54782
  1843
immler@54784
  1844
lemma truncate_up_nonneg_mono:
immler@54784
  1845
  assumes "0 \<le> x" "x \<le> y"
immler@54784
  1846
  shows "truncate_up prec x \<le> truncate_up prec y"
immler@54784
  1847
proof -
immler@54784
  1848
  {
immler@54784
  1849
    assume "\<lfloor>log 2 x\<rfloor> = \<lfloor>log 2 y\<rfloor>"
immler@54784
  1850
    hence ?thesis
immler@54784
  1851
      using assms
immler@54784
  1852
      by (auto simp: truncate_up_def round_up_def intro!: ceiling_mono)
immler@54784
  1853
  } moreover {
immler@54784
  1854
    assume "0 < x"
immler@54784
  1855
    hence "log 2 x \<le> log 2 y" using assms by auto
immler@54784
  1856
    moreover
immler@54784
  1857
    assume "\<lfloor>log 2 x\<rfloor> \<noteq> \<lfloor>log 2 y\<rfloor>"
immler@54784
  1858
    ultimately have logless: "log 2 x < log 2 y" and flogless: "\<lfloor>log 2 x\<rfloor> < \<lfloor>log 2 y\<rfloor>"
immler@54784
  1859
      unfolding atomize_conj
immler@54784
  1860
      by (metis floor_less_cancel linorder_cases not_le)
immler@54784
  1861
    have "truncate_up prec x =
immler@54784
  1862
      real \<lceil>x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1)\<rceil> * 2 powr - real (int prec - \<lfloor>log 2 x\<rfloor> - 1)"
immler@54784
  1863
      using assms by (simp add: truncate_up_def round_up_def)
immler@54784
  1864
    also have "\<lceil>x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1)\<rceil> \<le> (2 ^ prec)"
immler@54784
  1865
    proof (unfold ceiling_le_eq)
immler@54784
  1866
      have "x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1) \<le> x * (2 powr real prec / (2 powr log 2 x))"
immler@54784
  1867
        using real_of_int_floor_add_one_ge[of "log 2 x"] assms
immler@54784
  1868
        by (auto simp add: algebra_simps powr_divide2 intro!: mult_left_mono)
immler@54784
  1869
      thus "x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1) \<le> real ((2::int) ^ prec)"
immler@54784
  1870
        using `0 < x` by (simp add: powr_realpow)
immler@54784
  1871
    qed
immler@54784
  1872
    hence "real \<lceil>x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1)\<rceil> \<le> 2 powr int prec"
immler@54784
  1873
      by (auto simp: powr_realpow)
immler@54784
  1874
    also
immler@54784
  1875
    have "2 powr - real (int prec - \<lfloor>log 2 x\<rfloor> - 1) \<le> 2 powr - real (int prec - \<lfloor>log 2 y\<rfloor>)"
immler@54784
  1876
      using logless flogless by (auto intro!: floor_mono)
immler@54784
  1877
    also have "2 powr real (int prec) \<le> 2 powr (log 2 y + real (int prec - \<lfloor>log 2 y\<rfloor>))"
immler@54784
  1878
      using assms `0 < x`
immler@54784
  1879
      by (auto simp: algebra_simps)
immler@54784
  1880
    finally have "truncate_up prec x \<le> 2 powr (log 2 y + real (int prec - \<lfloor>log 2 y\<rfloor>)) * 2 powr - real (int prec - \<lfloor>log 2 y\<rfloor>)"
immler@54784
  1881
      by simp
immler@54784
  1882
    also have "\<dots> = 2 powr (log 2 y + real (int prec - \<lfloor>log 2 y\<rfloor>) - real (int prec - \<lfloor>log 2 y\<rfloor>))"
immler@54784
  1883
      by (subst powr_add[symmetric]) simp
immler@54784
  1884
    also have "\<dots> = y"
immler@54784
  1885
      using `0 < x` assms
immler@54784
  1886
      by (simp add: powr_add)
immler@54784
  1887
    also have "\<dots> \<le> truncate_up prec y"
immler@54784
  1888
      by (rule truncate_up)
immler@54784
  1889
    finally have ?thesis .
immler@54784
  1890
  } moreover {
immler@54784
  1891
    assume "~ 0 < x"
immler@54784
  1892
    hence ?thesis
immler@54784
  1893
      using assms
immler@54784
  1894
      by (auto intro!: truncate_up_le)
immler@54784
  1895
  } ultimately show ?thesis
immler@54784
  1896
    by blast
immler@54784
  1897
qed
immler@54784
  1898
immler@54784
  1899
lemma truncate_up_switch_sign_mono:
immler@54784
  1900
  assumes "x \<le> 0" "0 \<le> y"
immler@54784
  1901
  shows "truncate_up prec x \<le> truncate_up prec y"
immler@54784
  1902
proof -
immler@54784
  1903
  note truncate_up_nonpos[OF `x \<le> 0`]
immler@54784
  1904
  also note truncate_up_le[OF `0 \<le> y`]
immler@54784
  1905
  finally show ?thesis .
immler@54784
  1906
qed
immler@54784
  1907
immler@54784
  1908
lemma truncate_down_zeroprec_mono:
immler@54784
  1909
  assumes "0 < x" "x \<le> y"
immler@54784
  1910
  shows "truncate_down 0 x \<le> truncate_down 0 y"
immler@54784
  1911
proof -
immler@54784
  1912
  have "x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1) = x * inverse (2 powr ((real \<lfloor>log 2 x\<rfloor> + 1)))"
immler@54784
  1913
    by (simp add: powr_divide2[symmetric] powr_add powr_minus inverse_eq_divide)
immler@54784
  1914
  also have "\<dots> = 2 powr (log 2 x - (real \<lfloor>log 2 x\<rfloor>) - 1)"
immler@54784
  1915
    using `0 < x`
wenzelm@57862
  1916
    by (auto simp: field_simps powr_add powr_divide2[symmetric])
immler@54784
  1917
  also have "\<dots> < 2 powr 0"
immler@54784
  1918
    using real_of_int_floor_add_one_gt
immler@54784
  1919
    unfolding neg_less_iff_less
immler@54784
  1920
    by (intro powr_less_mono) (auto simp: algebra_simps)
immler@54784
  1921
  finally have "\<lfloor>x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1)\<rfloor> < 1"
immler@54784
  1922
    unfolding less_ceiling_eq real_of_int_minus real_of_one
immler@54784
  1923
    by simp
immler@54784
  1924
  moreover
immler@54784
  1925
  have "0 \<le> \<lfloor>x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1)\<rfloor>"
nipkow@56536
  1926
    using `x > 0` by auto
immler@54784
  1927
  ultimately have "\<lfloor>x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1)\<rfloor> \<in> {0 ..< 1}"
immler@54784
  1928
    by simp
immler@54784
  1929
  also have "\<dots> \<subseteq> {0}" by auto
immler@54784
  1930
  finally have "\<lfloor>x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1)\<rfloor> = 0" by simp
immler@54784
  1931
  with assms show ?thesis
nipkow@56536
  1932
    by (auto simp: truncate_down_def round_down_def)
immler@54784
  1933
qed
immler@54784
  1934
immler@54784
  1935
lemma truncate_down_switch_sign_mono:
immler@54784
  1936
  assumes "x \<le> 0" "0 \<le> y"
immler@54784
  1937
  assumes "x \<le> y"
immler@54784
  1938
  shows "truncate_down prec x \<le> truncate_down prec y"
immler@54784
  1939
proof -
immler@58985
  1940
  note truncate_down_le[OF `x \<le> 0`]
immler@54784
  1941
  also note truncate_down_nonneg[OF `0 \<le> y`]
immler@54784
  1942
  finally show ?thesis .
immler@54784
  1943
qed
immler@54784
  1944
immler@54784
  1945
lemma truncate_down_nonneg_mono:
immler@54784
  1946
  assumes "0 \<le> x" "x \<le> y"
immler@54784
  1947
  shows "truncate_down prec x \<le> truncate_down prec y"
immler@54784
  1948
proof -
immler@54784
  1949
  {
immler@54784
  1950
    assume "0 < x" "prec = 0"
immler@54784
  1951
    with assms have ?thesis
immler@54784
  1952
      by (simp add: truncate_down_zeroprec_mono)
immler@54784
  1953
  } moreover {
immler@54784
  1954
    assume "~ 0 < x"
immler@54784
  1955
    with assms have "x = 0" "0 \<le> y" by simp_all
immler@54784
  1956
    hence ?thesis
immler@58985
  1957
      by (auto intro!: truncate_down_nonneg)
immler@54784
  1958
  } moreover {
immler@54784
  1959
    assume "\<lfloor>log 2 \<bar>x\<bar>\<rfloor> = \<lfloor>log 2 \<bar>y\<bar>\<rfloor>"
immler@54784
  1960
    hence ?thesis
immler@54784
  1961
      using assms
immler@54784
  1962
      by (auto simp: truncate_down_def round_down_def intro!: floor_mono)
immler@54784
  1963
  } moreover {
immler@54784
  1964
    assume "0 < x"
immler@54784
  1965
    hence "log 2 x \<le> log 2 y" "0 < y" "0 \<le> y" using assms by auto
immler@54784
  1966
    moreover
immler@54784
  1967
    assume "\<lfloor>log 2 \<bar>x\<bar>\<rfloor> \<noteq> \<lfloor>log 2 \<bar>y\<bar>\<rfloor>"
immler@54784
  1968
    ultimately have logless: "log 2 x < log 2 y" and flogless: "\<lfloor>log 2 x\<rfloor> < \<lfloor>log 2 y\<rfloor>"
immler@54784
  1969
      unfolding atomize_conj abs_of_pos[OF `0 < x`] abs_of_pos[OF `0 < y`]
immler@54784
  1970
      by (metis floor_less_cancel linorder_cases not_le)
immler@54784
  1971
    assume "prec \<noteq> 0" hence [simp]: "prec \<ge> Suc 0" by auto
immler@54784
  1972
    have "2 powr (prec - 1) \<le> y * 2 powr real (prec - 1) / (2 powr log 2 y)"
immler@54784
  1973
      using `0 < y`
immler@54784
  1974
      by simp
immler@54784
  1975
    also have "\<dots> \<le> y * 2 powr real prec / (2 powr (real \<lfloor>log 2 y\<rfloor> + 1))"
immler@54784
  1976
      using `0 \<le> y` `0 \<le> x` assms(2)
nipkow@56544
  1977
      by (auto intro!: powr_mono divide_left_mono
immler@54784
  1978
        simp: real_of_nat_diff powr_add
immler@54784
  1979
        powr_divide2[symmetric])
immler@54784
  1980
    also have "\<dots> = y * 2 powr real prec / (2 powr real \<lfloor>log 2 y\<rfloor> * 2)"
immler@54784
  1981
      by (auto simp: powr_add)
immler@54784
  1982
    finally have "(2 ^ (prec - 1)) \<le> \<lfloor>y * 2 powr real (int prec - \<lfloor>log 2 \<bar>y\<bar>\<rfloor> - 1)\<rfloor>"
immler@54784
  1983
      using `0 \<le> y`
immler@54784
  1984
      by (auto simp: powr_divide2[symmetric] le_floor_eq powr_realpow)
immler@54784
  1985
    hence "(2 ^ (prec - 1)) * 2 powr - real (int prec - \<lfloor>log 2 \<bar>y\<bar>\<rfloor> - 1) \<le> truncate_down prec y"
immler@54784
  1986
      by (auto simp: truncate_down_def round_down_def)
immler@54784
  1987
    moreover
immler@54784
  1988
    {
immler@54784
  1989
      have "x = 2 powr (log 2 \<bar>x\<bar>)" using `0 < x` by simp
immler@54784
  1990
      also have "\<dots> \<le> (2 ^ (prec )) * 2 powr - real (int prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1)"
immler@54784
  1991
        using real_of_int_floor_add_one_ge[of "log 2 \<bar>x\<bar>"]
immler@54784
  1992
        by (auto simp: powr_realpow[symmetric] powr_add[symmetric] algebra_simps)
immler@54784
  1993
      also
immler@54784
  1994
      have "2 powr - real (int prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1) \<le> 2 powr - real (int prec - \<lfloor>log 2 \<bar>y\<bar>\<rfloor>)"
immler@54784
  1995
        using logless flogless `x > 0` `y > 0`
immler@54784
  1996
        by (auto intro!: floor_mono)
immler@54784
  1997
      finally have "x \<le> (2 ^ (prec - 1)) * 2 powr - real (int prec - \<lfloor>log 2 \<bar>y\<bar>\<rfloor> - 1)"
immler@54784
  1998
        by (auto simp: powr_realpow[symmetric] powr_divide2[symmetric] assms real_of_nat_diff)
immler@54784
  1999
    } ultimately have ?thesis
immler@54784
  2000
      by (metis dual_order.trans truncate_down)
immler@54784
  2001
  } ultimately show ?thesis by blast
immler@54784
  2002
qed
immler@54784
  2003
immler@58982
  2004
lemma truncate_down_eq_truncate_up: "truncate_down p x = - truncate_up p (-x)"
immler@58982
  2005
  and truncate_up_eq_truncate_down: "truncate_up p x = - truncate_down p (-x)"
immler@58982
  2006
  by (auto simp: truncate_up_uminus_eq truncate_down_uminus_eq)
immler@58982
  2007
immler@54784
  2008
lemma truncate_down_mono: "x \<le> y \<Longrightarrow> truncate_down p x \<le> truncate_down p y"
immler@54784
  2009
  apply (cases "0 \<le> x")
immler@54784
  2010
  apply (rule truncate_down_nonneg_mono, assumption+)
immler@58982
  2011
  apply (simp add: truncate_down_eq_truncate_up)
immler@54784
  2012
  apply (cases "0 \<le> y")
immler@54784
  2013
  apply (auto intro: truncate_up_nonneg_mono truncate_up_switch_sign_mono)
immler@54784
  2014
  done
immler@54784
  2015
immler@54784
  2016
lemma truncate_up_mono: "x \<le> y \<Longrightarrow> truncate_up p x \<le> truncate_up p y"
immler@58982
  2017
  by (simp add: truncate_up_eq_truncate_down truncate_down_mono)
immler@54784
  2018
hoelzl@47599
  2019
lemma Float_le_zero_iff: "Float a b \<le> 0 \<longleftrightarrow> a \<le> 0"
hoelzl@47599
  2020
 apply (auto simp: zero_float_def mult_le_0_iff)
hoelzl@47599
  2021
 using powr_gt_zero[of 2 b] by simp
hoelzl@47599
  2022
hoelzl@47621
  2023
lemma real_of_float_pprt[simp]: fixes a::float shows "real (pprt a) = pprt (real a)"
hoelzl@47600
  2024
  unfolding pprt_def sup_float_def max_def sup_real_def by auto
hoelzl@47599
  2025
hoelzl@47621
  2026
lemma real_of_float_nprt[simp]: fixes a::float shows "real (nprt a) = nprt (real a)"
hoelzl@47600
  2027
  unfolding nprt_def inf_float_def min_def inf_real_def by auto
hoelzl@47599
  2028
kuncar@55565
  2029
lift_definition int_floor_fl :: "float \<Rightarrow> int" is floor .
obua@16782
  2030
hoelzl@47599
  2031
lemma compute_int_floor_fl[code]:
hoelzl@47601
  2032
  "int_floor_fl (Float m e) = (if 0 \<le> e then m * 2 ^ nat e else m div (2 ^ (nat (-e))))"
hoelzl@47600
  2033
  by transfer (simp add: powr_int int_of_reals floor_divide_eq_div del: real_of_ints)
hoelzl@47621
  2034
hide_fact (open) compute_int_floor_fl
hoelzl@47599
  2035
hoelzl@47600
  2036
lift_definition floor_fl :: "float \<Rightarrow> float" is "\<lambda>x. real (floor x)" by simp
hoelzl@47599
  2037
hoelzl@47599
  2038
lemma compute_floor_fl[code]:
hoelzl@47601
  2039
  "floor_fl (Float m e) = (if 0 \<le> e then Float m e else Float (m div (2 ^ (nat (-e)))) 0)"
hoelzl@47600
  2040
  by transfer (simp add: powr_int int_of_reals floor_divide_eq_div del: real_of_ints)
hoelzl@47621
  2041
hide_fact (open) compute_floor_fl
obua@16782
  2042
hoelzl@47600
  2043
lemma floor_fl: "real (floor_fl x) \<le> real x" by transfer simp
hoelzl@47600
  2044
hoelzl@47600
  2045
lemma int_floor_fl: "real (int_floor_fl x) \<le> real x" by transfer simp
hoelzl@29804
  2046
hoelzl@47599
  2047
lemma floor_pos_exp: "exponent (floor_fl x) \<ge> 0"
wenzelm@53381
  2048
proof (cases "floor_fl x = float_of 0")
wenzelm@53381
  2049
  case True
wenzelm@53381
  2050
  then show ?thesis by (simp add: floor_fl_def)
wenzelm@53381
  2051
next
wenzelm@53381
  2052
  case False
wenzelm@53381
  2053
  have eq: "floor_fl x = Float \<lfloor>real x\<rfloor> 0" by transfer simp
wenzelm@53381
  2054
  obtain i where "\<lfloor>real x\<rfloor> = mantissa (floor_fl x) * 2 ^ i" "0 = exponent (floor_fl x) - int i"
wenzelm@53381
  2055
    by (rule denormalize_shift[OF eq[THEN eq_reflection] False])
wenzelm@53381
  2056
  then show ?thesis by simp
wenzelm@53381
  2057
qed
obua@16782
  2058
immler@58985
  2059
lemma compute_mantissa[code]:
immler@58985
  2060
  "mantissa (Float m e) = (if m = 0 then 0 else if 2 dvd m then mantissa (normfloat (Float m e)) else m)"
immler@58985
  2061
  by (auto simp: mantissa_float Float.abs_eq)
immler@58985
  2062
immler@58985
  2063
lemma compute_exponent[code]:
immler@58985
  2064
  "exponent (Float m e) = (if m = 0 then 0 else if 2 dvd m then exponent (normfloat (Float m e)) else e)"
immler@58985
  2065
  by (auto simp: exponent_float Float.abs_eq)
immler@58985
  2066
obua@16782
  2067
end
hoelzl@47599
  2068