src/ZF/Constructible/WF_absolute.thy
author paulson
Fri Jun 28 11:25:46 2002 +0200 (2002-06-28)
changeset 13254 5146ccaedf42
parent 13251 74cb2af8811e
child 13268 240509babf00
permissions -rw-r--r--
class quantifiers (some)
absoluteness and closure for WFrec-defined functions
paulson@13242
     1
theory WF_absolute = WFrec:
paulson@13223
     2
paulson@13251
     3
subsection{*Every well-founded relation is a subset of some inverse image of
paulson@13247
     4
      an ordinal*}
paulson@13247
     5
paulson@13247
     6
lemma wf_rvimage_Ord: "Ord(i) \<Longrightarrow> wf(rvimage(A, f, Memrel(i)))"
paulson@13251
     7
by (blast intro: wf_rvimage wf_Memrel)
paulson@13247
     8
paulson@13247
     9
paulson@13247
    10
constdefs
paulson@13247
    11
  wfrank :: "[i,i]=>i"
paulson@13247
    12
    "wfrank(r,a) == wfrec(r, a, %x f. \<Union>y \<in> r-``{x}. succ(f`y))"
paulson@13247
    13
paulson@13247
    14
constdefs
paulson@13247
    15
  wftype :: "i=>i"
paulson@13247
    16
    "wftype(r) == \<Union>y \<in> range(r). succ(wfrank(r,y))"
paulson@13247
    17
paulson@13247
    18
lemma wfrank: "wf(r) ==> wfrank(r,a) = (\<Union>y \<in> r-``{a}. succ(wfrank(r,y)))"
paulson@13247
    19
by (subst wfrank_def [THEN def_wfrec], simp_all)
paulson@13247
    20
paulson@13247
    21
lemma Ord_wfrank: "wf(r) ==> Ord(wfrank(r,a))"
paulson@13247
    22
apply (rule_tac a="a" in wf_induct, assumption)
paulson@13247
    23
apply (subst wfrank, assumption)
paulson@13251
    24
apply (rule Ord_succ [THEN Ord_UN], blast)
paulson@13247
    25
done
paulson@13247
    26
paulson@13247
    27
lemma wfrank_lt: "[|wf(r); <a,b> \<in> r|] ==> wfrank(r,a) < wfrank(r,b)"
paulson@13247
    28
apply (rule_tac a1 = "b" in wfrank [THEN ssubst], assumption)
paulson@13247
    29
apply (rule UN_I [THEN ltI])
paulson@13247
    30
apply (simp add: Ord_wfrank vimage_iff)+
paulson@13247
    31
done
paulson@13247
    32
paulson@13247
    33
lemma Ord_wftype: "wf(r) ==> Ord(wftype(r))"
paulson@13247
    34
by (simp add: wftype_def Ord_wfrank)
paulson@13247
    35
paulson@13247
    36
lemma wftypeI: "\<lbrakk>wf(r);  x \<in> field(r)\<rbrakk> \<Longrightarrow> wfrank(r,x) \<in> wftype(r)"
paulson@13251
    37
apply (simp add: wftype_def)
paulson@13251
    38
apply (blast intro: wfrank_lt [THEN ltD])
paulson@13247
    39
done
paulson@13247
    40
paulson@13247
    41
paulson@13247
    42
lemma wf_imp_subset_rvimage:
paulson@13247
    43
     "[|wf(r); r \<subseteq> A*A|] ==> \<exists>i f. Ord(i) & r <= rvimage(A, f, Memrel(i))"
paulson@13251
    44
apply (rule_tac x="wftype(r)" in exI)
paulson@13251
    45
apply (rule_tac x="\<lambda>x\<in>A. wfrank(r,x)" in exI)
paulson@13251
    46
apply (simp add: Ord_wftype, clarify)
paulson@13251
    47
apply (frule subsetD, assumption, clarify)
paulson@13247
    48
apply (simp add: rvimage_iff wfrank_lt [THEN ltD])
paulson@13251
    49
apply (blast intro: wftypeI)
paulson@13247
    50
done
paulson@13247
    51
paulson@13247
    52
theorem wf_iff_subset_rvimage:
paulson@13247
    53
  "relation(r) ==> wf(r) <-> (\<exists>i f A. Ord(i) & r <= rvimage(A, f, Memrel(i)))"
paulson@13247
    54
by (blast dest!: relation_field_times_field wf_imp_subset_rvimage
paulson@13247
    55
          intro: wf_rvimage_Ord [THEN wf_subset])
paulson@13247
    56
paulson@13247
    57
paulson@13223
    58
subsection{*Transitive closure without fixedpoints*}
paulson@13223
    59
paulson@13223
    60
constdefs
paulson@13223
    61
  rtrancl_alt :: "[i,i]=>i"
paulson@13251
    62
    "rtrancl_alt(A,r) ==
paulson@13223
    63
       {p \<in> A*A. \<exists>n\<in>nat. \<exists>f \<in> succ(n) -> A.
paulson@13242
    64
                 (\<exists>x y. p = <x,y> &  f`0 = x & f`n = y) &
paulson@13223
    65
                       (\<forall>i\<in>n. <f`i, f`succ(i)> \<in> r)}"
paulson@13223
    66
paulson@13251
    67
lemma alt_rtrancl_lemma1 [rule_format]:
paulson@13223
    68
    "n \<in> nat
paulson@13251
    69
     ==> \<forall>f \<in> succ(n) -> field(r).
paulson@13223
    70
         (\<forall>i\<in>n. \<langle>f`i, f ` succ(i)\<rangle> \<in> r) --> \<langle>f`0, f`n\<rangle> \<in> r^*"
paulson@13251
    71
apply (induct_tac n)
paulson@13251
    72
apply (simp_all add: apply_funtype rtrancl_refl, clarify)
paulson@13251
    73
apply (rename_tac n f)
paulson@13251
    74
apply (rule rtrancl_into_rtrancl)
paulson@13223
    75
 prefer 2 apply assumption
paulson@13223
    76
apply (drule_tac x="restrict(f,succ(n))" in bspec)
paulson@13251
    77
 apply (blast intro: restrict_type2)
paulson@13251
    78
apply (simp add: Ord_succ_mem_iff nat_0_le [THEN ltD] leI [THEN ltD] ltI)
paulson@13223
    79
done
paulson@13223
    80
paulson@13223
    81
lemma rtrancl_alt_subset_rtrancl: "rtrancl_alt(field(r),r) <= r^*"
paulson@13223
    82
apply (simp add: rtrancl_alt_def)
paulson@13251
    83
apply (blast intro: alt_rtrancl_lemma1)
paulson@13223
    84
done
paulson@13223
    85
paulson@13223
    86
lemma rtrancl_subset_rtrancl_alt: "r^* <= rtrancl_alt(field(r),r)"
paulson@13251
    87
apply (simp add: rtrancl_alt_def, clarify)
paulson@13251
    88
apply (frule rtrancl_type [THEN subsetD], clarify, simp)
paulson@13251
    89
apply (erule rtrancl_induct)
paulson@13223
    90
 txt{*Base case, trivial*}
paulson@13251
    91
 apply (rule_tac x=0 in bexI)
paulson@13251
    92
  apply (rule_tac x="lam x:1. xa" in bexI)
paulson@13251
    93
   apply simp_all
paulson@13223
    94
txt{*Inductive step*}
paulson@13251
    95
apply clarify
paulson@13251
    96
apply (rename_tac n f)
paulson@13251
    97
apply (rule_tac x="succ(n)" in bexI)
paulson@13223
    98
 apply (rule_tac x="lam i:succ(succ(n)). if i=succ(n) then z else f`i" in bexI)
paulson@13251
    99
  apply (simp add: Ord_succ_mem_iff nat_0_le [THEN ltD] leI [THEN ltD] ltI)
paulson@13251
   100
  apply (blast intro: mem_asym)
paulson@13251
   101
 apply typecheck
paulson@13251
   102
 apply auto
paulson@13223
   103
done
paulson@13223
   104
paulson@13223
   105
lemma rtrancl_alt_eq_rtrancl: "rtrancl_alt(field(r),r) = r^*"
paulson@13223
   106
by (blast del: subsetI
paulson@13251
   107
	  intro: rtrancl_alt_subset_rtrancl rtrancl_subset_rtrancl_alt)
paulson@13223
   108
paulson@13223
   109
paulson@13242
   110
constdefs
paulson@13242
   111
paulson@13242
   112
  rtran_closure :: "[i=>o,i,i] => o"
paulson@13251
   113
    "rtran_closure(M,r,s) ==
paulson@13242
   114
        \<forall>A. M(A) --> is_field(M,r,A) -->
paulson@13251
   115
 	 (\<forall>p. M(p) -->
paulson@13251
   116
          (p \<in> s <->
paulson@13251
   117
           (\<exists>n\<in>nat. M(n) &
paulson@13242
   118
            (\<exists>n'. M(n') & successor(M,n,n') &
paulson@13242
   119
             (\<exists>f. M(f) & typed_function(M,n',A,f) &
paulson@13251
   120
              (\<exists>x\<in>A. M(x) & (\<exists>y\<in>A. M(y) & pair(M,x,y,p) &
paulson@13242
   121
                   fun_apply(M,f,0,x) & fun_apply(M,f,n,y))) &
paulson@13242
   122
              (\<forall>i\<in>n. M(i) -->
paulson@13242
   123
                (\<forall>i'. M(i') --> successor(M,i,i') -->
paulson@13242
   124
                 (\<forall>fi. M(fi) --> fun_apply(M,f,i,fi) -->
paulson@13242
   125
                  (\<forall>fi'. M(fi') --> fun_apply(M,f,i',fi') -->
paulson@13242
   126
                   (\<forall>q. M(q) --> pair(M,fi,fi',q) --> q \<in> r))))))))))"
paulson@13242
   127
paulson@13242
   128
  tran_closure :: "[i=>o,i,i] => o"
paulson@13251
   129
    "tran_closure(M,r,t) ==
paulson@13242
   130
         \<exists>s. M(s) & rtran_closure(M,r,s) & composition(M,r,s,t)"
paulson@13242
   131
paulson@13242
   132
paulson@13242
   133
locale M_trancl = M_axioms +
paulson@13242
   134
(*THEY NEED RELATIVIZATION*)
paulson@13242
   135
  assumes rtrancl_separation:
paulson@13242
   136
     "[| M(r); M(A) |] ==>
paulson@13242
   137
	separation
paulson@13242
   138
	   (M, \<lambda>p. \<exists>n\<in>nat. \<exists>f \<in> succ(n) -> A.
paulson@13242
   139
                    (\<exists>x y. p = <x,y> &  f`0 = x & f`n = y) &
paulson@13242
   140
                          (\<forall>i\<in>n. <f`i, f`succ(i)> \<in> r))"
paulson@13242
   141
      and wellfounded_trancl_separation:
paulson@13242
   142
     "[| M(r); M(Z) |] ==> separation (M, \<lambda>x. \<exists>w. M(w) & \<langle>w,x\<rangle> \<in> r^+ & w \<in> Z)"
paulson@13242
   143
paulson@13242
   144
paulson@13251
   145
lemma (in M_trancl) rtran_closure_rtrancl:
paulson@13242
   146
     "M(r) ==> rtran_closure(M,r,rtrancl(r))"
paulson@13251
   147
apply (simp add: rtran_closure_def rtrancl_alt_eq_rtrancl [symmetric]
paulson@13242
   148
                 rtrancl_alt_def field_closed typed_apply_abs apply_closed
paulson@13251
   149
                 Ord_succ_mem_iff M_nat  nat_0_le [THEN ltD], clarify)
paulson@13251
   150
apply (rule iffI)
paulson@13251
   151
 apply clarify
paulson@13251
   152
 apply simp
paulson@13251
   153
 apply (rename_tac n f)
paulson@13251
   154
 apply (rule_tac x=n in bexI)
paulson@13251
   155
  apply (rule_tac x=f in exI)
paulson@13242
   156
  apply simp
paulson@13242
   157
  apply (blast dest: finite_fun_closed dest: transM)
paulson@13242
   158
 apply assumption
paulson@13242
   159
apply clarify
paulson@13251
   160
apply (simp add: nat_0_le [THEN ltD] apply_funtype, blast)
paulson@13242
   161
done
paulson@13242
   162
paulson@13251
   163
lemma (in M_trancl) rtrancl_closed [intro,simp]:
paulson@13242
   164
     "M(r) ==> M(rtrancl(r))"
paulson@13251
   165
apply (insert rtrancl_separation [of r "field(r)"])
paulson@13251
   166
apply (simp add: rtrancl_alt_eq_rtrancl [symmetric]
paulson@13242
   167
                 rtrancl_alt_def field_closed typed_apply_abs apply_closed
paulson@13242
   168
                 Ord_succ_mem_iff M_nat
paulson@13242
   169
                 nat_0_le [THEN ltD] leI [THEN ltD] ltI apply_funtype)
paulson@13242
   170
done
paulson@13242
   171
paulson@13251
   172
lemma (in M_trancl) rtrancl_abs [simp]:
paulson@13242
   173
     "[| M(r); M(z) |] ==> rtran_closure(M,r,z) <-> z = rtrancl(r)"
paulson@13242
   174
apply (rule iffI)
paulson@13242
   175
 txt{*Proving the right-to-left implication*}
paulson@13251
   176
 prefer 2 apply (blast intro: rtran_closure_rtrancl)
paulson@13242
   177
apply (rule M_equalityI)
paulson@13251
   178
apply (simp add: rtran_closure_def rtrancl_alt_eq_rtrancl [symmetric]
paulson@13242
   179
                 rtrancl_alt_def field_closed typed_apply_abs apply_closed
paulson@13242
   180
                 Ord_succ_mem_iff M_nat
paulson@13251
   181
                 nat_0_le [THEN ltD] leI [THEN ltD] ltI apply_funtype)
paulson@13242
   182
 prefer 2 apply assumption
paulson@13242
   183
 prefer 2 apply blast
paulson@13251
   184
apply (rule iffI, clarify)
paulson@13251
   185
apply (simp add: nat_0_le [THEN ltD]  apply_funtype, blast, clarify, simp)
paulson@13251
   186
 apply (rename_tac n f)
paulson@13251
   187
 apply (rule_tac x=n in bexI)
paulson@13242
   188
  apply (rule_tac x=f in exI)
paulson@13242
   189
  apply (blast dest!: finite_fun_closed, assumption)
paulson@13242
   190
done
paulson@13242
   191
paulson@13242
   192
paulson@13251
   193
lemma (in M_trancl) trancl_closed [intro,simp]:
paulson@13242
   194
     "M(r) ==> M(trancl(r))"
paulson@13251
   195
by (simp add: trancl_def comp_closed rtrancl_closed)
paulson@13242
   196
paulson@13251
   197
lemma (in M_trancl) trancl_abs [simp]:
paulson@13242
   198
     "[| M(r); M(z) |] ==> tran_closure(M,r,z) <-> z = trancl(r)"
paulson@13251
   199
by (simp add: tran_closure_def trancl_def)
paulson@13242
   200
paulson@13242
   201
paulson@13251
   202
text{*Alternative proof of @{text wf_on_trancl}; inspiration for the
paulson@13242
   203
      relativized version.  Original version is on theory WF.*}
paulson@13242
   204
lemma "[| wf[A](r);  r-``A <= A |] ==> wf[A](r^+)"
paulson@13251
   205
apply (simp add: wf_on_def wf_def)
paulson@13242
   206
apply (safe intro!: equalityI)
paulson@13251
   207
apply (drule_tac x = "{x\<in>A. \<exists>w. \<langle>w,x\<rangle> \<in> r^+ & w \<in> Z}" in spec)
paulson@13251
   208
apply (blast elim: tranclE)
paulson@13242
   209
done
paulson@13242
   210
paulson@13242
   211
paulson@13242
   212
lemma (in M_trancl) wellfounded_on_trancl:
paulson@13242
   213
     "[| wellfounded_on(M,A,r);  r-``A <= A; M(r); M(A) |]
paulson@13251
   214
      ==> wellfounded_on(M,A,r^+)"
paulson@13251
   215
apply (simp add: wellfounded_on_def)
paulson@13242
   216
apply (safe intro!: equalityI)
paulson@13242
   217
apply (rename_tac Z x)
paulson@13251
   218
apply (subgoal_tac "M({x\<in>A. \<exists>w. M(w) & \<langle>w,x\<rangle> \<in> r^+ & w \<in> Z})")
paulson@13251
   219
 prefer 2
paulson@13251
   220
 apply (simp add: wellfounded_trancl_separation)
paulson@13251
   221
apply (drule_tac x = "{x\<in>A. \<exists>w. M(w) & \<langle>w,x\<rangle> \<in> r^+ & w \<in> Z}" in spec)
paulson@13242
   222
apply safe
paulson@13251
   223
apply (blast dest: transM, simp)
paulson@13251
   224
apply (rename_tac y w)
paulson@13242
   225
apply (drule_tac x=w in bspec, assumption, clarify)
paulson@13242
   226
apply (erule tranclE)
paulson@13242
   227
  apply (blast dest: transM)   (*transM is needed to prove M(xa)*)
paulson@13251
   228
 apply blast
paulson@13242
   229
done
paulson@13242
   230
paulson@13251
   231
(*????move to Wellorderings.thy*)
paulson@13251
   232
lemma (in M_axioms) wellfounded_on_field_imp_wellfounded:
paulson@13251
   233
     "wellfounded_on(M, field(r), r) ==> wellfounded(M,r)"
paulson@13251
   234
by (simp add: wellfounded_def wellfounded_on_iff_wellfounded, fast)
paulson@13251
   235
paulson@13251
   236
lemma (in M_axioms) wellfounded_iff_wellfounded_on_field:
paulson@13251
   237
     "M(r) ==> wellfounded(M,r) <-> wellfounded_on(M, field(r), r)"
paulson@13251
   238
by (blast intro: wellfounded_imp_wellfounded_on
paulson@13251
   239
                 wellfounded_on_field_imp_wellfounded)
paulson@13251
   240
paulson@13251
   241
lemma (in M_axioms) wellfounded_on_subset_A:
paulson@13251
   242
     "[| wellfounded_on(M,A,r);  B<=A |] ==> wellfounded_on(M,B,r)"
paulson@13251
   243
by (simp add: wellfounded_on_def, blast)
paulson@13251
   244
paulson@13251
   245
paulson@13251
   246
paulson@13251
   247
lemma (in M_trancl) wellfounded_trancl:
paulson@13251
   248
     "[|wellfounded(M,r); M(r)|] ==> wellfounded(M,r^+)"
paulson@13251
   249
apply (rotate_tac -1)
paulson@13251
   250
apply (simp add: wellfounded_iff_wellfounded_on_field)
paulson@13251
   251
apply (rule wellfounded_on_subset_A, erule wellfounded_on_trancl)
paulson@13251
   252
   apply blast
paulson@13251
   253
  apply (simp_all add: trancl_type [THEN field_rel_subset])
paulson@13251
   254
done
paulson@13242
   255
paulson@13223
   256
text{*Relativized to M: Every well-founded relation is a subset of some
paulson@13251
   257
inverse image of an ordinal.  Key step is the construction (in M) of a
paulson@13223
   258
rank function.*}
paulson@13223
   259
paulson@13223
   260
paulson@13223
   261
(*NEEDS RELATIVIZATION*)
paulson@13242
   262
locale M_recursion = M_trancl +
paulson@13223
   263
  assumes wfrank_separation':
paulson@13251
   264
     "M(r) ==>
paulson@13223
   265
	separation
paulson@13251
   266
	   (M, \<lambda>x. ~ (\<exists>f. M(f) & is_recfun(r^+, x, %x f. range(f), f)))"
paulson@13223
   267
 and wfrank_strong_replacement':
paulson@13242
   268
     "M(r) ==>
paulson@13242
   269
      strong_replacement(M, \<lambda>x z. \<exists>y f. M(y) & M(f) &
paulson@13251
   270
		  pair(M,x,y,z) & is_recfun(r^+, x, %x f. range(f), f) &
paulson@13242
   271
		  y = range(f))"
paulson@13242
   272
 and Ord_wfrank_separation:
paulson@13251
   273
     "M(r) ==>
paulson@13251
   274
      separation (M, \<lambda>x. ~ (\<forall>f. M(f) \<longrightarrow>
paulson@13242
   275
                       is_recfun(r^+, x, \<lambda>x. range, f) \<longrightarrow> Ord(range(f))))"
paulson@13223
   276
paulson@13251
   277
text{*This function, defined using replacement, is a rank function for
paulson@13251
   278
well-founded relations within the class M.*}
paulson@13251
   279
constdefs
paulson@13242
   280
 wellfoundedrank :: "[i=>o,i,i] => i"
paulson@13251
   281
    "wellfoundedrank(M,r,A) ==
paulson@13251
   282
        {p. x\<in>A, \<exists>y f. M(y) & M(f) &
paulson@13251
   283
                       p = <x,y> & is_recfun(r^+, x, %x f. range(f), f) &
paulson@13242
   284
                       y = range(f)}"
paulson@13223
   285
paulson@13223
   286
lemma (in M_recursion) exists_wfrank:
paulson@13251
   287
    "[| wellfounded(M,r); M(a); M(r) |]
paulson@13242
   288
     ==> \<exists>f. M(f) & is_recfun(r^+, a, %x f. range(f), f)"
paulson@13251
   289
apply (rule wellfounded_exists_is_recfun)
paulson@13251
   290
      apply (blast intro: wellfounded_trancl)
paulson@13251
   291
     apply (rule trans_trancl)
paulson@13251
   292
    apply (erule wfrank_separation')
paulson@13251
   293
   apply (erule wfrank_strong_replacement')
paulson@13251
   294
apply (simp_all add: trancl_subset_times)
paulson@13223
   295
done
paulson@13223
   296
paulson@13242
   297
lemma (in M_recursion) M_wellfoundedrank:
paulson@13251
   298
    "[| wellfounded(M,r); M(r); M(A) |] ==> M(wellfoundedrank(M,r,A))"
paulson@13251
   299
apply (insert wfrank_strong_replacement' [of r])
paulson@13251
   300
apply (simp add: wellfoundedrank_def)
paulson@13251
   301
apply (rule strong_replacement_closed)
paulson@13242
   302
   apply assumption+
paulson@13251
   303
 apply (rule univalent_is_recfun)
paulson@13251
   304
   apply (blast intro: wellfounded_trancl)
paulson@13251
   305
  apply (rule trans_trancl)
paulson@13254
   306
 apply (simp add: trancl_subset_times, blast)
paulson@13223
   307
done
paulson@13223
   308
paulson@13242
   309
lemma (in M_recursion) Ord_wfrank_range [rule_format]:
paulson@13251
   310
    "[| wellfounded(M,r); a\<in>A; M(r); M(A) |]
paulson@13242
   311
     ==> \<forall>f. M(f) --> is_recfun(r^+, a, %x f. range(f), f) --> Ord(range(f))"
paulson@13251
   312
apply (drule wellfounded_trancl, assumption)
paulson@13251
   313
apply (rule wellfounded_induct, assumption+)
paulson@13254
   314
  apply simp
paulson@13254
   315
 apply (blast intro: Ord_wfrank_separation, clarify)
paulson@13242
   316
txt{*The reasoning in both cases is that we get @{term y} such that
paulson@13251
   317
   @{term "\<langle>y, x\<rangle> \<in> r^+"}.  We find that
paulson@13242
   318
   @{term "f`y = restrict(f, r^+ -`` {y})"}. *}
paulson@13242
   319
apply (rule OrdI [OF _ Ord_is_Transset])
paulson@13242
   320
 txt{*An ordinal is a transitive set...*}
paulson@13251
   321
 apply (simp add: Transset_def)
paulson@13242
   322
 apply clarify
paulson@13251
   323
 apply (frule apply_recfun2, assumption)
paulson@13242
   324
 apply (force simp add: restrict_iff)
paulson@13251
   325
txt{*...of ordinals.  This second case requires the induction hyp.*}
paulson@13251
   326
apply clarify
paulson@13242
   327
apply (rename_tac i y)
paulson@13251
   328
apply (frule apply_recfun2, assumption)
paulson@13251
   329
apply (frule is_recfun_imp_in_r, assumption)
paulson@13251
   330
apply (frule is_recfun_restrict)
paulson@13242
   331
    (*simp_all won't work*)
paulson@13251
   332
    apply (simp add: trans_trancl trancl_subset_times)+
paulson@13242
   333
apply (drule spec [THEN mp], assumption)
paulson@13242
   334
apply (subgoal_tac "M(restrict(f, r^+ -`` {y}))")
paulson@13251
   335
 apply (drule_tac x="restrict(f, r^+ -`` {y})" in spec)
paulson@13242
   336
 apply (simp add: function_apply_equality [OF _ is_recfun_imp_function])
paulson@13242
   337
apply (blast dest: pair_components_in_M)
paulson@13223
   338
done
paulson@13223
   339
paulson@13242
   340
lemma (in M_recursion) Ord_range_wellfoundedrank:
paulson@13251
   341
    "[| wellfounded(M,r); r \<subseteq> A*A;  M(r); M(A) |]
paulson@13242
   342
     ==> Ord (range(wellfoundedrank(M,r,A)))"
paulson@13251
   343
apply (frule wellfounded_trancl, assumption)
paulson@13251
   344
apply (frule trancl_subset_times)
paulson@13242
   345
apply (simp add: wellfoundedrank_def)
paulson@13242
   346
apply (rule OrdI [OF _ Ord_is_Transset])
paulson@13242
   347
 prefer 2
paulson@13251
   348
 txt{*by our previous result the range consists of ordinals.*}
paulson@13251
   349
 apply (blast intro: Ord_wfrank_range)
paulson@13242
   350
txt{*We still must show that the range is a transitive set.*}
paulson@13247
   351
apply (simp add: Transset_def, clarify, simp)
paulson@13251
   352
apply (rename_tac x i f u)
paulson@13251
   353
apply (frule is_recfun_imp_in_r, assumption)
paulson@13251
   354
apply (subgoal_tac "M(u) & M(i) & M(x)")
paulson@13251
   355
 prefer 2 apply (blast dest: transM, clarify)
paulson@13251
   356
apply (rule_tac a=u in rangeI)
paulson@13251
   357
apply (rule ReplaceI)
paulson@13251
   358
  apply (rule_tac x=i in exI, simp)
paulson@13242
   359
  apply (rule_tac x="restrict(f, r^+ -`` {u})" in exI)
paulson@13251
   360
  apply (blast intro: is_recfun_restrict trans_trancl dest: apply_recfun2)
paulson@13242
   361
 apply blast
paulson@13251
   362
txt{*Unicity requirement of Replacement*}
paulson@13242
   363
apply clarify
paulson@13251
   364
apply (frule apply_recfun2, assumption)
paulson@13251
   365
apply (simp add: trans_trancl is_recfun_cut)+
paulson@13223
   366
done
paulson@13223
   367
paulson@13242
   368
lemma (in M_recursion) function_wellfoundedrank:
paulson@13251
   369
    "[| wellfounded(M,r); M(r); M(A)|]
paulson@13242
   370
     ==> function(wellfoundedrank(M,r,A))"
paulson@13251
   371
apply (simp add: wellfoundedrank_def function_def, clarify)
paulson@13242
   372
txt{*Uniqueness: repeated below!*}
paulson@13242
   373
apply (drule is_recfun_functional, assumption)
paulson@13251
   374
     apply (blast intro: wellfounded_trancl)
paulson@13251
   375
    apply (simp_all add: trancl_subset_times trans_trancl)
paulson@13223
   376
done
paulson@13223
   377
paulson@13242
   378
lemma (in M_recursion) domain_wellfoundedrank:
paulson@13251
   379
    "[| wellfounded(M,r); M(r); M(A)|]
paulson@13242
   380
     ==> domain(wellfoundedrank(M,r,A)) = A"
paulson@13251
   381
apply (simp add: wellfoundedrank_def function_def)
paulson@13242
   382
apply (rule equalityI, auto)
paulson@13251
   383
apply (frule transM, assumption)
paulson@13251
   384
apply (frule_tac a=x in exists_wfrank, assumption+, clarify)
paulson@13251
   385
apply (rule domainI)
paulson@13242
   386
apply (rule ReplaceI)
paulson@13251
   387
  apply (rule_tac x="range(f)" in exI)
paulson@13251
   388
  apply simp
paulson@13251
   389
  apply (rule_tac x=f in exI, blast, assumption)
paulson@13242
   390
txt{*Uniqueness (for Replacement): repeated above!*}
paulson@13242
   391
apply clarify
paulson@13242
   392
apply (drule is_recfun_functional, assumption)
paulson@13251
   393
    apply (blast intro: wellfounded_trancl)
paulson@13251
   394
    apply (simp_all add: trancl_subset_times trans_trancl)
paulson@13223
   395
done
paulson@13223
   396
paulson@13242
   397
lemma (in M_recursion) wellfoundedrank_type:
paulson@13251
   398
    "[| wellfounded(M,r);  M(r); M(A)|]
paulson@13242
   399
     ==> wellfoundedrank(M,r,A) \<in> A -> range(wellfoundedrank(M,r,A))"
paulson@13251
   400
apply (frule function_wellfoundedrank [of r A], assumption+)
paulson@13251
   401
apply (frule function_imp_Pi)
paulson@13251
   402
 apply (simp add: wellfoundedrank_def relation_def)
paulson@13251
   403
 apply blast
paulson@13242
   404
apply (simp add: domain_wellfoundedrank)
paulson@13223
   405
done
paulson@13223
   406
paulson@13242
   407
lemma (in M_recursion) Ord_wellfoundedrank:
paulson@13251
   408
    "[| wellfounded(M,r); a \<in> A; r \<subseteq> A*A;  M(r); M(A) |]
paulson@13242
   409
     ==> Ord(wellfoundedrank(M,r,A) ` a)"
paulson@13242
   410
by (blast intro: apply_funtype [OF wellfoundedrank_type]
paulson@13242
   411
                 Ord_in_Ord [OF Ord_range_wellfoundedrank])
paulson@13223
   412
paulson@13242
   413
lemma (in M_recursion) wellfoundedrank_eq:
paulson@13242
   414
     "[| is_recfun(r^+, a, %x. range, f);
paulson@13251
   415
         wellfounded(M,r);  a \<in> A; M(f); M(r); M(A)|]
paulson@13242
   416
      ==> wellfoundedrank(M,r,A) ` a = range(f)"
paulson@13251
   417
apply (rule apply_equality)
paulson@13251
   418
 prefer 2 apply (blast intro: wellfoundedrank_type)
paulson@13242
   419
apply (simp add: wellfoundedrank_def)
paulson@13242
   420
apply (rule ReplaceI)
paulson@13251
   421
  apply (rule_tac x="range(f)" in exI)
paulson@13251
   422
  apply blast
paulson@13242
   423
 apply assumption
paulson@13251
   424
txt{*Unicity requirement of Replacement*}
paulson@13242
   425
apply clarify
paulson@13242
   426
apply (drule is_recfun_functional, assumption)
paulson@13251
   427
    apply (blast intro: wellfounded_trancl)
paulson@13251
   428
    apply (simp_all add: trancl_subset_times trans_trancl)
paulson@13223
   429
done
paulson@13223
   430
paulson@13247
   431
paulson@13247
   432
lemma (in M_recursion) wellfoundedrank_lt:
paulson@13247
   433
     "[| <a,b> \<in> r;
paulson@13251
   434
         wellfounded(M,r); r \<subseteq> A*A;  M(r); M(A)|]
paulson@13247
   435
      ==> wellfoundedrank(M,r,A) ` a < wellfoundedrank(M,r,A) ` b"
paulson@13251
   436
apply (frule wellfounded_trancl, assumption)
paulson@13247
   437
apply (subgoal_tac "a\<in>A & b\<in>A")
paulson@13247
   438
 prefer 2 apply blast
paulson@13251
   439
apply (simp add: lt_def Ord_wellfoundedrank, clarify)
paulson@13251
   440
apply (frule exists_wfrank [of concl: _ b], assumption+, clarify)
paulson@13247
   441
apply (rename_tac fb)
paulson@13251
   442
apply (frule is_recfun_restrict [of concl: "r^+" a])
paulson@13251
   443
    apply (rule trans_trancl, assumption)
paulson@13251
   444
   apply (simp_all add: r_into_trancl trancl_subset_times)
paulson@13247
   445
txt{*Still the same goal, but with new @{text is_recfun} assumptions.*}
paulson@13251
   446
apply (simp add: wellfoundedrank_eq)
paulson@13247
   447
apply (frule_tac a=a in wellfoundedrank_eq, assumption+)
paulson@13247
   448
   apply (simp_all add: transM [of a])
paulson@13247
   449
txt{*We have used equations for wellfoundedrank and now must use some
paulson@13247
   450
    for  @{text is_recfun}. *}
paulson@13251
   451
apply (rule_tac a=a in rangeI)
paulson@13251
   452
apply (simp add: is_recfun_type [THEN apply_iff] vimage_singleton_iff
paulson@13251
   453
                 r_into_trancl apply_recfun r_into_trancl)
paulson@13247
   454
done
paulson@13247
   455
paulson@13247
   456
paulson@13247
   457
lemma (in M_recursion) wellfounded_imp_subset_rvimage:
paulson@13251
   458
     "[|wellfounded(M,r); r \<subseteq> A*A; M(r); M(A)|]
paulson@13247
   459
      ==> \<exists>i f. Ord(i) & r <= rvimage(A, f, Memrel(i))"
paulson@13247
   460
apply (rule_tac x="range(wellfoundedrank(M,r,A))" in exI)
paulson@13247
   461
apply (rule_tac x="wellfoundedrank(M,r,A)" in exI)
paulson@13251
   462
apply (simp add: Ord_range_wellfoundedrank, clarify)
paulson@13251
   463
apply (frule subsetD, assumption, clarify)
paulson@13247
   464
apply (simp add: rvimage_iff wellfoundedrank_lt [THEN ltD])
paulson@13251
   465
apply (blast intro: apply_rangeI wellfoundedrank_type)
paulson@13247
   466
done
paulson@13247
   467
paulson@13251
   468
lemma (in M_recursion) wellfounded_imp_wf:
paulson@13251
   469
     "[|wellfounded(M,r); relation(r); M(r)|] ==> wf(r)"
paulson@13247
   470
by (blast dest!: relation_field_times_field wellfounded_imp_subset_rvimage
paulson@13247
   471
          intro: wf_rvimage_Ord [THEN wf_subset])
paulson@13247
   472
paulson@13251
   473
lemma (in M_recursion) wellfounded_on_imp_wf_on:
paulson@13251
   474
     "[|wellfounded_on(M,A,r); relation(r); M(r); M(A)|] ==> wf[A](r)"
paulson@13251
   475
apply (simp add: wellfounded_on_iff_wellfounded wf_on_def)
paulson@13247
   476
apply (rule wellfounded_imp_wf)
paulson@13251
   477
apply (simp_all add: relation_def)
paulson@13247
   478
done
paulson@13247
   479
paulson@13247
   480
paulson@13251
   481
theorem (in M_recursion) wf_abs [simp]:
paulson@13247
   482
     "[|relation(r); M(r)|] ==> wellfounded(M,r) <-> wf(r)"
paulson@13251
   483
by (blast intro: wellfounded_imp_wf wf_imp_relativized)
paulson@13247
   484
paulson@13251
   485
theorem (in M_recursion) wf_on_abs [simp]:
paulson@13247
   486
     "[|relation(r); M(r); M(A)|] ==> wellfounded_on(M,A,r) <-> wf[A](r)"
paulson@13251
   487
by (blast intro: wellfounded_on_imp_wf_on wf_on_imp_relativized)
paulson@13247
   488
paulson@13254
   489
paulson@13254
   490
text{*absoluteness for wfrec-defined functions.*}
paulson@13254
   491
paulson@13254
   492
(*first use is_recfun, then M_is_recfun*)
paulson@13254
   493
paulson@13254
   494
lemma (in M_trancl) wfrec_relativize:
paulson@13254
   495
  "[|wf(r); M(a); M(r);  
paulson@13254
   496
     strong_replacement(M, \<lambda>x z. \<exists>y g. M(y) & M(g) &
paulson@13254
   497
          pair(M,x,y,z) & 
paulson@13254
   498
          is_recfun(r^+, x, \<lambda>x f. H(x, restrict(f, r -`` {x})), g) & 
paulson@13254
   499
          y = H(x, restrict(g, r -`` {x}))); 
paulson@13254
   500
     \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g))|] 
paulson@13254
   501
   ==> wfrec(r,a,H) = z <-> 
paulson@13254
   502
       (\<exists>f. M(f) & is_recfun(r^+, a, \<lambda>x f. H(x, restrict(f, r -`` {x})), f) & 
paulson@13254
   503
            z = H(a,restrict(f,r-``{a})))"
paulson@13254
   504
apply (frule wf_trancl) 
paulson@13254
   505
apply (simp add: wftrec_def wfrec_def, safe)
paulson@13254
   506
 apply (frule wf_exists_is_recfun 
paulson@13254
   507
              [of concl: "r^+" a "\<lambda>x f. H(x, restrict(f, r -`` {x}))"]) 
paulson@13254
   508
      apply (simp_all add: trans_trancl function_restrictI trancl_subset_times)
paulson@13254
   509
 apply (clarify, rule_tac x=f in exI) 
paulson@13254
   510
 apply (simp_all add: the_recfun_eq trans_trancl trancl_subset_times)
paulson@13254
   511
done
paulson@13254
   512
paulson@13254
   513
paulson@13254
   514
text{*Assuming @{term r} is transitive simplifies the occurrences of @{text H}.
paulson@13254
   515
      The premise @{term "relation(r)"} is necessary 
paulson@13254
   516
      before we can replace @{term "r^+"} by @{term r}. *}
paulson@13254
   517
theorem (in M_trancl) trans_wfrec_relativize:
paulson@13254
   518
  "[|wf(r);  trans(r);  relation(r);  M(r);  M(a);
paulson@13254
   519
     strong_replacement(M, \<lambda>x z. \<exists>y g. M(y) & M(g) &
paulson@13254
   520
                pair(M,x,y,z) & is_recfun(r,x,H,g) & y = H(x,g)); 
paulson@13254
   521
     \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g))|] 
paulson@13254
   522
   ==> wfrec(r,a,H) = z <-> (\<exists>f. M(f) & is_recfun(r,a,H,f) & z = H(a,f))" 
paulson@13254
   523
by (simp cong: is_recfun_cong
paulson@13254
   524
         add: wfrec_relativize trancl_eq_r
paulson@13254
   525
               is_recfun_restrict_idem domain_restrict_idem)
paulson@13254
   526
paulson@13254
   527
paulson@13254
   528
lemma (in M_trancl) trans_eq_pair_wfrec_iff:
paulson@13254
   529
  "[|wf(r);  trans(r); relation(r); M(r);  M(y); 
paulson@13254
   530
     strong_replacement(M, \<lambda>x z. \<exists>y g. M(y) & M(g) &
paulson@13254
   531
                pair(M,x,y,z) & is_recfun(r,x,H,g) & y = H(x,g)); 
paulson@13254
   532
     \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g))|] 
paulson@13254
   533
   ==> y = <x, wfrec(r, x, H)> <-> 
paulson@13254
   534
       (\<exists>f. M(f) & is_recfun(r,x,H,f) & y = <x, H(x,f)>)"
paulson@13254
   535
apply safe  
paulson@13254
   536
 apply (simp add: trans_wfrec_relativize [THEN iff_sym]) 
paulson@13254
   537
txt{*converse direction*}
paulson@13254
   538
apply (rule sym)
paulson@13254
   539
apply (simp add: trans_wfrec_relativize, blast) 
paulson@13254
   540
done
paulson@13254
   541
paulson@13254
   542
paulson@13254
   543
subsection{*M is closed under well-founded recursion*}
paulson@13254
   544
paulson@13254
   545
text{*Lemma with the awkward premise mentioning @{text wfrec}.*}
paulson@13254
   546
lemma (in M_recursion) wfrec_closed_lemma [rule_format]:
paulson@13254
   547
     "[|wf(r); M(r); 
paulson@13254
   548
        strong_replacement(M, \<lambda>x y. y = \<langle>x, wfrec(r, x, H)\<rangle>);
paulson@13254
   549
        \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g)) |] 
paulson@13254
   550
      ==> M(a) --> M(wfrec(r,a,H))"
paulson@13254
   551
apply (rule_tac a=a in wf_induct, assumption+)
paulson@13254
   552
apply (subst wfrec, assumption, clarify)
paulson@13254
   553
apply (drule_tac x1=x and x="\<lambda>x\<in>r -`` {x}. wfrec(r, x, H)" 
paulson@13254
   554
       in rspec [THEN rspec]) 
paulson@13254
   555
apply (simp_all add: function_lam) 
paulson@13254
   556
apply (blast intro: dest: pair_components_in_M ) 
paulson@13254
   557
done
paulson@13254
   558
paulson@13254
   559
text{*Eliminates one instance of replacement.*}
paulson@13254
   560
lemma (in M_recursion) wfrec_replacement_iff:
paulson@13254
   561
     "strong_replacement(M, \<lambda>x z. \<exists>y g. M(y) & M(g) &
paulson@13254
   562
                pair(M,x,y,z) & is_recfun(r,x,H,g) & y = H(x,g)) <->
paulson@13254
   563
      strong_replacement(M, 
paulson@13254
   564
           \<lambda>x y. \<exists>f. M(f) & is_recfun(r,x,H,f) & y = <x, H(x,f)>)"
paulson@13254
   565
apply simp 
paulson@13254
   566
apply (rule strong_replacement_cong, blast) 
paulson@13254
   567
done
paulson@13254
   568
paulson@13254
   569
text{*Useful version for transitive relations*}
paulson@13254
   570
theorem (in M_recursion) trans_wfrec_closed:
paulson@13254
   571
     "[|wf(r); trans(r); relation(r); M(r); M(a);
paulson@13254
   572
        strong_replacement(M, 
paulson@13254
   573
             \<lambda>x z. \<exists>y g. M(y) & M(g) &
paulson@13254
   574
                    pair(M,x,y,z) & is_recfun(r,x,H,g) & y = H(x,g)); 
paulson@13254
   575
        \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g)) |] 
paulson@13254
   576
      ==> M(wfrec(r,a,H))"
paulson@13254
   577
apply (frule wfrec_replacement_iff [THEN iffD1]) 
paulson@13254
   578
apply (rule wfrec_closed_lemma, assumption+) 
paulson@13254
   579
apply (simp_all add: wfrec_replacement_iff trans_eq_pair_wfrec_iff) 
paulson@13254
   580
done
paulson@13254
   581
paulson@13254
   582
section{*Absoluteness without assuming transitivity*}
paulson@13254
   583
lemma (in M_trancl) eq_pair_wfrec_iff:
paulson@13254
   584
  "[|wf(r);  M(r);  M(y); 
paulson@13254
   585
     strong_replacement(M, \<lambda>x z. \<exists>y g. M(y) & M(g) &
paulson@13254
   586
          pair(M,x,y,z) & 
paulson@13254
   587
          is_recfun(r^+, x, \<lambda>x f. H(x, restrict(f, r -`` {x})), g) & 
paulson@13254
   588
          y = H(x, restrict(g, r -`` {x}))); 
paulson@13254
   589
     \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g))|] 
paulson@13254
   590
   ==> y = <x, wfrec(r, x, H)> <-> 
paulson@13254
   591
       (\<exists>f. M(f) & is_recfun(r^+, x, \<lambda>x f. H(x, restrict(f, r -`` {x})), f) & 
paulson@13254
   592
            y = <x, H(x,restrict(f,r-``{x}))>)"
paulson@13254
   593
apply safe  
paulson@13254
   594
 apply (simp add: wfrec_relativize [THEN iff_sym]) 
paulson@13254
   595
txt{*converse direction*}
paulson@13254
   596
apply (rule sym)
paulson@13254
   597
apply (simp add: wfrec_relativize, blast) 
paulson@13254
   598
done
paulson@13254
   599
paulson@13254
   600
lemma (in M_recursion) wfrec_closed_lemma [rule_format]:
paulson@13254
   601
     "[|wf(r); M(r); 
paulson@13254
   602
        strong_replacement(M, \<lambda>x y. y = \<langle>x, wfrec(r, x, H)\<rangle>);
paulson@13254
   603
        \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g)) |] 
paulson@13254
   604
      ==> M(a) --> M(wfrec(r,a,H))"
paulson@13254
   605
apply (rule_tac a=a in wf_induct, assumption+)
paulson@13254
   606
apply (subst wfrec, assumption, clarify)
paulson@13254
   607
apply (drule_tac x1=x and x="\<lambda>x\<in>r -`` {x}. wfrec(r, x, H)" 
paulson@13254
   608
       in rspec [THEN rspec]) 
paulson@13254
   609
apply (simp_all add: function_lam) 
paulson@13254
   610
apply (blast intro: dest: pair_components_in_M ) 
paulson@13254
   611
done
paulson@13254
   612
paulson@13254
   613
text{*Full version not assuming transitivity, but maybe not very useful.*}
paulson@13254
   614
theorem (in M_recursion) wfrec_closed:
paulson@13254
   615
     "[|wf(r); M(r); M(a);
paulson@13254
   616
     strong_replacement(M, \<lambda>x z. \<exists>y g. M(y) & M(g) &
paulson@13254
   617
          pair(M,x,y,z) & 
paulson@13254
   618
          is_recfun(r^+, x, \<lambda>x f. H(x, restrict(f, r -`` {x})), g) & 
paulson@13254
   619
          y = H(x, restrict(g, r -`` {x}))); 
paulson@13254
   620
        \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g)) |] 
paulson@13254
   621
      ==> M(wfrec(r,a,H))"
paulson@13254
   622
apply (frule wfrec_replacement_iff [THEN iffD1]) 
paulson@13254
   623
apply (rule wfrec_closed_lemma, assumption+) 
paulson@13254
   624
apply (simp_all add: eq_pair_wfrec_iff) 
paulson@13254
   625
done
paulson@13254
   626
paulson@13223
   627
end