src/HOL/Tools/Sledgehammer/clausifier.ML
author blanchet
Thu Sep 02 13:18:19 2010 +0200 (2010-09-02)
changeset 39037 5146d640aa4a
parent 39036 dff91b90d74c
child 39112 611e41ef07c3
permissions -rw-r--r--
Let MESON take an additional "preskolemization tactic", which can be used to put the goal in definitional CNF
blanchet@37574
     1
(*  Title:      HOL/Tools/Sledgehammer/clausifier.ML
blanchet@38027
     2
    Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
blanchet@36393
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@15347
     4
wenzelm@20461
     5
Transformation of axiom rules (elim/intro/etc) into CNF forms.
paulson@15347
     6
*)
paulson@15347
     7
blanchet@37574
     8
signature CLAUSIFIER =
wenzelm@21505
     9
sig
blanchet@38632
    10
  val extensionalize_theorem : thm -> thm
blanchet@38001
    11
  val introduce_combinators_in_cterm : cterm -> thm
blanchet@38028
    12
  val introduce_combinators_in_theorem : thm -> thm
blanchet@39037
    13
  val to_definitional_cnf_with_quantifiers : theory -> thm -> thm
blanchet@39037
    14
  val cnf_axiom : theory -> thm -> thm list
wenzelm@21505
    15
end;
mengj@19196
    16
blanchet@37574
    17
structure Clausifier : CLAUSIFIER =
paulson@15997
    18
struct
paulson@15347
    19
paulson@15997
    20
(**** Transformation of Elimination Rules into First-Order Formulas****)
paulson@15347
    21
wenzelm@29064
    22
val cfalse = cterm_of @{theory HOL} HOLogic.false_const;
wenzelm@29064
    23
val ctp_false = cterm_of @{theory HOL} (HOLogic.mk_Trueprop HOLogic.false_const);
wenzelm@20461
    24
blanchet@38001
    25
(* Converts an elim-rule into an equivalent theorem that does not have the
blanchet@38001
    26
   predicate variable. Leaves other theorems unchanged. We simply instantiate
blanchet@38001
    27
   the conclusion variable to False. (Cf. "transform_elim_term" in
blanchet@38652
    28
   "Sledgehammer_Util".) *)
blanchet@38001
    29
fun transform_elim_theorem th =
paulson@21430
    30
  case concl_of th of    (*conclusion variable*)
blanchet@35963
    31
       @{const Trueprop} $ (v as Var (_, @{typ bool})) =>
wenzelm@29064
    32
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, cfalse)]) th
blanchet@35963
    33
    | v as Var(_, @{typ prop}) =>
wenzelm@29064
    34
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, ctp_false)]) th
blanchet@38001
    35
    | _ => th
paulson@15997
    36
paulson@24742
    37
(*To enforce single-threading*)
paulson@24742
    38
exception Clausify_failure of theory;
wenzelm@20461
    39
wenzelm@28544
    40
paulson@16009
    41
(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
paulson@16009
    42
blanchet@37410
    43
fun mk_skolem_id t =
blanchet@37436
    44
  let val T = fastype_of t in
blanchet@37496
    45
    Const (@{const_name skolem_id}, T --> T) $ t
blanchet@37436
    46
  end
blanchet@37410
    47
blanchet@37617
    48
fun beta_eta_under_lambdas (Abs (s, T, t')) =
blanchet@37617
    49
    Abs (s, T, beta_eta_under_lambdas t')
blanchet@37617
    50
  | beta_eta_under_lambdas t = Envir.beta_eta_contract t
blanchet@37512
    51
paulson@18141
    52
(*Traverse a theorem, accumulating Skolem function definitions.*)
blanchet@37617
    53
fun assume_skolem_funs th =
blanchet@37399
    54
  let
blanchet@37617
    55
    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (s', T, p))) rhss =
blanchet@37399
    56
        (*Existential: declare a Skolem function, then insert into body and continue*)
blanchet@37399
    57
        let
blanchet@37617
    58
          val args = OldTerm.term_frees body
blanchet@37399
    59
          val Ts = map type_of args
blanchet@38280
    60
          val cT = Ts ---> T
blanchet@37500
    61
          (* Forms a lambda-abstraction over the formal parameters *)
blanchet@37500
    62
          val rhs =
blanchet@37500
    63
            list_abs_free (map dest_Free args,
blanchet@37617
    64
                           HOLogic.choice_const T $ beta_eta_under_lambdas body)
blanchet@37518
    65
            |> mk_skolem_id
blanchet@37518
    66
          val comb = list_comb (rhs, args)
blanchet@37617
    67
        in dec_sko (subst_bound (comb, p)) (rhs :: rhss) end
blanchet@37617
    68
      | dec_sko (Const (@{const_name All},_) $ Abs (a, T, p)) rhss =
blanchet@37399
    69
        (*Universal quant: insert a free variable into body and continue*)
blanchet@37399
    70
        let val fname = Name.variant (OldTerm.add_term_names (p,[])) a
blanchet@37617
    71
        in dec_sko (subst_bound (Free(fname,T), p)) rhss end
haftmann@38795
    72
      | dec_sko (@{const HOL.conj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
haftmann@38795
    73
      | dec_sko (@{const HOL.disj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
blanchet@37617
    74
      | dec_sko (@{const Trueprop} $ p) rhss = dec_sko p rhss
blanchet@37617
    75
      | dec_sko _ rhss = rhss
paulson@20419
    76
  in  dec_sko (prop_of th) []  end;
paulson@20419
    77
paulson@20419
    78
paulson@24827
    79
(**** REPLACING ABSTRACTIONS BY COMBINATORS ****)
paulson@20419
    80
blanchet@37540
    81
val fun_cong_all = @{thm expand_fun_eq [THEN iffD1]}
paulson@20419
    82
blanchet@38001
    83
(* Removes the lambdas from an equation of the form "t = (%x. u)".
blanchet@38608
    84
   (Cf. "extensionalize_term" in "Sledgehammer_Translate".) *)
blanchet@38000
    85
fun extensionalize_theorem th =
blanchet@37540
    86
  case prop_of th of
haftmann@38864
    87
    _ $ (Const (@{const_name HOL.eq}, Type (_, [Type (@{type_name fun}, _), _]))
blanchet@38000
    88
         $ _ $ Abs (s, _, _)) => extensionalize_theorem (th RS fun_cong_all)
blanchet@37540
    89
  | _ => th
paulson@20419
    90
blanchet@37416
    91
fun is_quasi_lambda_free (Const (@{const_name skolem_id}, _) $ _) = true
blanchet@37416
    92
  | is_quasi_lambda_free (t1 $ t2) =
blanchet@37416
    93
    is_quasi_lambda_free t1 andalso is_quasi_lambda_free t2
blanchet@37416
    94
  | is_quasi_lambda_free (Abs _) = false
blanchet@37416
    95
  | is_quasi_lambda_free _ = true
wenzelm@20461
    96
wenzelm@32010
    97
val [f_B,g_B] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_B}));
wenzelm@32010
    98
val [g_C,f_C] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_C}));
wenzelm@32010
    99
val [f_S,g_S] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_S}));
paulson@20863
   100
blanchet@38282
   101
(* FIXME: Requires more use of cterm constructors. *)
paulson@24827
   102
fun abstract ct =
wenzelm@28544
   103
  let
wenzelm@28544
   104
      val thy = theory_of_cterm ct
paulson@25256
   105
      val Abs(x,_,body) = term_of ct
blanchet@35963
   106
      val Type(@{type_name fun}, [xT,bodyT]) = typ_of (ctyp_of_term ct)
blanchet@38005
   107
      val cxT = ctyp_of thy xT
blanchet@38005
   108
      val cbodyT = ctyp_of thy bodyT
blanchet@38005
   109
      fun makeK () =
blanchet@38005
   110
        instantiate' [SOME cxT, SOME cbodyT] [SOME (cterm_of thy body)]
blanchet@38005
   111
                     @{thm abs_K}
paulson@24827
   112
  in
paulson@24827
   113
      case body of
paulson@24827
   114
          Const _ => makeK()
paulson@24827
   115
        | Free _ => makeK()
paulson@24827
   116
        | Var _ => makeK()  (*though Var isn't expected*)
wenzelm@27184
   117
        | Bound 0 => instantiate' [SOME cxT] [] @{thm abs_I} (*identity: I*)
paulson@24827
   118
        | rator$rand =>
wenzelm@27184
   119
            if loose_bvar1 (rator,0) then (*C or S*)
wenzelm@27179
   120
               if loose_bvar1 (rand,0) then (*S*)
wenzelm@27179
   121
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27179
   122
                     val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27184
   123
                     val abs_S' = cterm_instantiate [(f_S,crator),(g_S,crand)] @{thm abs_S}
wenzelm@27184
   124
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_S')
wenzelm@27179
   125
                 in
wenzelm@27179
   126
                   Thm.transitive abs_S' (Conv.binop_conv abstract rhs)
wenzelm@27179
   127
                 end
wenzelm@27179
   128
               else (*C*)
wenzelm@27179
   129
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27184
   130
                     val abs_C' = cterm_instantiate [(f_C,crator),(g_C,cterm_of thy rand)] @{thm abs_C}
wenzelm@27184
   131
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_C')
wenzelm@27179
   132
                 in
wenzelm@27179
   133
                   Thm.transitive abs_C' (Conv.fun_conv (Conv.arg_conv abstract) rhs)
wenzelm@27179
   134
                 end
wenzelm@27184
   135
            else if loose_bvar1 (rand,0) then (*B or eta*)
wenzelm@36945
   136
               if rand = Bound 0 then Thm.eta_conversion ct
wenzelm@27179
   137
               else (*B*)
wenzelm@27179
   138
                 let val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27179
   139
                     val crator = cterm_of thy rator
wenzelm@27184
   140
                     val abs_B' = cterm_instantiate [(f_B,crator),(g_B,crand)] @{thm abs_B}
wenzelm@27184
   141
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_B')
blanchet@37349
   142
                 in Thm.transitive abs_B' (Conv.arg_conv abstract rhs) end
wenzelm@27179
   143
            else makeK()
blanchet@37349
   144
        | _ => raise Fail "abstract: Bad term"
paulson@24827
   145
  end;
paulson@20863
   146
blanchet@37349
   147
(* Traverse a theorem, remplacing lambda-abstractions with combinators. *)
blanchet@38001
   148
fun introduce_combinators_in_cterm ct =
blanchet@37416
   149
  if is_quasi_lambda_free (term_of ct) then
blanchet@37349
   150
    Thm.reflexive ct
blanchet@37349
   151
  else case term_of ct of
blanchet@37349
   152
    Abs _ =>
blanchet@37349
   153
    let
blanchet@37349
   154
      val (cv, cta) = Thm.dest_abs NONE ct
blanchet@37349
   155
      val (v, _) = dest_Free (term_of cv)
blanchet@38001
   156
      val u_th = introduce_combinators_in_cterm cta
blanchet@37349
   157
      val cu = Thm.rhs_of u_th
blanchet@37349
   158
      val comb_eq = abstract (Thm.cabs cv cu)
blanchet@37349
   159
    in Thm.transitive (Thm.abstract_rule v cv u_th) comb_eq end
blanchet@37349
   160
  | _ $ _ =>
blanchet@37349
   161
    let val (ct1, ct2) = Thm.dest_comb ct in
blanchet@38001
   162
        Thm.combination (introduce_combinators_in_cterm ct1)
blanchet@38001
   163
                        (introduce_combinators_in_cterm ct2)
blanchet@37349
   164
    end
blanchet@37349
   165
blanchet@38001
   166
fun introduce_combinators_in_theorem th =
blanchet@37416
   167
  if is_quasi_lambda_free (prop_of th) then
blanchet@37349
   168
    th
paulson@24827
   169
  else
blanchet@37349
   170
    let
blanchet@37349
   171
      val th = Drule.eta_contraction_rule th
blanchet@38001
   172
      val eqth = introduce_combinators_in_cterm (cprop_of th)
blanchet@37349
   173
    in Thm.equal_elim eqth th end
blanchet@37349
   174
    handle THM (msg, _, _) =>
blanchet@37349
   175
           (warning ("Error in the combinator translation of " ^
blanchet@37349
   176
                     Display.string_of_thm_without_context th ^
blanchet@37349
   177
                     "\nException message: " ^ msg ^ ".");
blanchet@37349
   178
            (* A type variable of sort "{}" will make abstraction fail. *)
blanchet@37349
   179
            TrueI)
paulson@16009
   180
paulson@16009
   181
(*cterms are used throughout for efficiency*)
blanchet@38280
   182
val cTrueprop = cterm_of @{theory HOL} HOLogic.Trueprop;
paulson@16009
   183
paulson@16009
   184
(*Given an abstraction over n variables, replace the bound variables by free
paulson@16009
   185
  ones. Return the body, along with the list of free variables.*)
wenzelm@20461
   186
fun c_variant_abs_multi (ct0, vars) =
paulson@16009
   187
      let val (cv,ct) = Thm.dest_abs NONE ct0
paulson@16009
   188
      in  c_variant_abs_multi (ct, cv::vars)  end
paulson@16009
   189
      handle CTERM _ => (ct0, rev vars);
paulson@16009
   190
blanchet@37617
   191
val skolem_id_def_raw = @{thms skolem_id_def_raw}
blanchet@37617
   192
blanchet@37617
   193
(* Given the definition of a Skolem function, return a theorem to replace
blanchet@37617
   194
   an existential formula by a use of that function.
paulson@18141
   195
   Example: "EX x. x : A & x ~: B ==> sko A B : A & sko A B ~: B"  [.] *)
blanchet@38016
   196
fun skolem_theorem_of_def thy rhs0 =
blanchet@37399
   197
  let
blanchet@38280
   198
    val rhs = rhs0 |> Type.legacy_freeze_thaw |> #1 |> cterm_of thy
blanchet@37617
   199
    val rhs' = rhs |> Thm.dest_comb |> snd
blanchet@37617
   200
    val (ch, frees) = c_variant_abs_multi (rhs', [])
blanchet@37617
   201
    val (hilbert, cabs) = ch |> Thm.dest_comb |>> term_of
blanchet@37617
   202
    val T =
blanchet@37617
   203
      case hilbert of
blanchet@37617
   204
        Const (@{const_name Eps}, Type (@{type_name fun}, [_, T])) => T
blanchet@37617
   205
      | _ => raise TERM ("skolem_theorem_of_def: expected \"Eps\"", [hilbert])
blanchet@38280
   206
    val cex = cterm_of thy (HOLogic.exists_const T)
blanchet@37617
   207
    val ex_tm = Thm.capply cTrueprop (Thm.capply cex cabs)
blanchet@37629
   208
    val conc =
blanchet@37617
   209
      Drule.list_comb (rhs, frees)
blanchet@37617
   210
      |> Drule.beta_conv cabs |> Thm.capply cTrueprop
blanchet@37617
   211
    fun tacf [prem] =
blanchet@38016
   212
      rewrite_goals_tac skolem_id_def_raw
blanchet@38016
   213
      THEN rtac ((prem |> rewrite_rule skolem_id_def_raw) RS @{thm someI_ex}) 1
blanchet@37617
   214
  in
blanchet@37629
   215
    Goal.prove_internal [ex_tm] conc tacf
blanchet@37629
   216
    |> forall_intr_list frees
blanchet@37629
   217
    |> Thm.forall_elim_vars 0  (*Introduce Vars, but don't discharge defs.*)
blanchet@37629
   218
    |> Thm.varifyT_global
blanchet@37617
   219
  end
paulson@24742
   220
blanchet@37995
   221
(* Converts an Isabelle theorem (intro, elim or simp format, even higher-order)
blanchet@37995
   222
   into NNF. *)
paulson@24937
   223
fun to_nnf th ctxt0 =
blanchet@38608
   224
  let
blanchet@38608
   225
    val th1 = th |> transform_elim_theorem |> zero_var_indexes
blanchet@38608
   226
    val ((_, [th2]), ctxt) = Variable.import true [th1] ctxt0
blanchet@38608
   227
    val th3 = th2 |> Conv.fconv_rule Object_Logic.atomize
blanchet@38608
   228
                  |> extensionalize_theorem
blanchet@38608
   229
                  |> Meson.make_nnf ctxt
blanchet@38608
   230
  in (th3, ctxt) end
paulson@16009
   231
blanchet@39036
   232
fun to_definitional_cnf_with_quantifiers thy th =
blanchet@39036
   233
  let
blanchet@39036
   234
    val eqth = cnf.make_cnfx_thm thy (HOLogic.dest_Trueprop (prop_of th))
blanchet@39036
   235
    val eqth = eqth RS @{thm eq_reflection}
blanchet@39036
   236
    val eqth = eqth RS @{thm TruepropI}
blanchet@39036
   237
  in Thm.equal_elim eqth th end
blanchet@39036
   238
blanchet@38278
   239
(* Convert a theorem to CNF, with Skolem functions as additional premises. *)
blanchet@38278
   240
fun cnf_axiom thy th =
blanchet@37626
   241
  let
blanchet@37626
   242
    val ctxt0 = Variable.global_thm_context th
blanchet@39036
   243
    val (nnf_th, ctxt) = to_nnf th ctxt0
blanchet@39036
   244
    val def_th = to_definitional_cnf_with_quantifiers thy nnf_th
blanchet@39036
   245
    val sko_ths = map (skolem_theorem_of_def thy) (assume_skolem_funs def_th)
blanchet@39036
   246
    val (cnf_ths, ctxt) = Meson.make_cnf sko_ths def_th ctxt
blanchet@37626
   247
  in
blanchet@39036
   248
    cnf_ths |> map introduce_combinators_in_theorem
blanchet@39036
   249
            |> Variable.export ctxt ctxt0
blanchet@39036
   250
            |> Meson.finish_cnf
blanchet@39036
   251
            |> map Thm.close_derivation
blanchet@37626
   252
  end
blanchet@37626
   253
  handle THM _ => []
wenzelm@27184
   254
wenzelm@20461
   255
end;