src/HOL/ex/Sqrt.thy
author haftmann
Tue Sep 01 15:39:33 2009 +0200 (2009-09-01)
changeset 32479 521cc9bf2958
parent 31952 40501bb2d57c
child 45917 1ce1bc9ff64a
permissions -rw-r--r--
some reorganization of number theory
haftmann@28952
     1
(*  Title:      HOL/ex/Sqrt.thy
paulson@13957
     2
    Author:     Markus Wenzel, TU Muenchen
paulson@13957
     3
*)
paulson@13957
     4
paulson@13957
     5
header {*  Square roots of primes are irrational *}
paulson@13957
     6
nipkow@15149
     7
theory Sqrt
haftmann@32479
     8
imports Complex_Main "~~/src/HOL/Number_Theory/Primes"
nipkow@15149
     9
begin
paulson@13957
    10
paulson@13957
    11
text {*
paulson@13957
    12
  The square root of any prime number (including @{text 2}) is
paulson@13957
    13
  irrational.
paulson@13957
    14
*}
paulson@13957
    15
wenzelm@19086
    16
theorem sqrt_prime_irrational:
huffman@31712
    17
  assumes "prime (p::nat)"
wenzelm@19086
    18
  shows "sqrt (real p) \<notin> \<rat>"
paulson@13957
    19
proof
huffman@31712
    20
  from `prime p` have p: "1 < p" by (simp add: prime_nat_def)
paulson@13957
    21
  assume "sqrt (real p) \<in> \<rat>"
huffman@31712
    22
  then obtain m n :: nat where
paulson@13957
    23
      n: "n \<noteq> 0" and sqrt_rat: "\<bar>sqrt (real p)\<bar> = real m / real n"
wenzelm@30411
    24
    and gcd: "gcd m n = 1" by (rule Rats_abs_nat_div_natE)
paulson@13957
    25
  have eq: "m\<twosuperior> = p * n\<twosuperior>"
paulson@13957
    26
  proof -
paulson@13957
    27
    from n and sqrt_rat have "real m = \<bar>sqrt (real p)\<bar> * real n" by simp
paulson@13957
    28
    then have "real (m\<twosuperior>) = (sqrt (real p))\<twosuperior> * real (n\<twosuperior>)"
paulson@14353
    29
      by (auto simp add: power2_eq_square)
paulson@13957
    30
    also have "(sqrt (real p))\<twosuperior> = real p" by simp
paulson@13957
    31
    also have "\<dots> * real (n\<twosuperior>) = real (p * n\<twosuperior>)" by simp
paulson@13957
    32
    finally show ?thesis ..
paulson@13957
    33
  qed
paulson@13957
    34
  have "p dvd m \<and> p dvd n"
paulson@13957
    35
  proof
paulson@13957
    36
    from eq have "p dvd m\<twosuperior>" ..
nipkow@31952
    37
    with `prime p` pos2 show "p dvd m" by (rule prime_dvd_power_nat)
paulson@13957
    38
    then obtain k where "m = p * k" ..
paulson@14353
    39
    with eq have "p * n\<twosuperior> = p\<twosuperior> * k\<twosuperior>" by (auto simp add: power2_eq_square mult_ac)
paulson@14353
    40
    with p have "n\<twosuperior> = p * k\<twosuperior>" by (simp add: power2_eq_square)
paulson@13957
    41
    then have "p dvd n\<twosuperior>" ..
nipkow@31952
    42
    with `prime p` pos2 show "p dvd n" by (rule prime_dvd_power_nat)
paulson@13957
    43
  qed
haftmann@27556
    44
  then have "p dvd gcd m n" ..
paulson@13957
    45
  with gcd have "p dvd 1" by simp
paulson@13957
    46
  then have "p \<le> 1" by (simp add: dvd_imp_le)
paulson@13957
    47
  with p show False by simp
paulson@13957
    48
qed
paulson@13957
    49
paulson@13957
    50
corollary "sqrt (real (2::nat)) \<notin> \<rat>"
nipkow@31952
    51
  by (rule sqrt_prime_irrational) (rule two_is_prime_nat)
paulson@13957
    52
paulson@13957
    53
paulson@13957
    54
subsection {* Variations *}
paulson@13957
    55
paulson@13957
    56
text {*
paulson@13957
    57
  Here is an alternative version of the main proof, using mostly
paulson@13957
    58
  linear forward-reasoning.  While this results in less top-down
paulson@13957
    59
  structure, it is probably closer to proofs seen in mathematics.
paulson@13957
    60
*}
paulson@13957
    61
wenzelm@19086
    62
theorem
huffman@31712
    63
  assumes "prime (p::nat)"
wenzelm@19086
    64
  shows "sqrt (real p) \<notin> \<rat>"
paulson@13957
    65
proof
huffman@31712
    66
  from `prime p` have p: "1 < p" by (simp add: prime_nat_def)
paulson@13957
    67
  assume "sqrt (real p) \<in> \<rat>"
huffman@31712
    68
  then obtain m n :: nat where
paulson@13957
    69
      n: "n \<noteq> 0" and sqrt_rat: "\<bar>sqrt (real p)\<bar> = real m / real n"
wenzelm@30411
    70
    and gcd: "gcd m n = 1" by (rule Rats_abs_nat_div_natE)
paulson@13957
    71
  from n and sqrt_rat have "real m = \<bar>sqrt (real p)\<bar> * real n" by simp
paulson@13957
    72
  then have "real (m\<twosuperior>) = (sqrt (real p))\<twosuperior> * real (n\<twosuperior>)"
paulson@14353
    73
    by (auto simp add: power2_eq_square)
paulson@13957
    74
  also have "(sqrt (real p))\<twosuperior> = real p" by simp
paulson@13957
    75
  also have "\<dots> * real (n\<twosuperior>) = real (p * n\<twosuperior>)" by simp
paulson@13957
    76
  finally have eq: "m\<twosuperior> = p * n\<twosuperior>" ..
paulson@13957
    77
  then have "p dvd m\<twosuperior>" ..
nipkow@31952
    78
  with `prime p` pos2 have dvd_m: "p dvd m" by (rule prime_dvd_power_nat)
paulson@13957
    79
  then obtain k where "m = p * k" ..
paulson@14353
    80
  with eq have "p * n\<twosuperior> = p\<twosuperior> * k\<twosuperior>" by (auto simp add: power2_eq_square mult_ac)
paulson@14353
    81
  with p have "n\<twosuperior> = p * k\<twosuperior>" by (simp add: power2_eq_square)
paulson@13957
    82
  then have "p dvd n\<twosuperior>" ..
nipkow@31952
    83
  with `prime p` pos2 have "p dvd n" by (rule prime_dvd_power_nat)
nipkow@31952
    84
  with dvd_m have "p dvd gcd m n" by (rule gcd_greatest_nat)
paulson@13957
    85
  with gcd have "p dvd 1" by simp
paulson@13957
    86
  then have "p \<le> 1" by (simp add: dvd_imp_le)
paulson@13957
    87
  with p show False by simp
paulson@13957
    88
qed
paulson@13957
    89
paulson@13957
    90
end