src/HOL/Archimedean_Field.thy
author huffman
Fri Mar 30 12:32:35 2012 +0200 (2012-03-30)
changeset 47220 52426c62b5d0
parent 47108 2a1953f0d20d
child 47307 5e5ca36692b3
permissions -rw-r--r--
replace lemmas eval_nat_numeral with a simpler reformulation
wenzelm@41959
     1
(*  Title:      HOL/Archimedean_Field.thy
wenzelm@41959
     2
    Author:     Brian Huffman
huffman@30096
     3
*)
huffman@30096
     4
huffman@30096
     5
header {* Archimedean Fields, Floor and Ceiling Functions *}
huffman@30096
     6
huffman@30096
     7
theory Archimedean_Field
huffman@30096
     8
imports Main
huffman@30096
     9
begin
huffman@30096
    10
huffman@30096
    11
subsection {* Class of Archimedean fields *}
huffman@30096
    12
huffman@30096
    13
text {* Archimedean fields have no infinite elements. *}
huffman@30096
    14
huffman@47108
    15
class archimedean_field = linordered_field +
huffman@30096
    16
  assumes ex_le_of_int: "\<exists>z. x \<le> of_int z"
huffman@30096
    17
huffman@30096
    18
lemma ex_less_of_int:
huffman@30096
    19
  fixes x :: "'a::archimedean_field" shows "\<exists>z. x < of_int z"
huffman@30096
    20
proof -
huffman@30096
    21
  from ex_le_of_int obtain z where "x \<le> of_int z" ..
huffman@30096
    22
  then have "x < of_int (z + 1)" by simp
huffman@30096
    23
  then show ?thesis ..
huffman@30096
    24
qed
huffman@30096
    25
huffman@30096
    26
lemma ex_of_int_less:
huffman@30096
    27
  fixes x :: "'a::archimedean_field" shows "\<exists>z. of_int z < x"
huffman@30096
    28
proof -
huffman@30096
    29
  from ex_less_of_int obtain z where "- x < of_int z" ..
huffman@30096
    30
  then have "of_int (- z) < x" by simp
huffman@30096
    31
  then show ?thesis ..
huffman@30096
    32
qed
huffman@30096
    33
huffman@30096
    34
lemma ex_less_of_nat:
huffman@30096
    35
  fixes x :: "'a::archimedean_field" shows "\<exists>n. x < of_nat n"
huffman@30096
    36
proof -
huffman@30096
    37
  obtain z where "x < of_int z" using ex_less_of_int ..
huffman@30096
    38
  also have "\<dots> \<le> of_int (int (nat z))" by simp
huffman@30096
    39
  also have "\<dots> = of_nat (nat z)" by (simp only: of_int_of_nat_eq)
huffman@30096
    40
  finally show ?thesis ..
huffman@30096
    41
qed
huffman@30096
    42
huffman@30096
    43
lemma ex_le_of_nat:
huffman@30096
    44
  fixes x :: "'a::archimedean_field" shows "\<exists>n. x \<le> of_nat n"
huffman@30096
    45
proof -
huffman@30096
    46
  obtain n where "x < of_nat n" using ex_less_of_nat ..
huffman@30096
    47
  then have "x \<le> of_nat n" by simp
huffman@30096
    48
  then show ?thesis ..
huffman@30096
    49
qed
huffman@30096
    50
huffman@30096
    51
text {* Archimedean fields have no infinitesimal elements. *}
huffman@30096
    52
huffman@30096
    53
lemma ex_inverse_of_nat_Suc_less:
huffman@30096
    54
  fixes x :: "'a::archimedean_field"
huffman@30096
    55
  assumes "0 < x" shows "\<exists>n. inverse (of_nat (Suc n)) < x"
huffman@30096
    56
proof -
huffman@30096
    57
  from `0 < x` have "0 < inverse x"
huffman@30096
    58
    by (rule positive_imp_inverse_positive)
huffman@30096
    59
  obtain n where "inverse x < of_nat n"
huffman@30096
    60
    using ex_less_of_nat ..
huffman@30096
    61
  then obtain m where "inverse x < of_nat (Suc m)"
huffman@30096
    62
    using `0 < inverse x` by (cases n) (simp_all del: of_nat_Suc)
huffman@30096
    63
  then have "inverse (of_nat (Suc m)) < inverse (inverse x)"
huffman@30096
    64
    using `0 < inverse x` by (rule less_imp_inverse_less)
huffman@30096
    65
  then have "inverse (of_nat (Suc m)) < x"
huffman@30096
    66
    using `0 < x` by (simp add: nonzero_inverse_inverse_eq)
huffman@30096
    67
  then show ?thesis ..
huffman@30096
    68
qed
huffman@30096
    69
huffman@30096
    70
lemma ex_inverse_of_nat_less:
huffman@30096
    71
  fixes x :: "'a::archimedean_field"
huffman@30096
    72
  assumes "0 < x" shows "\<exists>n>0. inverse (of_nat n) < x"
huffman@30096
    73
  using ex_inverse_of_nat_Suc_less [OF `0 < x`] by auto
huffman@30096
    74
huffman@30096
    75
lemma ex_less_of_nat_mult:
huffman@30096
    76
  fixes x :: "'a::archimedean_field"
huffman@30096
    77
  assumes "0 < x" shows "\<exists>n. y < of_nat n * x"
huffman@30096
    78
proof -
huffman@30096
    79
  obtain n where "y / x < of_nat n" using ex_less_of_nat ..
huffman@30096
    80
  with `0 < x` have "y < of_nat n * x" by (simp add: pos_divide_less_eq)
huffman@30096
    81
  then show ?thesis ..
huffman@30096
    82
qed
huffman@30096
    83
huffman@30096
    84
huffman@30096
    85
subsection {* Existence and uniqueness of floor function *}
huffman@30096
    86
huffman@30096
    87
lemma exists_least_lemma:
huffman@30096
    88
  assumes "\<not> P 0" and "\<exists>n. P n"
huffman@30096
    89
  shows "\<exists>n. \<not> P n \<and> P (Suc n)"
huffman@30096
    90
proof -
huffman@30096
    91
  from `\<exists>n. P n` have "P (Least P)" by (rule LeastI_ex)
huffman@30096
    92
  with `\<not> P 0` obtain n where "Least P = Suc n"
huffman@30096
    93
    by (cases "Least P") auto
huffman@30096
    94
  then have "n < Least P" by simp
huffman@30096
    95
  then have "\<not> P n" by (rule not_less_Least)
huffman@30096
    96
  then have "\<not> P n \<and> P (Suc n)"
huffman@30096
    97
    using `P (Least P)` `Least P = Suc n` by simp
huffman@30096
    98
  then show ?thesis ..
huffman@30096
    99
qed
huffman@30096
   100
huffman@30096
   101
lemma floor_exists:
huffman@30096
   102
  fixes x :: "'a::archimedean_field"
huffman@30096
   103
  shows "\<exists>z. of_int z \<le> x \<and> x < of_int (z + 1)"
huffman@30096
   104
proof (cases)
huffman@30096
   105
  assume "0 \<le> x"
huffman@30096
   106
  then have "\<not> x < of_nat 0" by simp
huffman@30096
   107
  then have "\<exists>n. \<not> x < of_nat n \<and> x < of_nat (Suc n)"
huffman@30096
   108
    using ex_less_of_nat by (rule exists_least_lemma)
huffman@30096
   109
  then obtain n where "\<not> x < of_nat n \<and> x < of_nat (Suc n)" ..
huffman@30096
   110
  then have "of_int (int n) \<le> x \<and> x < of_int (int n + 1)" by simp
huffman@30096
   111
  then show ?thesis ..
huffman@30096
   112
next
huffman@30096
   113
  assume "\<not> 0 \<le> x"
huffman@30096
   114
  then have "\<not> - x \<le> of_nat 0" by simp
huffman@30096
   115
  then have "\<exists>n. \<not> - x \<le> of_nat n \<and> - x \<le> of_nat (Suc n)"
huffman@30096
   116
    using ex_le_of_nat by (rule exists_least_lemma)
huffman@30096
   117
  then obtain n where "\<not> - x \<le> of_nat n \<and> - x \<le> of_nat (Suc n)" ..
huffman@30096
   118
  then have "of_int (- int n - 1) \<le> x \<and> x < of_int (- int n - 1 + 1)" by simp
huffman@30096
   119
  then show ?thesis ..
huffman@30096
   120
qed
huffman@30096
   121
huffman@30096
   122
lemma floor_exists1:
huffman@30096
   123
  fixes x :: "'a::archimedean_field"
huffman@30096
   124
  shows "\<exists>!z. of_int z \<le> x \<and> x < of_int (z + 1)"
huffman@30096
   125
proof (rule ex_ex1I)
huffman@30096
   126
  show "\<exists>z. of_int z \<le> x \<and> x < of_int (z + 1)"
huffman@30096
   127
    by (rule floor_exists)
huffman@30096
   128
next
huffman@30096
   129
  fix y z assume
huffman@30096
   130
    "of_int y \<le> x \<and> x < of_int (y + 1)"
huffman@30096
   131
    "of_int z \<le> x \<and> x < of_int (z + 1)"
huffman@30096
   132
  then have
huffman@30096
   133
    "of_int y \<le> x" "x < of_int (y + 1)"
huffman@30096
   134
    "of_int z \<le> x" "x < of_int (z + 1)"
huffman@30096
   135
    by simp_all
huffman@30096
   136
  from le_less_trans [OF `of_int y \<le> x` `x < of_int (z + 1)`]
huffman@30096
   137
       le_less_trans [OF `of_int z \<le> x` `x < of_int (y + 1)`]
huffman@30096
   138
  show "y = z" by (simp del: of_int_add)
huffman@30096
   139
qed
huffman@30096
   140
huffman@30096
   141
huffman@30096
   142
subsection {* Floor function *}
huffman@30096
   143
bulwahn@43732
   144
class floor_ceiling = archimedean_field +
bulwahn@43732
   145
  fixes floor :: "'a \<Rightarrow> int"
bulwahn@43732
   146
  assumes floor_correct: "of_int (floor x) \<le> x \<and> x < of_int (floor x + 1)"
huffman@30096
   147
huffman@30096
   148
notation (xsymbols)
huffman@30096
   149
  floor  ("\<lfloor>_\<rfloor>")
huffman@30096
   150
huffman@30096
   151
notation (HTML output)
huffman@30096
   152
  floor  ("\<lfloor>_\<rfloor>")
huffman@30096
   153
huffman@30096
   154
lemma floor_unique: "\<lbrakk>of_int z \<le> x; x < of_int z + 1\<rbrakk> \<Longrightarrow> floor x = z"
huffman@30096
   155
  using floor_correct [of x] floor_exists1 [of x] by auto
huffman@30096
   156
huffman@30096
   157
lemma of_int_floor_le: "of_int (floor x) \<le> x"
huffman@30096
   158
  using floor_correct ..
huffman@30096
   159
huffman@30096
   160
lemma le_floor_iff: "z \<le> floor x \<longleftrightarrow> of_int z \<le> x"
huffman@30096
   161
proof
huffman@30096
   162
  assume "z \<le> floor x"
huffman@30096
   163
  then have "(of_int z :: 'a) \<le> of_int (floor x)" by simp
huffman@30096
   164
  also have "of_int (floor x) \<le> x" by (rule of_int_floor_le)
huffman@30096
   165
  finally show "of_int z \<le> x" .
huffman@30096
   166
next
huffman@30096
   167
  assume "of_int z \<le> x"
huffman@30096
   168
  also have "x < of_int (floor x + 1)" using floor_correct ..
huffman@30096
   169
  finally show "z \<le> floor x" by (simp del: of_int_add)
huffman@30096
   170
qed
huffman@30096
   171
huffman@30096
   172
lemma floor_less_iff: "floor x < z \<longleftrightarrow> x < of_int z"
huffman@30096
   173
  by (simp add: not_le [symmetric] le_floor_iff)
huffman@30096
   174
huffman@30096
   175
lemma less_floor_iff: "z < floor x \<longleftrightarrow> of_int z + 1 \<le> x"
huffman@30096
   176
  using le_floor_iff [of "z + 1" x] by auto
huffman@30096
   177
huffman@30096
   178
lemma floor_le_iff: "floor x \<le> z \<longleftrightarrow> x < of_int z + 1"
huffman@30096
   179
  by (simp add: not_less [symmetric] less_floor_iff)
huffman@30096
   180
huffman@30096
   181
lemma floor_mono: assumes "x \<le> y" shows "floor x \<le> floor y"
huffman@30096
   182
proof -
huffman@30096
   183
  have "of_int (floor x) \<le> x" by (rule of_int_floor_le)
huffman@30096
   184
  also note `x \<le> y`
huffman@30096
   185
  finally show ?thesis by (simp add: le_floor_iff)
huffman@30096
   186
qed
huffman@30096
   187
huffman@30096
   188
lemma floor_less_cancel: "floor x < floor y \<Longrightarrow> x < y"
huffman@30096
   189
  by (auto simp add: not_le [symmetric] floor_mono)
huffman@30096
   190
huffman@30096
   191
lemma floor_of_int [simp]: "floor (of_int z) = z"
huffman@30096
   192
  by (rule floor_unique) simp_all
huffman@30096
   193
huffman@30096
   194
lemma floor_of_nat [simp]: "floor (of_nat n) = int n"
huffman@30096
   195
  using floor_of_int [of "of_nat n"] by simp
huffman@30096
   196
huffman@30096
   197
text {* Floor with numerals *}
huffman@30096
   198
huffman@30096
   199
lemma floor_zero [simp]: "floor 0 = 0"
huffman@30096
   200
  using floor_of_int [of 0] by simp
huffman@30096
   201
huffman@30096
   202
lemma floor_one [simp]: "floor 1 = 1"
huffman@30096
   203
  using floor_of_int [of 1] by simp
huffman@30096
   204
huffman@47108
   205
lemma floor_numeral [simp]: "floor (numeral v) = numeral v"
huffman@47108
   206
  using floor_of_int [of "numeral v"] by simp
huffman@47108
   207
huffman@47108
   208
lemma floor_neg_numeral [simp]: "floor (neg_numeral v) = neg_numeral v"
huffman@47108
   209
  using floor_of_int [of "neg_numeral v"] by simp
huffman@30096
   210
huffman@30096
   211
lemma zero_le_floor [simp]: "0 \<le> floor x \<longleftrightarrow> 0 \<le> x"
huffman@30096
   212
  by (simp add: le_floor_iff)
huffman@30096
   213
huffman@30096
   214
lemma one_le_floor [simp]: "1 \<le> floor x \<longleftrightarrow> 1 \<le> x"
huffman@30096
   215
  by (simp add: le_floor_iff)
huffman@30096
   216
huffman@47108
   217
lemma numeral_le_floor [simp]:
huffman@47108
   218
  "numeral v \<le> floor x \<longleftrightarrow> numeral v \<le> x"
huffman@47108
   219
  by (simp add: le_floor_iff)
huffman@47108
   220
huffman@47108
   221
lemma neg_numeral_le_floor [simp]:
huffman@47108
   222
  "neg_numeral v \<le> floor x \<longleftrightarrow> neg_numeral v \<le> x"
huffman@30096
   223
  by (simp add: le_floor_iff)
huffman@30096
   224
huffman@30096
   225
lemma zero_less_floor [simp]: "0 < floor x \<longleftrightarrow> 1 \<le> x"
huffman@30096
   226
  by (simp add: less_floor_iff)
huffman@30096
   227
huffman@30096
   228
lemma one_less_floor [simp]: "1 < floor x \<longleftrightarrow> 2 \<le> x"
huffman@30096
   229
  by (simp add: less_floor_iff)
huffman@30096
   230
huffman@47108
   231
lemma numeral_less_floor [simp]:
huffman@47108
   232
  "numeral v < floor x \<longleftrightarrow> numeral v + 1 \<le> x"
huffman@47108
   233
  by (simp add: less_floor_iff)
huffman@47108
   234
huffman@47108
   235
lemma neg_numeral_less_floor [simp]:
huffman@47108
   236
  "neg_numeral v < floor x \<longleftrightarrow> neg_numeral v + 1 \<le> x"
huffman@30096
   237
  by (simp add: less_floor_iff)
huffman@30096
   238
huffman@30096
   239
lemma floor_le_zero [simp]: "floor x \<le> 0 \<longleftrightarrow> x < 1"
huffman@30096
   240
  by (simp add: floor_le_iff)
huffman@30096
   241
huffman@30096
   242
lemma floor_le_one [simp]: "floor x \<le> 1 \<longleftrightarrow> x < 2"
huffman@30096
   243
  by (simp add: floor_le_iff)
huffman@30096
   244
huffman@47108
   245
lemma floor_le_numeral [simp]:
huffman@47108
   246
  "floor x \<le> numeral v \<longleftrightarrow> x < numeral v + 1"
huffman@47108
   247
  by (simp add: floor_le_iff)
huffman@47108
   248
huffman@47108
   249
lemma floor_le_neg_numeral [simp]:
huffman@47108
   250
  "floor x \<le> neg_numeral v \<longleftrightarrow> x < neg_numeral v + 1"
huffman@30096
   251
  by (simp add: floor_le_iff)
huffman@30096
   252
huffman@30096
   253
lemma floor_less_zero [simp]: "floor x < 0 \<longleftrightarrow> x < 0"
huffman@30096
   254
  by (simp add: floor_less_iff)
huffman@30096
   255
huffman@30096
   256
lemma floor_less_one [simp]: "floor x < 1 \<longleftrightarrow> x < 1"
huffman@30096
   257
  by (simp add: floor_less_iff)
huffman@30096
   258
huffman@47108
   259
lemma floor_less_numeral [simp]:
huffman@47108
   260
  "floor x < numeral v \<longleftrightarrow> x < numeral v"
huffman@47108
   261
  by (simp add: floor_less_iff)
huffman@47108
   262
huffman@47108
   263
lemma floor_less_neg_numeral [simp]:
huffman@47108
   264
  "floor x < neg_numeral v \<longleftrightarrow> x < neg_numeral v"
huffman@30096
   265
  by (simp add: floor_less_iff)
huffman@30096
   266
huffman@30096
   267
text {* Addition and subtraction of integers *}
huffman@30096
   268
huffman@30096
   269
lemma floor_add_of_int [simp]: "floor (x + of_int z) = floor x + z"
huffman@30096
   270
  using floor_correct [of x] by (simp add: floor_unique)
huffman@30096
   271
huffman@47108
   272
lemma floor_add_numeral [simp]:
huffman@47108
   273
    "floor (x + numeral v) = floor x + numeral v"
huffman@47108
   274
  using floor_add_of_int [of x "numeral v"] by simp
huffman@47108
   275
huffman@47108
   276
lemma floor_add_neg_numeral [simp]:
huffman@47108
   277
    "floor (x + neg_numeral v) = floor x + neg_numeral v"
huffman@47108
   278
  using floor_add_of_int [of x "neg_numeral v"] by simp
huffman@30096
   279
huffman@30096
   280
lemma floor_add_one [simp]: "floor (x + 1) = floor x + 1"
huffman@30096
   281
  using floor_add_of_int [of x 1] by simp
huffman@30096
   282
huffman@30096
   283
lemma floor_diff_of_int [simp]: "floor (x - of_int z) = floor x - z"
huffman@30096
   284
  using floor_add_of_int [of x "- z"] by (simp add: algebra_simps)
huffman@30096
   285
huffman@47108
   286
lemma floor_diff_numeral [simp]:
huffman@47108
   287
  "floor (x - numeral v) = floor x - numeral v"
huffman@47108
   288
  using floor_diff_of_int [of x "numeral v"] by simp
huffman@47108
   289
huffman@47108
   290
lemma floor_diff_neg_numeral [simp]:
huffman@47108
   291
  "floor (x - neg_numeral v) = floor x - neg_numeral v"
huffman@47108
   292
  using floor_diff_of_int [of x "neg_numeral v"] by simp
huffman@30096
   293
huffman@30096
   294
lemma floor_diff_one [simp]: "floor (x - 1) = floor x - 1"
huffman@30096
   295
  using floor_diff_of_int [of x 1] by simp
huffman@30096
   296
huffman@30096
   297
huffman@30096
   298
subsection {* Ceiling function *}
huffman@30096
   299
huffman@30096
   300
definition
bulwahn@43732
   301
  ceiling :: "'a::floor_ceiling \<Rightarrow> int" where
bulwahn@43733
   302
  "ceiling x = - floor (- x)"
huffman@30096
   303
huffman@30096
   304
notation (xsymbols)
huffman@30096
   305
  ceiling  ("\<lceil>_\<rceil>")
huffman@30096
   306
huffman@30096
   307
notation (HTML output)
huffman@30096
   308
  ceiling  ("\<lceil>_\<rceil>")
huffman@30096
   309
huffman@30096
   310
lemma ceiling_correct: "of_int (ceiling x) - 1 < x \<and> x \<le> of_int (ceiling x)"
huffman@30096
   311
  unfolding ceiling_def using floor_correct [of "- x"] by simp
huffman@30096
   312
huffman@30096
   313
lemma ceiling_unique: "\<lbrakk>of_int z - 1 < x; x \<le> of_int z\<rbrakk> \<Longrightarrow> ceiling x = z"
huffman@30096
   314
  unfolding ceiling_def using floor_unique [of "- z" "- x"] by simp
huffman@30096
   315
huffman@30096
   316
lemma le_of_int_ceiling: "x \<le> of_int (ceiling x)"
huffman@30096
   317
  using ceiling_correct ..
huffman@30096
   318
huffman@30096
   319
lemma ceiling_le_iff: "ceiling x \<le> z \<longleftrightarrow> x \<le> of_int z"
huffman@30096
   320
  unfolding ceiling_def using le_floor_iff [of "- z" "- x"] by auto
huffman@30096
   321
huffman@30096
   322
lemma less_ceiling_iff: "z < ceiling x \<longleftrightarrow> of_int z < x"
huffman@30096
   323
  by (simp add: not_le [symmetric] ceiling_le_iff)
huffman@30096
   324
huffman@30096
   325
lemma ceiling_less_iff: "ceiling x < z \<longleftrightarrow> x \<le> of_int z - 1"
huffman@30096
   326
  using ceiling_le_iff [of x "z - 1"] by simp
huffman@30096
   327
huffman@30096
   328
lemma le_ceiling_iff: "z \<le> ceiling x \<longleftrightarrow> of_int z - 1 < x"
huffman@30096
   329
  by (simp add: not_less [symmetric] ceiling_less_iff)
huffman@30096
   330
huffman@30096
   331
lemma ceiling_mono: "x \<ge> y \<Longrightarrow> ceiling x \<ge> ceiling y"
huffman@30096
   332
  unfolding ceiling_def by (simp add: floor_mono)
huffman@30096
   333
huffman@30096
   334
lemma ceiling_less_cancel: "ceiling x < ceiling y \<Longrightarrow> x < y"
huffman@30096
   335
  by (auto simp add: not_le [symmetric] ceiling_mono)
huffman@30096
   336
huffman@30096
   337
lemma ceiling_of_int [simp]: "ceiling (of_int z) = z"
huffman@30096
   338
  by (rule ceiling_unique) simp_all
huffman@30096
   339
huffman@30096
   340
lemma ceiling_of_nat [simp]: "ceiling (of_nat n) = int n"
huffman@30096
   341
  using ceiling_of_int [of "of_nat n"] by simp
huffman@30096
   342
huffman@30096
   343
text {* Ceiling with numerals *}
huffman@30096
   344
huffman@30096
   345
lemma ceiling_zero [simp]: "ceiling 0 = 0"
huffman@30096
   346
  using ceiling_of_int [of 0] by simp
huffman@30096
   347
huffman@30096
   348
lemma ceiling_one [simp]: "ceiling 1 = 1"
huffman@30096
   349
  using ceiling_of_int [of 1] by simp
huffman@30096
   350
huffman@47108
   351
lemma ceiling_numeral [simp]: "ceiling (numeral v) = numeral v"
huffman@47108
   352
  using ceiling_of_int [of "numeral v"] by simp
huffman@47108
   353
huffman@47108
   354
lemma ceiling_neg_numeral [simp]: "ceiling (neg_numeral v) = neg_numeral v"
huffman@47108
   355
  using ceiling_of_int [of "neg_numeral v"] by simp
huffman@30096
   356
huffman@30096
   357
lemma ceiling_le_zero [simp]: "ceiling x \<le> 0 \<longleftrightarrow> x \<le> 0"
huffman@30096
   358
  by (simp add: ceiling_le_iff)
huffman@30096
   359
huffman@30096
   360
lemma ceiling_le_one [simp]: "ceiling x \<le> 1 \<longleftrightarrow> x \<le> 1"
huffman@30096
   361
  by (simp add: ceiling_le_iff)
huffman@30096
   362
huffman@47108
   363
lemma ceiling_le_numeral [simp]:
huffman@47108
   364
  "ceiling x \<le> numeral v \<longleftrightarrow> x \<le> numeral v"
huffman@47108
   365
  by (simp add: ceiling_le_iff)
huffman@47108
   366
huffman@47108
   367
lemma ceiling_le_neg_numeral [simp]:
huffman@47108
   368
  "ceiling x \<le> neg_numeral v \<longleftrightarrow> x \<le> neg_numeral v"
huffman@30096
   369
  by (simp add: ceiling_le_iff)
huffman@30096
   370
huffman@30096
   371
lemma ceiling_less_zero [simp]: "ceiling x < 0 \<longleftrightarrow> x \<le> -1"
huffman@30096
   372
  by (simp add: ceiling_less_iff)
huffman@30096
   373
huffman@30096
   374
lemma ceiling_less_one [simp]: "ceiling x < 1 \<longleftrightarrow> x \<le> 0"
huffman@30096
   375
  by (simp add: ceiling_less_iff)
huffman@30096
   376
huffman@47108
   377
lemma ceiling_less_numeral [simp]:
huffman@47108
   378
  "ceiling x < numeral v \<longleftrightarrow> x \<le> numeral v - 1"
huffman@47108
   379
  by (simp add: ceiling_less_iff)
huffman@47108
   380
huffman@47108
   381
lemma ceiling_less_neg_numeral [simp]:
huffman@47108
   382
  "ceiling x < neg_numeral v \<longleftrightarrow> x \<le> neg_numeral v - 1"
huffman@30096
   383
  by (simp add: ceiling_less_iff)
huffman@30096
   384
huffman@30096
   385
lemma zero_le_ceiling [simp]: "0 \<le> ceiling x \<longleftrightarrow> -1 < x"
huffman@30096
   386
  by (simp add: le_ceiling_iff)
huffman@30096
   387
huffman@30096
   388
lemma one_le_ceiling [simp]: "1 \<le> ceiling x \<longleftrightarrow> 0 < x"
huffman@30096
   389
  by (simp add: le_ceiling_iff)
huffman@30096
   390
huffman@47108
   391
lemma numeral_le_ceiling [simp]:
huffman@47108
   392
  "numeral v \<le> ceiling x \<longleftrightarrow> numeral v - 1 < x"
huffman@47108
   393
  by (simp add: le_ceiling_iff)
huffman@47108
   394
huffman@47108
   395
lemma neg_numeral_le_ceiling [simp]:
huffman@47108
   396
  "neg_numeral v \<le> ceiling x \<longleftrightarrow> neg_numeral v - 1 < x"
huffman@30096
   397
  by (simp add: le_ceiling_iff)
huffman@30096
   398
huffman@30096
   399
lemma zero_less_ceiling [simp]: "0 < ceiling x \<longleftrightarrow> 0 < x"
huffman@30096
   400
  by (simp add: less_ceiling_iff)
huffman@30096
   401
huffman@30096
   402
lemma one_less_ceiling [simp]: "1 < ceiling x \<longleftrightarrow> 1 < x"
huffman@30096
   403
  by (simp add: less_ceiling_iff)
huffman@30096
   404
huffman@47108
   405
lemma numeral_less_ceiling [simp]:
huffman@47108
   406
  "numeral v < ceiling x \<longleftrightarrow> numeral v < x"
huffman@47108
   407
  by (simp add: less_ceiling_iff)
huffman@47108
   408
huffman@47108
   409
lemma neg_numeral_less_ceiling [simp]:
huffman@47108
   410
  "neg_numeral v < ceiling x \<longleftrightarrow> neg_numeral v < x"
huffman@30096
   411
  by (simp add: less_ceiling_iff)
huffman@30096
   412
huffman@30096
   413
text {* Addition and subtraction of integers *}
huffman@30096
   414
huffman@30096
   415
lemma ceiling_add_of_int [simp]: "ceiling (x + of_int z) = ceiling x + z"
huffman@30096
   416
  using ceiling_correct [of x] by (simp add: ceiling_unique)
huffman@30096
   417
huffman@47108
   418
lemma ceiling_add_numeral [simp]:
huffman@47108
   419
    "ceiling (x + numeral v) = ceiling x + numeral v"
huffman@47108
   420
  using ceiling_add_of_int [of x "numeral v"] by simp
huffman@47108
   421
huffman@47108
   422
lemma ceiling_add_neg_numeral [simp]:
huffman@47108
   423
    "ceiling (x + neg_numeral v) = ceiling x + neg_numeral v"
huffman@47108
   424
  using ceiling_add_of_int [of x "neg_numeral v"] by simp
huffman@30096
   425
huffman@30096
   426
lemma ceiling_add_one [simp]: "ceiling (x + 1) = ceiling x + 1"
huffman@30096
   427
  using ceiling_add_of_int [of x 1] by simp
huffman@30096
   428
huffman@30096
   429
lemma ceiling_diff_of_int [simp]: "ceiling (x - of_int z) = ceiling x - z"
huffman@30096
   430
  using ceiling_add_of_int [of x "- z"] by (simp add: algebra_simps)
huffman@30096
   431
huffman@47108
   432
lemma ceiling_diff_numeral [simp]:
huffman@47108
   433
  "ceiling (x - numeral v) = ceiling x - numeral v"
huffman@47108
   434
  using ceiling_diff_of_int [of x "numeral v"] by simp
huffman@47108
   435
huffman@47108
   436
lemma ceiling_diff_neg_numeral [simp]:
huffman@47108
   437
  "ceiling (x - neg_numeral v) = ceiling x - neg_numeral v"
huffman@47108
   438
  using ceiling_diff_of_int [of x "neg_numeral v"] by simp
huffman@30096
   439
huffman@30096
   440
lemma ceiling_diff_one [simp]: "ceiling (x - 1) = ceiling x - 1"
huffman@30096
   441
  using ceiling_diff_of_int [of x 1] by simp
huffman@30096
   442
huffman@30096
   443
huffman@30096
   444
subsection {* Negation *}
huffman@30096
   445
huffman@30102
   446
lemma floor_minus: "floor (- x) = - ceiling x"
huffman@30096
   447
  unfolding ceiling_def by simp
huffman@30096
   448
huffman@30102
   449
lemma ceiling_minus: "ceiling (- x) = - floor x"
huffman@30096
   450
  unfolding ceiling_def by simp
huffman@30096
   451
huffman@30096
   452
end