src/HOL/NSA/HTranscendental.thy
author huffman
Fri Mar 30 12:32:35 2012 +0200 (2012-03-30)
changeset 47220 52426c62b5d0
parent 44316 84b6f7a6cea4
child 53077 a1b3784f8129
permissions -rw-r--r--
replace lemmas eval_nat_numeral with a simpler reformulation
huffman@27468
     1
(*  Title       : HTranscendental.thy
huffman@27468
     2
    Author      : Jacques D. Fleuriot
huffman@27468
     3
    Copyright   : 2001 University of Edinburgh
huffman@27468
     4
huffman@27468
     5
Converted to Isar and polished by lcp
huffman@27468
     6
*)
huffman@27468
     7
huffman@27468
     8
header{*Nonstandard Extensions of Transcendental Functions*}
huffman@27468
     9
huffman@27468
    10
theory HTranscendental
huffman@27468
    11
imports Transcendental HSeries HDeriv
huffman@27468
    12
begin
huffman@27468
    13
huffman@27468
    14
definition
huffman@27468
    15
  exphr :: "real => hypreal" where
huffman@27468
    16
    --{*define exponential function using standard part *}
huffman@27468
    17
  "exphr x =  st(sumhr (0, whn, %n. inverse(real (fact n)) * (x ^ n)))"
huffman@27468
    18
huffman@27468
    19
definition
huffman@27468
    20
  sinhr :: "real => hypreal" where
huffman@31271
    21
  "sinhr x = st(sumhr (0, whn, %n. sin_coeff n * x ^ n))"
huffman@27468
    22
  
huffman@27468
    23
definition
huffman@27468
    24
  coshr :: "real => hypreal" where
huffman@31271
    25
  "coshr x = st(sumhr (0, whn, %n. cos_coeff n * x ^ n))"
huffman@27468
    26
huffman@27468
    27
huffman@27468
    28
subsection{*Nonstandard Extension of Square Root Function*}
huffman@27468
    29
huffman@27468
    30
lemma STAR_sqrt_zero [simp]: "( *f* sqrt) 0 = 0"
huffman@27468
    31
by (simp add: starfun star_n_zero_num)
huffman@27468
    32
huffman@27468
    33
lemma STAR_sqrt_one [simp]: "( *f* sqrt) 1 = 1"
huffman@27468
    34
by (simp add: starfun star_n_one_num)
huffman@27468
    35
huffman@27468
    36
lemma hypreal_sqrt_pow2_iff: "(( *f* sqrt)(x) ^ 2 = x) = (0 \<le> x)"
huffman@27468
    37
apply (cases x)
huffman@27468
    38
apply (auto simp add: star_n_le star_n_zero_num starfun hrealpow star_n_eq_iff
huffman@30273
    39
            simp del: hpowr_Suc power_Suc)
huffman@27468
    40
done
huffman@27468
    41
huffman@27468
    42
lemma hypreal_sqrt_gt_zero_pow2: "!!x. 0 < x ==> ( *f* sqrt) (x) ^ 2 = x"
huffman@27468
    43
by (transfer, simp)
huffman@27468
    44
huffman@27468
    45
lemma hypreal_sqrt_pow2_gt_zero: "0 < x ==> 0 < ( *f* sqrt) (x) ^ 2"
huffman@27468
    46
by (frule hypreal_sqrt_gt_zero_pow2, auto)
huffman@27468
    47
huffman@27468
    48
lemma hypreal_sqrt_not_zero: "0 < x ==> ( *f* sqrt) (x) \<noteq> 0"
huffman@27468
    49
apply (frule hypreal_sqrt_pow2_gt_zero)
huffman@27468
    50
apply (auto simp add: numeral_2_eq_2)
huffman@27468
    51
done
huffman@27468
    52
huffman@27468
    53
lemma hypreal_inverse_sqrt_pow2:
huffman@27468
    54
     "0 < x ==> inverse (( *f* sqrt)(x)) ^ 2 = inverse x"
huffman@27468
    55
apply (cut_tac n = 2 and a = "( *f* sqrt) x" in power_inverse [symmetric])
huffman@27468
    56
apply (auto dest: hypreal_sqrt_gt_zero_pow2)
huffman@27468
    57
done
huffman@27468
    58
huffman@27468
    59
lemma hypreal_sqrt_mult_distrib: 
huffman@27468
    60
    "!!x y. [|0 < x; 0 <y |] ==>
huffman@27468
    61
      ( *f* sqrt)(x*y) = ( *f* sqrt)(x) * ( *f* sqrt)(y)"
huffman@27468
    62
apply transfer
huffman@27468
    63
apply (auto intro: real_sqrt_mult_distrib) 
huffman@27468
    64
done
huffman@27468
    65
huffman@27468
    66
lemma hypreal_sqrt_mult_distrib2:
huffman@27468
    67
     "[|0\<le>x; 0\<le>y |] ==>  
huffman@27468
    68
     ( *f* sqrt)(x*y) =  ( *f* sqrt)(x) * ( *f* sqrt)(y)"
huffman@27468
    69
by (auto intro: hypreal_sqrt_mult_distrib simp add: order_le_less)
huffman@27468
    70
huffman@27468
    71
lemma hypreal_sqrt_approx_zero [simp]:
huffman@27468
    72
     "0 < x ==> (( *f* sqrt)(x) @= 0) = (x @= 0)"
huffman@27468
    73
apply (auto simp add: mem_infmal_iff [symmetric])
huffman@27468
    74
apply (rule hypreal_sqrt_gt_zero_pow2 [THEN subst])
huffman@27468
    75
apply (auto intro: Infinitesimal_mult 
huffman@27468
    76
            dest!: hypreal_sqrt_gt_zero_pow2 [THEN ssubst] 
huffman@27468
    77
            simp add: numeral_2_eq_2)
huffman@27468
    78
done
huffman@27468
    79
huffman@27468
    80
lemma hypreal_sqrt_approx_zero2 [simp]:
huffman@27468
    81
     "0 \<le> x ==> (( *f* sqrt)(x) @= 0) = (x @= 0)"
huffman@27468
    82
by (auto simp add: order_le_less)
huffman@27468
    83
huffman@27468
    84
lemma hypreal_sqrt_sum_squares [simp]:
huffman@27468
    85
     "(( *f* sqrt)(x*x + y*y + z*z) @= 0) = (x*x + y*y + z*z @= 0)"
huffman@27468
    86
apply (rule hypreal_sqrt_approx_zero2)
huffman@27468
    87
apply (rule add_nonneg_nonneg)+
huffman@27468
    88
apply (auto)
huffman@27468
    89
done
huffman@27468
    90
huffman@27468
    91
lemma hypreal_sqrt_sum_squares2 [simp]:
huffman@27468
    92
     "(( *f* sqrt)(x*x + y*y) @= 0) = (x*x + y*y @= 0)"
huffman@27468
    93
apply (rule hypreal_sqrt_approx_zero2)
huffman@27468
    94
apply (rule add_nonneg_nonneg)
huffman@27468
    95
apply (auto)
huffman@27468
    96
done
huffman@27468
    97
huffman@27468
    98
lemma hypreal_sqrt_gt_zero: "!!x. 0 < x ==> 0 < ( *f* sqrt)(x)"
huffman@27468
    99
apply transfer
huffman@27468
   100
apply (auto intro: real_sqrt_gt_zero)
huffman@27468
   101
done
huffman@27468
   102
huffman@27468
   103
lemma hypreal_sqrt_ge_zero: "0 \<le> x ==> 0 \<le> ( *f* sqrt)(x)"
huffman@27468
   104
by (auto intro: hypreal_sqrt_gt_zero simp add: order_le_less)
huffman@27468
   105
huffman@27468
   106
lemma hypreal_sqrt_hrabs [simp]: "!!x. ( *f* sqrt)(x ^ 2) = abs(x)"
huffman@27468
   107
by (transfer, simp)
huffman@27468
   108
huffman@27468
   109
lemma hypreal_sqrt_hrabs2 [simp]: "!!x. ( *f* sqrt)(x*x) = abs(x)"
huffman@27468
   110
by (transfer, simp)
huffman@27468
   111
huffman@27468
   112
lemma hypreal_sqrt_hyperpow_hrabs [simp]:
huffman@27468
   113
     "!!x. ( *f* sqrt)(x pow (hypnat_of_nat 2)) = abs(x)"
huffman@27468
   114
by (transfer, simp)
huffman@27468
   115
huffman@27468
   116
lemma star_sqrt_HFinite: "\<lbrakk>x \<in> HFinite; 0 \<le> x\<rbrakk> \<Longrightarrow> ( *f* sqrt) x \<in> HFinite"
huffman@27468
   117
apply (rule HFinite_square_iff [THEN iffD1])
huffman@27468
   118
apply (simp only: hypreal_sqrt_mult_distrib2 [symmetric], simp) 
huffman@27468
   119
done
huffman@27468
   120
huffman@27468
   121
lemma st_hypreal_sqrt:
huffman@27468
   122
     "[| x \<in> HFinite; 0 \<le> x |] ==> st(( *f* sqrt) x) = ( *f* sqrt)(st x)"
huffman@27468
   123
apply (rule power_inject_base [where n=1])
huffman@27468
   124
apply (auto intro!: st_zero_le hypreal_sqrt_ge_zero)
huffman@27468
   125
apply (rule st_mult [THEN subst])
huffman@27468
   126
apply (rule_tac [3] hypreal_sqrt_mult_distrib2 [THEN subst])
huffman@27468
   127
apply (rule_tac [5] hypreal_sqrt_mult_distrib2 [THEN subst])
huffman@27468
   128
apply (auto simp add: st_hrabs st_zero_le star_sqrt_HFinite)
huffman@27468
   129
done
huffman@27468
   130
huffman@27468
   131
lemma hypreal_sqrt_sum_squares_ge1 [simp]: "!!x y. x \<le> ( *f* sqrt)(x ^ 2 + y ^ 2)"
huffman@27468
   132
by transfer (rule real_sqrt_sum_squares_ge1)
huffman@27468
   133
huffman@27468
   134
lemma HFinite_hypreal_sqrt:
huffman@27468
   135
     "[| 0 \<le> x; x \<in> HFinite |] ==> ( *f* sqrt) x \<in> HFinite"
huffman@27468
   136
apply (auto simp add: order_le_less)
huffman@27468
   137
apply (rule HFinite_square_iff [THEN iffD1])
huffman@27468
   138
apply (drule hypreal_sqrt_gt_zero_pow2)
huffman@27468
   139
apply (simp add: numeral_2_eq_2)
huffman@27468
   140
done
huffman@27468
   141
huffman@27468
   142
lemma HFinite_hypreal_sqrt_imp_HFinite:
huffman@27468
   143
     "[| 0 \<le> x; ( *f* sqrt) x \<in> HFinite |] ==> x \<in> HFinite"
huffman@27468
   144
apply (auto simp add: order_le_less)
huffman@27468
   145
apply (drule HFinite_square_iff [THEN iffD2])
huffman@27468
   146
apply (drule hypreal_sqrt_gt_zero_pow2)
huffman@27468
   147
apply (simp add: numeral_2_eq_2 del: HFinite_square_iff)
huffman@27468
   148
done
huffman@27468
   149
huffman@27468
   150
lemma HFinite_hypreal_sqrt_iff [simp]:
huffman@27468
   151
     "0 \<le> x ==> (( *f* sqrt) x \<in> HFinite) = (x \<in> HFinite)"
huffman@27468
   152
by (blast intro: HFinite_hypreal_sqrt HFinite_hypreal_sqrt_imp_HFinite)
huffman@27468
   153
huffman@27468
   154
lemma HFinite_sqrt_sum_squares [simp]:
huffman@27468
   155
     "(( *f* sqrt)(x*x + y*y) \<in> HFinite) = (x*x + y*y \<in> HFinite)"
huffman@27468
   156
apply (rule HFinite_hypreal_sqrt_iff)
huffman@27468
   157
apply (rule add_nonneg_nonneg)
huffman@27468
   158
apply (auto)
huffman@27468
   159
done
huffman@27468
   160
huffman@27468
   161
lemma Infinitesimal_hypreal_sqrt:
huffman@27468
   162
     "[| 0 \<le> x; x \<in> Infinitesimal |] ==> ( *f* sqrt) x \<in> Infinitesimal"
huffman@27468
   163
apply (auto simp add: order_le_less)
huffman@27468
   164
apply (rule Infinitesimal_square_iff [THEN iffD2])
huffman@27468
   165
apply (drule hypreal_sqrt_gt_zero_pow2)
huffman@27468
   166
apply (simp add: numeral_2_eq_2)
huffman@27468
   167
done
huffman@27468
   168
huffman@27468
   169
lemma Infinitesimal_hypreal_sqrt_imp_Infinitesimal:
huffman@27468
   170
     "[| 0 \<le> x; ( *f* sqrt) x \<in> Infinitesimal |] ==> x \<in> Infinitesimal"
huffman@27468
   171
apply (auto simp add: order_le_less)
huffman@27468
   172
apply (drule Infinitesimal_square_iff [THEN iffD1])
huffman@27468
   173
apply (drule hypreal_sqrt_gt_zero_pow2)
huffman@27468
   174
apply (simp add: numeral_2_eq_2 del: Infinitesimal_square_iff [symmetric])
huffman@27468
   175
done
huffman@27468
   176
huffman@27468
   177
lemma Infinitesimal_hypreal_sqrt_iff [simp]:
huffman@27468
   178
     "0 \<le> x ==> (( *f* sqrt) x \<in> Infinitesimal) = (x \<in> Infinitesimal)"
huffman@27468
   179
by (blast intro: Infinitesimal_hypreal_sqrt_imp_Infinitesimal Infinitesimal_hypreal_sqrt)
huffman@27468
   180
huffman@27468
   181
lemma Infinitesimal_sqrt_sum_squares [simp]:
huffman@27468
   182
     "(( *f* sqrt)(x*x + y*y) \<in> Infinitesimal) = (x*x + y*y \<in> Infinitesimal)"
huffman@27468
   183
apply (rule Infinitesimal_hypreal_sqrt_iff)
huffman@27468
   184
apply (rule add_nonneg_nonneg)
huffman@27468
   185
apply (auto)
huffman@27468
   186
done
huffman@27468
   187
huffman@27468
   188
lemma HInfinite_hypreal_sqrt:
huffman@27468
   189
     "[| 0 \<le> x; x \<in> HInfinite |] ==> ( *f* sqrt) x \<in> HInfinite"
huffman@27468
   190
apply (auto simp add: order_le_less)
huffman@27468
   191
apply (rule HInfinite_square_iff [THEN iffD1])
huffman@27468
   192
apply (drule hypreal_sqrt_gt_zero_pow2)
huffman@27468
   193
apply (simp add: numeral_2_eq_2)
huffman@27468
   194
done
huffman@27468
   195
huffman@27468
   196
lemma HInfinite_hypreal_sqrt_imp_HInfinite:
huffman@27468
   197
     "[| 0 \<le> x; ( *f* sqrt) x \<in> HInfinite |] ==> x \<in> HInfinite"
huffman@27468
   198
apply (auto simp add: order_le_less)
huffman@27468
   199
apply (drule HInfinite_square_iff [THEN iffD2])
huffman@27468
   200
apply (drule hypreal_sqrt_gt_zero_pow2)
huffman@27468
   201
apply (simp add: numeral_2_eq_2 del: HInfinite_square_iff)
huffman@27468
   202
done
huffman@27468
   203
huffman@27468
   204
lemma HInfinite_hypreal_sqrt_iff [simp]:
huffman@27468
   205
     "0 \<le> x ==> (( *f* sqrt) x \<in> HInfinite) = (x \<in> HInfinite)"
huffman@27468
   206
by (blast intro: HInfinite_hypreal_sqrt HInfinite_hypreal_sqrt_imp_HInfinite)
huffman@27468
   207
huffman@27468
   208
lemma HInfinite_sqrt_sum_squares [simp]:
huffman@27468
   209
     "(( *f* sqrt)(x*x + y*y) \<in> HInfinite) = (x*x + y*y \<in> HInfinite)"
huffman@27468
   210
apply (rule HInfinite_hypreal_sqrt_iff)
huffman@27468
   211
apply (rule add_nonneg_nonneg)
huffman@27468
   212
apply (auto)
huffman@27468
   213
done
huffman@27468
   214
huffman@27468
   215
lemma HFinite_exp [simp]:
huffman@27468
   216
     "sumhr (0, whn, %n. inverse (real (fact n)) * x ^ n) \<in> HFinite"
huffman@27468
   217
unfolding sumhr_app
huffman@27468
   218
apply (simp only: star_zero_def starfun2_star_of)
huffman@27468
   219
apply (rule NSBseqD2)
huffman@27468
   220
apply (rule NSconvergent_NSBseq)
huffman@27468
   221
apply (rule convergent_NSconvergent_iff [THEN iffD1])
huffman@27468
   222
apply (rule summable_convergent_sumr_iff [THEN iffD1])
huffman@27468
   223
apply (rule summable_exp)
huffman@27468
   224
done
huffman@27468
   225
huffman@27468
   226
lemma exphr_zero [simp]: "exphr 0 = 1"
huffman@27468
   227
apply (simp add: exphr_def sumhr_split_add
huffman@27468
   228
                   [OF hypnat_one_less_hypnat_omega, symmetric])
huffman@27468
   229
apply (rule st_unique, simp)
huffman@27468
   230
apply (rule subst [where P="\<lambda>x. 1 \<approx> x", OF _ approx_refl])
huffman@27468
   231
apply (rule rev_mp [OF hypnat_one_less_hypnat_omega])
huffman@27468
   232
apply (rule_tac x="whn" in spec)
huffman@27468
   233
apply (unfold sumhr_app, transfer, simp)
huffman@27468
   234
done
huffman@27468
   235
huffman@27468
   236
lemma coshr_zero [simp]: "coshr 0 = 1"
huffman@27468
   237
apply (simp add: coshr_def sumhr_split_add
huffman@27468
   238
                   [OF hypnat_one_less_hypnat_omega, symmetric]) 
huffman@27468
   239
apply (rule st_unique, simp)
huffman@27468
   240
apply (rule subst [where P="\<lambda>x. 1 \<approx> x", OF _ approx_refl])
huffman@27468
   241
apply (rule rev_mp [OF hypnat_one_less_hypnat_omega])
huffman@27468
   242
apply (rule_tac x="whn" in spec)
huffman@31271
   243
apply (unfold sumhr_app, transfer, simp add: cos_coeff_def)
huffman@27468
   244
done
huffman@27468
   245
huffman@27468
   246
lemma STAR_exp_zero_approx_one [simp]: "( *f* exp) (0::hypreal) @= 1"
huffman@27468
   247
apply (subgoal_tac "( *f* exp) (0::hypreal) = 1", simp)
huffman@27468
   248
apply (transfer, simp)
huffman@27468
   249
done
huffman@27468
   250
huffman@27468
   251
lemma STAR_exp_Infinitesimal: "x \<in> Infinitesimal ==> ( *f* exp) (x::hypreal) @= 1"
huffman@27468
   252
apply (case_tac "x = 0")
huffman@27468
   253
apply (cut_tac [2] x = 0 in DERIV_exp)
huffman@27468
   254
apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)
huffman@27468
   255
apply (drule_tac x = x in bspec, auto)
huffman@27468
   256
apply (drule_tac c = x in approx_mult1)
huffman@27468
   257
apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD] 
huffman@27468
   258
            simp add: mult_assoc)
huffman@27468
   259
apply (rule approx_add_right_cancel [where d="-1"])
huffman@27468
   260
apply (rule approx_sym [THEN [2] approx_trans2])
haftmann@37887
   261
apply (auto simp add: diff_minus mem_infmal_iff)
huffman@27468
   262
done
huffman@27468
   263
huffman@27468
   264
lemma STAR_exp_epsilon [simp]: "( *f* exp) epsilon @= 1"
huffman@27468
   265
by (auto intro: STAR_exp_Infinitesimal)
huffman@27468
   266
huffman@27468
   267
lemma STAR_exp_add: "!!x y. ( *f* exp)(x + y) = ( *f* exp) x * ( *f* exp) y"
huffman@27468
   268
by transfer (rule exp_add)
huffman@27468
   269
huffman@27468
   270
lemma exphr_hypreal_of_real_exp_eq: "exphr x = hypreal_of_real (exp x)"
huffman@27468
   271
apply (simp add: exphr_def)
huffman@27468
   272
apply (rule st_unique, simp)
huffman@27468
   273
apply (subst starfunNat_sumr [symmetric])
huffman@27468
   274
apply (rule NSLIMSEQ_D [THEN approx_sym])
huffman@27468
   275
apply (rule LIMSEQ_NSLIMSEQ)
huffman@27468
   276
apply (subst sums_def [symmetric])
huffman@27468
   277
apply (cut_tac exp_converges [where x=x], simp)
huffman@27468
   278
apply (rule HNatInfinite_whn)
huffman@27468
   279
done
huffman@27468
   280
huffman@27468
   281
lemma starfun_exp_ge_add_one_self [simp]: "!!x::hypreal. 0 \<le> x ==> (1 + x) \<le> ( *f* exp) x"
huffman@27468
   282
by transfer (rule exp_ge_add_one_self_aux)
huffman@27468
   283
huffman@27468
   284
(* exp (oo) is infinite *)
huffman@27468
   285
lemma starfun_exp_HInfinite:
huffman@27468
   286
     "[| x \<in> HInfinite; 0 \<le> x |] ==> ( *f* exp) (x::hypreal) \<in> HInfinite"
huffman@27468
   287
apply (frule starfun_exp_ge_add_one_self)
huffman@27468
   288
apply (rule HInfinite_ge_HInfinite, assumption)
huffman@27468
   289
apply (rule order_trans [of _ "1+x"], auto) 
huffman@27468
   290
done
huffman@27468
   291
huffman@27468
   292
lemma starfun_exp_minus: "!!x. ( *f* exp) (-x) = inverse(( *f* exp) x)"
huffman@27468
   293
by transfer (rule exp_minus)
huffman@27468
   294
huffman@27468
   295
(* exp (-oo) is infinitesimal *)
huffman@27468
   296
lemma starfun_exp_Infinitesimal:
huffman@27468
   297
     "[| x \<in> HInfinite; x \<le> 0 |] ==> ( *f* exp) (x::hypreal) \<in> Infinitesimal"
huffman@27468
   298
apply (subgoal_tac "\<exists>y. x = - y")
huffman@27468
   299
apply (rule_tac [2] x = "- x" in exI)
huffman@27468
   300
apply (auto intro!: HInfinite_inverse_Infinitesimal starfun_exp_HInfinite
huffman@27468
   301
            simp add: starfun_exp_minus HInfinite_minus_iff)
huffman@27468
   302
done
huffman@27468
   303
huffman@27468
   304
lemma starfun_exp_gt_one [simp]: "!!x::hypreal. 0 < x ==> 1 < ( *f* exp) x"
huffman@27468
   305
by transfer (rule exp_gt_one)
huffman@27468
   306
huffman@27468
   307
lemma starfun_ln_exp [simp]: "!!x. ( *f* ln) (( *f* exp) x) = x"
huffman@27468
   308
by transfer (rule ln_exp)
huffman@27468
   309
huffman@27468
   310
lemma starfun_exp_ln_iff [simp]: "!!x. (( *f* exp)(( *f* ln) x) = x) = (0 < x)"
huffman@27468
   311
by transfer (rule exp_ln_iff)
huffman@27468
   312
huffman@27468
   313
lemma starfun_exp_ln_eq: "!!u x. ( *f* exp) u = x ==> ( *f* ln) x = u"
huffman@44316
   314
by transfer (rule ln_unique)
huffman@27468
   315
huffman@27468
   316
lemma starfun_ln_less_self [simp]: "!!x. 0 < x ==> ( *f* ln) x < x"
huffman@27468
   317
by transfer (rule ln_less_self)
huffman@27468
   318
huffman@27468
   319
lemma starfun_ln_ge_zero [simp]: "!!x. 1 \<le> x ==> 0 \<le> ( *f* ln) x"
huffman@27468
   320
by transfer (rule ln_ge_zero)
huffman@27468
   321
huffman@27468
   322
lemma starfun_ln_gt_zero [simp]: "!!x .1 < x ==> 0 < ( *f* ln) x"
huffman@27468
   323
by transfer (rule ln_gt_zero)
huffman@27468
   324
huffman@27468
   325
lemma starfun_ln_not_eq_zero [simp]: "!!x. [| 0 < x; x \<noteq> 1 |] ==> ( *f* ln) x \<noteq> 0"
huffman@27468
   326
by transfer simp
huffman@27468
   327
huffman@27468
   328
lemma starfun_ln_HFinite: "[| x \<in> HFinite; 1 \<le> x |] ==> ( *f* ln) x \<in> HFinite"
huffman@27468
   329
apply (rule HFinite_bounded)
huffman@27468
   330
apply assumption 
huffman@27468
   331
apply (simp_all add: starfun_ln_less_self order_less_imp_le)
huffman@27468
   332
done
huffman@27468
   333
huffman@27468
   334
lemma starfun_ln_inverse: "!!x. 0 < x ==> ( *f* ln) (inverse x) = -( *f* ln) x"
huffman@27468
   335
by transfer (rule ln_inverse)
huffman@27468
   336
huffman@27468
   337
lemma starfun_abs_exp_cancel: "\<And>x. \<bar>( *f* exp) (x::hypreal)\<bar> = ( *f* exp) x"
huffman@27468
   338
by transfer (rule abs_exp_cancel)
huffman@27468
   339
huffman@27468
   340
lemma starfun_exp_less_mono: "\<And>x y::hypreal. x < y \<Longrightarrow> ( *f* exp) x < ( *f* exp) y"
huffman@27468
   341
by transfer (rule exp_less_mono)
huffman@27468
   342
huffman@27468
   343
lemma starfun_exp_HFinite: "x \<in> HFinite ==> ( *f* exp) (x::hypreal) \<in> HFinite"
huffman@27468
   344
apply (auto simp add: HFinite_def, rename_tac u)
huffman@27468
   345
apply (rule_tac x="( *f* exp) u" in rev_bexI)
huffman@27468
   346
apply (simp add: Reals_eq_Standard)
huffman@27468
   347
apply (simp add: starfun_abs_exp_cancel)
huffman@27468
   348
apply (simp add: starfun_exp_less_mono)
huffman@27468
   349
done
huffman@27468
   350
huffman@27468
   351
lemma starfun_exp_add_HFinite_Infinitesimal_approx:
huffman@27468
   352
     "[|x \<in> Infinitesimal; z \<in> HFinite |] ==> ( *f* exp) (z + x::hypreal) @= ( *f* exp) z"
huffman@27468
   353
apply (simp add: STAR_exp_add)
huffman@27468
   354
apply (frule STAR_exp_Infinitesimal)
huffman@27468
   355
apply (drule approx_mult2)
huffman@27468
   356
apply (auto intro: starfun_exp_HFinite)
huffman@27468
   357
done
huffman@27468
   358
huffman@27468
   359
(* using previous result to get to result *)
huffman@27468
   360
lemma starfun_ln_HInfinite:
huffman@27468
   361
     "[| x \<in> HInfinite; 0 < x |] ==> ( *f* ln) x \<in> HInfinite"
huffman@27468
   362
apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2])
huffman@27468
   363
apply (drule starfun_exp_HFinite)
huffman@27468
   364
apply (simp add: starfun_exp_ln_iff [THEN iffD2] HFinite_HInfinite_iff)
huffman@27468
   365
done
huffman@27468
   366
huffman@27468
   367
lemma starfun_exp_HInfinite_Infinitesimal_disj:
huffman@27468
   368
 "x \<in> HInfinite ==> ( *f* exp) x \<in> HInfinite | ( *f* exp) (x::hypreal) \<in> Infinitesimal"
huffman@27468
   369
apply (insert linorder_linear [of x 0]) 
huffman@27468
   370
apply (auto intro: starfun_exp_HInfinite starfun_exp_Infinitesimal)
huffman@27468
   371
done
huffman@27468
   372
huffman@27468
   373
(* check out this proof!!! *)
huffman@27468
   374
lemma starfun_ln_HFinite_not_Infinitesimal:
huffman@27468
   375
     "[| x \<in> HFinite - Infinitesimal; 0 < x |] ==> ( *f* ln) x \<in> HFinite"
huffman@27468
   376
apply (rule ccontr, drule HInfinite_HFinite_iff [THEN iffD2])
huffman@27468
   377
apply (drule starfun_exp_HInfinite_Infinitesimal_disj)
huffman@27468
   378
apply (simp add: starfun_exp_ln_iff [symmetric] HInfinite_HFinite_iff
huffman@27468
   379
            del: starfun_exp_ln_iff)
huffman@27468
   380
done
huffman@27468
   381
huffman@27468
   382
(* we do proof by considering ln of 1/x *)
huffman@27468
   383
lemma starfun_ln_Infinitesimal_HInfinite:
huffman@27468
   384
     "[| x \<in> Infinitesimal; 0 < x |] ==> ( *f* ln) x \<in> HInfinite"
huffman@27468
   385
apply (drule Infinitesimal_inverse_HInfinite)
huffman@27468
   386
apply (frule positive_imp_inverse_positive)
huffman@27468
   387
apply (drule_tac [2] starfun_ln_HInfinite)
huffman@27468
   388
apply (auto simp add: starfun_ln_inverse HInfinite_minus_iff)
huffman@27468
   389
done
huffman@27468
   390
huffman@27468
   391
lemma starfun_ln_less_zero: "!!x. [| 0 < x; x < 1 |] ==> ( *f* ln) x < 0"
huffman@27468
   392
by transfer (rule ln_less_zero)
huffman@27468
   393
huffman@27468
   394
lemma starfun_ln_Infinitesimal_less_zero:
huffman@27468
   395
     "[| x \<in> Infinitesimal; 0 < x |] ==> ( *f* ln) x < 0"
huffman@27468
   396
by (auto intro!: starfun_ln_less_zero simp add: Infinitesimal_def)
huffman@27468
   397
huffman@27468
   398
lemma starfun_ln_HInfinite_gt_zero:
huffman@27468
   399
     "[| x \<in> HInfinite; 0 < x |] ==> 0 < ( *f* ln) x"
huffman@27468
   400
by (auto intro!: starfun_ln_gt_zero simp add: HInfinite_def)
huffman@27468
   401
huffman@27468
   402
huffman@27468
   403
(*
huffman@27468
   404
Goalw [NSLIM_def] "(%h. ((x powr h) - 1) / h) -- 0 --NS> ln x"
huffman@27468
   405
*)
huffman@27468
   406
huffman@31271
   407
lemma HFinite_sin [simp]: "sumhr (0, whn, %n. sin_coeff n * x ^ n) \<in> HFinite"
huffman@27468
   408
unfolding sumhr_app
huffman@27468
   409
apply (simp only: star_zero_def starfun2_star_of)
huffman@27468
   410
apply (rule NSBseqD2)
huffman@27468
   411
apply (rule NSconvergent_NSBseq)
huffman@27468
   412
apply (rule convergent_NSconvergent_iff [THEN iffD1])
huffman@27468
   413
apply (rule summable_convergent_sumr_iff [THEN iffD1])
huffman@31271
   414
apply (rule summable_sin)
huffman@27468
   415
done
huffman@27468
   416
huffman@27468
   417
lemma STAR_sin_zero [simp]: "( *f* sin) 0 = 0"
huffman@27468
   418
by transfer (rule sin_zero)
huffman@27468
   419
huffman@27468
   420
lemma STAR_sin_Infinitesimal [simp]: "x \<in> Infinitesimal ==> ( *f* sin) x @= x"
huffman@27468
   421
apply (case_tac "x = 0")
huffman@27468
   422
apply (cut_tac [2] x = 0 in DERIV_sin)
huffman@27468
   423
apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)
huffman@27468
   424
apply (drule bspec [where x = x], auto)
huffman@27468
   425
apply (drule approx_mult1 [where c = x])
huffman@27468
   426
apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]
huffman@27468
   427
           simp add: mult_assoc)
huffman@27468
   428
done
huffman@27468
   429
huffman@31271
   430
lemma HFinite_cos [simp]: "sumhr (0, whn, %n. cos_coeff n * x ^ n) \<in> HFinite"
huffman@27468
   431
unfolding sumhr_app
huffman@27468
   432
apply (simp only: star_zero_def starfun2_star_of)
huffman@27468
   433
apply (rule NSBseqD2)
huffman@27468
   434
apply (rule NSconvergent_NSBseq)
huffman@27468
   435
apply (rule convergent_NSconvergent_iff [THEN iffD1])
huffman@27468
   436
apply (rule summable_convergent_sumr_iff [THEN iffD1])
huffman@27468
   437
apply (rule summable_cos)
huffman@27468
   438
done
huffman@27468
   439
huffman@27468
   440
lemma STAR_cos_zero [simp]: "( *f* cos) 0 = 1"
huffman@27468
   441
by transfer (rule cos_zero)
huffman@27468
   442
huffman@27468
   443
lemma STAR_cos_Infinitesimal [simp]: "x \<in> Infinitesimal ==> ( *f* cos) x @= 1"
huffman@27468
   444
apply (case_tac "x = 0")
huffman@27468
   445
apply (cut_tac [2] x = 0 in DERIV_cos)
huffman@27468
   446
apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)
huffman@27468
   447
apply (drule bspec [where x = x])
huffman@27468
   448
apply auto
huffman@27468
   449
apply (drule approx_mult1 [where c = x])
huffman@27468
   450
apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]
huffman@27468
   451
            simp add: mult_assoc)
huffman@27468
   452
apply (rule approx_add_right_cancel [where d = "-1"])
haftmann@37887
   453
apply (simp add: diff_minus)
huffman@27468
   454
done
huffman@27468
   455
huffman@27468
   456
lemma STAR_tan_zero [simp]: "( *f* tan) 0 = 0"
huffman@27468
   457
by transfer (rule tan_zero)
huffman@27468
   458
huffman@27468
   459
lemma STAR_tan_Infinitesimal: "x \<in> Infinitesimal ==> ( *f* tan) x @= x"
huffman@27468
   460
apply (case_tac "x = 0")
huffman@27468
   461
apply (cut_tac [2] x = 0 in DERIV_tan)
huffman@27468
   462
apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)
huffman@27468
   463
apply (drule bspec [where x = x], auto)
huffman@27468
   464
apply (drule approx_mult1 [where c = x])
huffman@27468
   465
apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]
huffman@27468
   466
             simp add: mult_assoc)
huffman@27468
   467
done
huffman@27468
   468
huffman@27468
   469
lemma STAR_sin_cos_Infinitesimal_mult:
huffman@27468
   470
     "x \<in> Infinitesimal ==> ( *f* sin) x * ( *f* cos) x @= x"
huffman@27468
   471
apply (insert approx_mult_HFinite [of "( *f* sin) x" _ "( *f* cos) x" 1]) 
huffman@27468
   472
apply (simp add: Infinitesimal_subset_HFinite [THEN subsetD])
huffman@27468
   473
done
huffman@27468
   474
huffman@27468
   475
lemma HFinite_pi: "hypreal_of_real pi \<in> HFinite"
huffman@27468
   476
by simp
huffman@27468
   477
huffman@27468
   478
(* lemmas *)
huffman@27468
   479
huffman@27468
   480
lemma lemma_split_hypreal_of_real:
huffman@27468
   481
     "N \<in> HNatInfinite  
huffman@27468
   482
      ==> hypreal_of_real a =  
huffman@27468
   483
          hypreal_of_hypnat N * (inverse(hypreal_of_hypnat N) * hypreal_of_real a)"
huffman@27468
   484
by (simp add: mult_assoc [symmetric] zero_less_HNatInfinite)
huffman@27468
   485
huffman@27468
   486
lemma STAR_sin_Infinitesimal_divide:
huffman@27468
   487
     "[|x \<in> Infinitesimal; x \<noteq> 0 |] ==> ( *f* sin) x/x @= 1"
huffman@27468
   488
apply (cut_tac x = 0 in DERIV_sin)
huffman@27468
   489
apply (simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)
huffman@27468
   490
done
huffman@27468
   491
huffman@27468
   492
(*------------------------------------------------------------------------*) 
huffman@27468
   493
(* sin* (1/n) * 1/(1/n) @= 1 for n = oo                                   *)
huffman@27468
   494
(*------------------------------------------------------------------------*)
huffman@27468
   495
huffman@27468
   496
lemma lemma_sin_pi:
huffman@27468
   497
     "n \<in> HNatInfinite  
huffman@27468
   498
      ==> ( *f* sin) (inverse (hypreal_of_hypnat n))/(inverse (hypreal_of_hypnat n)) @= 1"
huffman@27468
   499
apply (rule STAR_sin_Infinitesimal_divide)
huffman@27468
   500
apply (auto simp add: zero_less_HNatInfinite)
huffman@27468
   501
done
huffman@27468
   502
huffman@27468
   503
lemma STAR_sin_inverse_HNatInfinite:
huffman@27468
   504
     "n \<in> HNatInfinite  
huffman@27468
   505
      ==> ( *f* sin) (inverse (hypreal_of_hypnat n)) * hypreal_of_hypnat n @= 1"
huffman@27468
   506
apply (frule lemma_sin_pi)
huffman@27468
   507
apply (simp add: divide_inverse)
huffman@27468
   508
done
huffman@27468
   509
huffman@27468
   510
lemma Infinitesimal_pi_divide_HNatInfinite: 
huffman@27468
   511
     "N \<in> HNatInfinite  
huffman@27468
   512
      ==> hypreal_of_real pi/(hypreal_of_hypnat N) \<in> Infinitesimal"
huffman@27468
   513
apply (simp add: divide_inverse)
huffman@27468
   514
apply (auto intro: Infinitesimal_HFinite_mult2)
huffman@27468
   515
done
huffman@27468
   516
huffman@27468
   517
lemma pi_divide_HNatInfinite_not_zero [simp]:
huffman@27468
   518
     "N \<in> HNatInfinite ==> hypreal_of_real pi/(hypreal_of_hypnat N) \<noteq> 0"
huffman@27468
   519
by (simp add: zero_less_HNatInfinite)
huffman@27468
   520
huffman@27468
   521
lemma STAR_sin_pi_divide_HNatInfinite_approx_pi:
huffman@27468
   522
     "n \<in> HNatInfinite  
huffman@27468
   523
      ==> ( *f* sin) (hypreal_of_real pi/(hypreal_of_hypnat n)) * hypreal_of_hypnat n  
huffman@27468
   524
          @= hypreal_of_real pi"
huffman@27468
   525
apply (frule STAR_sin_Infinitesimal_divide
huffman@27468
   526
               [OF Infinitesimal_pi_divide_HNatInfinite 
huffman@27468
   527
                   pi_divide_HNatInfinite_not_zero])
huffman@27468
   528
apply (auto)
huffman@27468
   529
apply (rule approx_SReal_mult_cancel [of "inverse (hypreal_of_real pi)"])
huffman@27468
   530
apply (auto intro: Reals_inverse simp add: divide_inverse mult_ac)
huffman@27468
   531
done
huffman@27468
   532
huffman@27468
   533
lemma STAR_sin_pi_divide_HNatInfinite_approx_pi2:
huffman@27468
   534
     "n \<in> HNatInfinite  
huffman@27468
   535
      ==> hypreal_of_hypnat n *  
huffman@27468
   536
          ( *f* sin) (hypreal_of_real pi/(hypreal_of_hypnat n))  
huffman@27468
   537
          @= hypreal_of_real pi"
huffman@27468
   538
apply (rule mult_commute [THEN subst])
huffman@27468
   539
apply (erule STAR_sin_pi_divide_HNatInfinite_approx_pi)
huffman@27468
   540
done
huffman@27468
   541
huffman@27468
   542
lemma starfunNat_pi_divide_n_Infinitesimal: 
huffman@27468
   543
     "N \<in> HNatInfinite ==> ( *f* (%x. pi / real x)) N \<in> Infinitesimal"
huffman@27468
   544
by (auto intro!: Infinitesimal_HFinite_mult2 
huffman@27468
   545
         simp add: starfun_mult [symmetric] divide_inverse
huffman@27468
   546
                   starfun_inverse [symmetric] starfunNat_real_of_nat)
huffman@27468
   547
huffman@27468
   548
lemma STAR_sin_pi_divide_n_approx:
huffman@27468
   549
     "N \<in> HNatInfinite ==>  
huffman@27468
   550
      ( *f* sin) (( *f* (%x. pi / real x)) N) @=  
huffman@27468
   551
      hypreal_of_real pi/(hypreal_of_hypnat N)"
huffman@27468
   552
apply (simp add: starfunNat_real_of_nat [symmetric])
huffman@27468
   553
apply (rule STAR_sin_Infinitesimal)
huffman@27468
   554
apply (simp add: divide_inverse)
huffman@27468
   555
apply (rule Infinitesimal_HFinite_mult2)
huffman@27468
   556
apply (subst starfun_inverse)
huffman@27468
   557
apply (erule starfunNat_inverse_real_of_nat_Infinitesimal)
huffman@27468
   558
apply simp
huffman@27468
   559
done
huffman@27468
   560
huffman@27468
   561
lemma NSLIMSEQ_sin_pi: "(%n. real n * sin (pi / real n)) ----NS> pi"
huffman@27468
   562
apply (auto simp add: NSLIMSEQ_def starfun_mult [symmetric] starfunNat_real_of_nat)
huffman@27468
   563
apply (rule_tac f1 = sin in starfun_o2 [THEN subst])
huffman@27468
   564
apply (auto simp add: starfun_mult [symmetric] starfunNat_real_of_nat divide_inverse)
huffman@27468
   565
apply (rule_tac f1 = inverse in starfun_o2 [THEN subst])
huffman@27468
   566
apply (auto dest: STAR_sin_pi_divide_HNatInfinite_approx_pi 
huffman@27468
   567
            simp add: starfunNat_real_of_nat mult_commute divide_inverse)
huffman@27468
   568
done
huffman@27468
   569
huffman@27468
   570
lemma NSLIMSEQ_cos_one: "(%n. cos (pi / real n))----NS> 1"
huffman@27468
   571
apply (simp add: NSLIMSEQ_def, auto)
huffman@27468
   572
apply (rule_tac f1 = cos in starfun_o2 [THEN subst])
huffman@27468
   573
apply (rule STAR_cos_Infinitesimal)
huffman@27468
   574
apply (auto intro!: Infinitesimal_HFinite_mult2 
huffman@27468
   575
            simp add: starfun_mult [symmetric] divide_inverse
huffman@27468
   576
                      starfun_inverse [symmetric] starfunNat_real_of_nat)
huffman@27468
   577
done
huffman@27468
   578
huffman@27468
   579
lemma NSLIMSEQ_sin_cos_pi:
huffman@27468
   580
     "(%n. real n * sin (pi / real n) * cos (pi / real n)) ----NS> pi"
huffman@27468
   581
by (insert NSLIMSEQ_mult [OF NSLIMSEQ_sin_pi NSLIMSEQ_cos_one], simp)
huffman@27468
   582
huffman@27468
   583
huffman@27468
   584
text{*A familiar approximation to @{term "cos x"} when @{term x} is small*}
huffman@27468
   585
huffman@27468
   586
lemma STAR_cos_Infinitesimal_approx:
huffman@27468
   587
     "x \<in> Infinitesimal ==> ( *f* cos) x @= 1 - x ^ 2"
huffman@27468
   588
apply (rule STAR_cos_Infinitesimal [THEN approx_trans])
huffman@27468
   589
apply (auto simp add: Infinitesimal_approx_minus [symmetric] 
huffman@27468
   590
            diff_minus add_assoc [symmetric] numeral_2_eq_2)
huffman@27468
   591
done
huffman@27468
   592
huffman@27468
   593
lemma STAR_cos_Infinitesimal_approx2:
huffman@27468
   594
     "x \<in> Infinitesimal ==> ( *f* cos) x @= 1 - (x ^ 2)/2"
huffman@27468
   595
apply (rule STAR_cos_Infinitesimal [THEN approx_trans])
huffman@27468
   596
apply (auto intro: Infinitesimal_SReal_divide 
huffman@27468
   597
            simp add: Infinitesimal_approx_minus [symmetric] numeral_2_eq_2)
huffman@27468
   598
done
huffman@27468
   599
huffman@27468
   600
end