src/HOL/Complex.thy
author haftmann
Wed Apr 29 14:20:26 2009 +0200 (2009-04-29)
changeset 31021 53642251a04f
parent 30960 fec1a04b7220
child 31292 d24b2692562f
permissions -rw-r--r--
farewell to class recpower
paulson@13957
     1
(*  Title:       Complex.thy
paulson@13957
     2
    Author:      Jacques D. Fleuriot
paulson@13957
     3
    Copyright:   2001 University of Edinburgh
paulson@14387
     4
    Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4
paulson@13957
     5
*)
paulson@13957
     6
paulson@14377
     7
header {* Complex Numbers: Rectangular and Polar Representations *}
paulson@14373
     8
nipkow@15131
     9
theory Complex
haftmann@28952
    10
imports Transcendental
nipkow@15131
    11
begin
paulson@13957
    12
paulson@14373
    13
datatype complex = Complex real real
paulson@13957
    14
haftmann@25712
    15
primrec
haftmann@25712
    16
  Re :: "complex \<Rightarrow> real"
haftmann@25712
    17
where
haftmann@25712
    18
  Re: "Re (Complex x y) = x"
paulson@14373
    19
haftmann@25712
    20
primrec
haftmann@25712
    21
  Im :: "complex \<Rightarrow> real"
haftmann@25712
    22
where
haftmann@25712
    23
  Im: "Im (Complex x y) = y"
paulson@14373
    24
paulson@14373
    25
lemma complex_surj [simp]: "Complex (Re z) (Im z) = z"
paulson@14373
    26
  by (induct z) simp
paulson@13957
    27
huffman@23125
    28
lemma complex_equality [intro?]: "\<lbrakk>Re x = Re y; Im x = Im y\<rbrakk> \<Longrightarrow> x = y"
haftmann@25712
    29
  by (induct x, induct y) simp
huffman@23125
    30
haftmann@25599
    31
lemma expand_complex_eq: "x = y \<longleftrightarrow> Re x = Re y \<and> Im x = Im y"
haftmann@25712
    32
  by (induct x, induct y) simp
huffman@23125
    33
huffman@23125
    34
lemmas complex_Re_Im_cancel_iff = expand_complex_eq
huffman@23125
    35
huffman@23125
    36
huffman@23125
    37
subsection {* Addition and Subtraction *}
huffman@23125
    38
haftmann@25599
    39
instantiation complex :: ab_group_add
haftmann@25571
    40
begin
haftmann@25571
    41
haftmann@25571
    42
definition
haftmann@25571
    43
  complex_zero_def: "0 = Complex 0 0"
haftmann@25571
    44
haftmann@25571
    45
definition
haftmann@25571
    46
  complex_add_def: "x + y = Complex (Re x + Re y) (Im x + Im y)"
huffman@23124
    47
haftmann@25571
    48
definition
haftmann@25571
    49
  complex_minus_def: "- x = Complex (- Re x) (- Im x)"
paulson@14323
    50
haftmann@25571
    51
definition
haftmann@25571
    52
  complex_diff_def: "x - (y\<Colon>complex) = x + - y"
haftmann@25571
    53
haftmann@25599
    54
lemma Complex_eq_0 [simp]: "Complex a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0"
haftmann@25599
    55
  by (simp add: complex_zero_def)
paulson@14323
    56
paulson@14374
    57
lemma complex_Re_zero [simp]: "Re 0 = 0"
haftmann@25599
    58
  by (simp add: complex_zero_def)
paulson@14374
    59
paulson@14374
    60
lemma complex_Im_zero [simp]: "Im 0 = 0"
haftmann@25599
    61
  by (simp add: complex_zero_def)
haftmann@25599
    62
haftmann@25712
    63
lemma complex_add [simp]:
haftmann@25712
    64
  "Complex a b + Complex c d = Complex (a + c) (b + d)"
haftmann@25712
    65
  by (simp add: complex_add_def)
haftmann@25712
    66
haftmann@25599
    67
lemma complex_Re_add [simp]: "Re (x + y) = Re x + Re y"
haftmann@25599
    68
  by (simp add: complex_add_def)
haftmann@25599
    69
haftmann@25599
    70
lemma complex_Im_add [simp]: "Im (x + y) = Im x + Im y"
haftmann@25599
    71
  by (simp add: complex_add_def)
paulson@14323
    72
haftmann@25712
    73
lemma complex_minus [simp]:
haftmann@25712
    74
  "- (Complex a b) = Complex (- a) (- b)"
haftmann@25599
    75
  by (simp add: complex_minus_def)
huffman@23125
    76
huffman@23125
    77
lemma complex_Re_minus [simp]: "Re (- x) = - Re x"
haftmann@25599
    78
  by (simp add: complex_minus_def)
huffman@23125
    79
huffman@23125
    80
lemma complex_Im_minus [simp]: "Im (- x) = - Im x"
haftmann@25599
    81
  by (simp add: complex_minus_def)
huffman@23125
    82
huffman@23275
    83
lemma complex_diff [simp]:
huffman@23125
    84
  "Complex a b - Complex c d = Complex (a - c) (b - d)"
haftmann@25599
    85
  by (simp add: complex_diff_def)
huffman@23125
    86
huffman@23125
    87
lemma complex_Re_diff [simp]: "Re (x - y) = Re x - Re y"
haftmann@25599
    88
  by (simp add: complex_diff_def)
huffman@23125
    89
huffman@23125
    90
lemma complex_Im_diff [simp]: "Im (x - y) = Im x - Im y"
haftmann@25599
    91
  by (simp add: complex_diff_def)
huffman@23125
    92
haftmann@25712
    93
instance
haftmann@25712
    94
  by intro_classes (simp_all add: complex_add_def complex_diff_def)
haftmann@25712
    95
haftmann@25712
    96
end
haftmann@25712
    97
haftmann@25712
    98
huffman@23125
    99
huffman@23125
   100
subsection {* Multiplication and Division *}
huffman@23125
   101
haftmann@25712
   102
instantiation complex :: "{field, division_by_zero}"
haftmann@25571
   103
begin
haftmann@25571
   104
haftmann@25571
   105
definition
haftmann@25571
   106
  complex_one_def: "1 = Complex 1 0"
haftmann@25571
   107
haftmann@25571
   108
definition
haftmann@25571
   109
  complex_mult_def: "x * y =
haftmann@25571
   110
    Complex (Re x * Re y - Im x * Im y) (Re x * Im y + Im x * Re y)"
huffman@23125
   111
haftmann@25571
   112
definition
haftmann@25571
   113
  complex_inverse_def: "inverse x =
haftmann@25571
   114
    Complex (Re x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>)) (- Im x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>))"
huffman@23125
   115
haftmann@25571
   116
definition
haftmann@25571
   117
  complex_divide_def: "x / (y\<Colon>complex) = x * inverse y"
haftmann@25571
   118
huffman@23125
   119
lemma Complex_eq_1 [simp]: "(Complex a b = 1) = (a = 1 \<and> b = 0)"
haftmann@25712
   120
  by (simp add: complex_one_def)
huffman@22861
   121
paulson@14374
   122
lemma complex_Re_one [simp]: "Re 1 = 1"
haftmann@25712
   123
  by (simp add: complex_one_def)
paulson@14323
   124
paulson@14374
   125
lemma complex_Im_one [simp]: "Im 1 = 0"
haftmann@25712
   126
  by (simp add: complex_one_def)
paulson@14323
   127
huffman@23125
   128
lemma complex_mult [simp]:
huffman@23125
   129
  "Complex a b * Complex c d = Complex (a * c - b * d) (a * d + b * c)"
haftmann@25712
   130
  by (simp add: complex_mult_def)
paulson@14323
   131
huffman@23125
   132
lemma complex_Re_mult [simp]: "Re (x * y) = Re x * Re y - Im x * Im y"
haftmann@25712
   133
  by (simp add: complex_mult_def)
paulson@14323
   134
huffman@23125
   135
lemma complex_Im_mult [simp]: "Im (x * y) = Re x * Im y + Im x * Re y"
haftmann@25712
   136
  by (simp add: complex_mult_def)
paulson@14323
   137
paulson@14377
   138
lemma complex_inverse [simp]:
huffman@23125
   139
  "inverse (Complex a b) = Complex (a / (a\<twosuperior> + b\<twosuperior>)) (- b / (a\<twosuperior> + b\<twosuperior>))"
haftmann@25712
   140
  by (simp add: complex_inverse_def)
paulson@14335
   141
huffman@23125
   142
lemma complex_Re_inverse:
huffman@23125
   143
  "Re (inverse x) = Re x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>)"
haftmann@25712
   144
  by (simp add: complex_inverse_def)
paulson@14323
   145
huffman@23125
   146
lemma complex_Im_inverse:
huffman@23125
   147
  "Im (inverse x) = - Im x / ((Re x)\<twosuperior> + (Im x)\<twosuperior>)"
haftmann@25712
   148
  by (simp add: complex_inverse_def)
paulson@14335
   149
haftmann@25712
   150
instance
haftmann@25712
   151
  by intro_classes (simp_all add: complex_mult_def
haftmann@25712
   152
  right_distrib left_distrib right_diff_distrib left_diff_distrib
haftmann@25712
   153
  complex_inverse_def complex_divide_def
haftmann@25712
   154
  power2_eq_square add_divide_distrib [symmetric]
haftmann@25712
   155
  expand_complex_eq)
paulson@14335
   156
haftmann@25712
   157
end
huffman@23125
   158
huffman@23125
   159
huffman@23125
   160
subsection {* Numerals and Arithmetic *}
huffman@23125
   161
haftmann@25571
   162
instantiation complex :: number_ring
haftmann@25571
   163
begin
huffman@23125
   164
haftmann@25712
   165
definition number_of_complex where
haftmann@25571
   166
  complex_number_of_def: "number_of w = (of_int w \<Colon> complex)"
haftmann@25571
   167
haftmann@25571
   168
instance
haftmann@25712
   169
  by intro_classes (simp only: complex_number_of_def)
haftmann@25571
   170
haftmann@25571
   171
end
huffman@23125
   172
huffman@23125
   173
lemma complex_Re_of_nat [simp]: "Re (of_nat n) = of_nat n"
huffman@23125
   174
by (induct n) simp_all
huffman@20556
   175
huffman@23125
   176
lemma complex_Im_of_nat [simp]: "Im (of_nat n) = 0"
huffman@23125
   177
by (induct n) simp_all
huffman@23125
   178
huffman@23125
   179
lemma complex_Re_of_int [simp]: "Re (of_int z) = of_int z"
huffman@23125
   180
by (cases z rule: int_diff_cases) simp
huffman@23125
   181
huffman@23125
   182
lemma complex_Im_of_int [simp]: "Im (of_int z) = 0"
huffman@23125
   183
by (cases z rule: int_diff_cases) simp
huffman@23125
   184
huffman@23125
   185
lemma complex_Re_number_of [simp]: "Re (number_of v) = number_of v"
haftmann@25502
   186
unfolding number_of_eq by (rule complex_Re_of_int)
huffman@20556
   187
huffman@23125
   188
lemma complex_Im_number_of [simp]: "Im (number_of v) = 0"
haftmann@25502
   189
unfolding number_of_eq by (rule complex_Im_of_int)
huffman@23125
   190
huffman@23125
   191
lemma Complex_eq_number_of [simp]:
huffman@23125
   192
  "(Complex a b = number_of w) = (a = number_of w \<and> b = 0)"
huffman@23125
   193
by (simp add: expand_complex_eq)
huffman@23125
   194
huffman@23125
   195
huffman@23125
   196
subsection {* Scalar Multiplication *}
huffman@20556
   197
haftmann@25712
   198
instantiation complex :: real_field
haftmann@25571
   199
begin
haftmann@25571
   200
haftmann@25571
   201
definition
haftmann@25571
   202
  complex_scaleR_def: "scaleR r x = Complex (r * Re x) (r * Im x)"
haftmann@25571
   203
huffman@23125
   204
lemma complex_scaleR [simp]:
huffman@23125
   205
  "scaleR r (Complex a b) = Complex (r * a) (r * b)"
haftmann@25712
   206
  unfolding complex_scaleR_def by simp
huffman@23125
   207
huffman@23125
   208
lemma complex_Re_scaleR [simp]: "Re (scaleR r x) = r * Re x"
haftmann@25712
   209
  unfolding complex_scaleR_def by simp
huffman@23125
   210
huffman@23125
   211
lemma complex_Im_scaleR [simp]: "Im (scaleR r x) = r * Im x"
haftmann@25712
   212
  unfolding complex_scaleR_def by simp
huffman@22972
   213
haftmann@25712
   214
instance
huffman@20556
   215
proof
huffman@23125
   216
  fix a b :: real and x y :: complex
huffman@23125
   217
  show "scaleR a (x + y) = scaleR a x + scaleR a y"
huffman@23125
   218
    by (simp add: expand_complex_eq right_distrib)
huffman@23125
   219
  show "scaleR (a + b) x = scaleR a x + scaleR b x"
huffman@23125
   220
    by (simp add: expand_complex_eq left_distrib)
huffman@23125
   221
  show "scaleR a (scaleR b x) = scaleR (a * b) x"
huffman@23125
   222
    by (simp add: expand_complex_eq mult_assoc)
huffman@23125
   223
  show "scaleR 1 x = x"
huffman@23125
   224
    by (simp add: expand_complex_eq)
huffman@23125
   225
  show "scaleR a x * y = scaleR a (x * y)"
nipkow@29667
   226
    by (simp add: expand_complex_eq algebra_simps)
huffman@23125
   227
  show "x * scaleR a y = scaleR a (x * y)"
nipkow@29667
   228
    by (simp add: expand_complex_eq algebra_simps)
huffman@20556
   229
qed
huffman@20556
   230
haftmann@25712
   231
end
haftmann@25712
   232
huffman@20556
   233
huffman@23125
   234
subsection{* Properties of Embedding from Reals *}
paulson@14323
   235
huffman@20557
   236
abbreviation
huffman@23125
   237
  complex_of_real :: "real \<Rightarrow> complex" where
huffman@23125
   238
    "complex_of_real \<equiv> of_real"
huffman@20557
   239
huffman@20557
   240
lemma complex_of_real_def: "complex_of_real r = Complex r 0"
huffman@20557
   241
by (simp add: of_real_def complex_scaleR_def)
huffman@20557
   242
huffman@20557
   243
lemma Re_complex_of_real [simp]: "Re (complex_of_real z) = z"
huffman@20557
   244
by (simp add: complex_of_real_def)
huffman@20557
   245
huffman@20557
   246
lemma Im_complex_of_real [simp]: "Im (complex_of_real z) = 0"
huffman@20557
   247
by (simp add: complex_of_real_def)
huffman@20557
   248
paulson@14377
   249
lemma Complex_add_complex_of_real [simp]:
paulson@14377
   250
     "Complex x y + complex_of_real r = Complex (x+r) y"
paulson@14377
   251
by (simp add: complex_of_real_def)
paulson@14377
   252
paulson@14377
   253
lemma complex_of_real_add_Complex [simp]:
paulson@14377
   254
     "complex_of_real r + Complex x y = Complex (r+x) y"
huffman@23125
   255
by (simp add: complex_of_real_def)
paulson@14377
   256
paulson@14377
   257
lemma Complex_mult_complex_of_real:
paulson@14377
   258
     "Complex x y * complex_of_real r = Complex (x*r) (y*r)"
paulson@14377
   259
by (simp add: complex_of_real_def)
paulson@14377
   260
paulson@14377
   261
lemma complex_of_real_mult_Complex:
paulson@14377
   262
     "complex_of_real r * Complex x y = Complex (r*x) (r*y)"
huffman@23125
   263
by (simp add: complex_of_real_def)
huffman@20557
   264
paulson@14377
   265
huffman@23125
   266
subsection {* Vector Norm *}
paulson@14323
   267
haftmann@25712
   268
instantiation complex :: real_normed_field
haftmann@25571
   269
begin
haftmann@25571
   270
haftmann@25571
   271
definition
haftmann@25571
   272
  complex_norm_def: "norm z = sqrt ((Re z)\<twosuperior> + (Im z)\<twosuperior>)"
haftmann@25571
   273
huffman@20557
   274
abbreviation
huffman@22861
   275
  cmod :: "complex \<Rightarrow> real" where
haftmann@25712
   276
  "cmod \<equiv> norm"
haftmann@25571
   277
haftmann@25571
   278
definition
haftmann@25571
   279
  complex_sgn_def: "sgn x = x /\<^sub>R cmod x"
haftmann@25571
   280
huffman@20557
   281
lemmas cmod_def = complex_norm_def
huffman@20557
   282
huffman@23125
   283
lemma complex_norm [simp]: "cmod (Complex x y) = sqrt (x\<twosuperior> + y\<twosuperior>)"
haftmann@25712
   284
  by (simp add: complex_norm_def)
huffman@22852
   285
haftmann@25712
   286
instance
huffman@20557
   287
proof
huffman@23125
   288
  fix r :: real and x y :: complex
huffman@23125
   289
  show "0 \<le> norm x"
huffman@22861
   290
    by (induct x) simp
huffman@23125
   291
  show "(norm x = 0) = (x = 0)"
huffman@22861
   292
    by (induct x) simp
huffman@23125
   293
  show "norm (x + y) \<le> norm x + norm y"
huffman@23125
   294
    by (induct x, induct y)
huffman@23125
   295
       (simp add: real_sqrt_sum_squares_triangle_ineq)
huffman@23125
   296
  show "norm (scaleR r x) = \<bar>r\<bar> * norm x"
huffman@23125
   297
    by (induct x)
huffman@23125
   298
       (simp add: power_mult_distrib right_distrib [symmetric] real_sqrt_mult)
huffman@23125
   299
  show "norm (x * y) = norm x * norm y"
huffman@23125
   300
    by (induct x, induct y)
nipkow@29667
   301
       (simp add: real_sqrt_mult [symmetric] power2_eq_square algebra_simps)
nipkow@24506
   302
  show "sgn x = x /\<^sub>R cmod x" by(simp add: complex_sgn_def)
huffman@24520
   303
qed
huffman@20557
   304
haftmann@25712
   305
end
haftmann@25712
   306
huffman@22861
   307
lemma cmod_unit_one [simp]: "cmod (Complex (cos a) (sin a)) = 1"
huffman@22861
   308
by simp
paulson@14323
   309
huffman@22861
   310
lemma cmod_complex_polar [simp]:
huffman@22861
   311
     "cmod (complex_of_real r * Complex (cos a) (sin a)) = abs r"
huffman@23125
   312
by (simp add: norm_mult)
huffman@22861
   313
huffman@22861
   314
lemma complex_Re_le_cmod: "Re x \<le> cmod x"
huffman@22861
   315
unfolding complex_norm_def
huffman@22861
   316
by (rule real_sqrt_sum_squares_ge1)
huffman@22861
   317
huffman@22861
   318
lemma complex_mod_minus_le_complex_mod [simp]: "- cmod x \<le> cmod x"
huffman@22861
   319
by (rule order_trans [OF _ norm_ge_zero], simp)
huffman@22861
   320
huffman@22861
   321
lemma complex_mod_triangle_ineq2 [simp]: "cmod(b + a) - cmod b \<le> cmod a"
huffman@22861
   322
by (rule ord_le_eq_trans [OF norm_triangle_ineq2], simp)
paulson@14323
   323
huffman@22861
   324
lemmas real_sum_squared_expand = power2_sum [where 'a=real]
paulson@14323
   325
chaieb@26117
   326
lemma abs_Re_le_cmod: "\<bar>Re x\<bar> \<le> cmod x"
chaieb@26117
   327
by (cases x) simp
chaieb@26117
   328
chaieb@26117
   329
lemma abs_Im_le_cmod: "\<bar>Im x\<bar> \<le> cmod x"
chaieb@26117
   330
by (cases x) simp
paulson@14354
   331
huffman@23123
   332
subsection {* Completeness of the Complexes *}
huffman@23123
   333
wenzelm@30729
   334
interpretation Re: bounded_linear "Re"
huffman@23123
   335
apply (unfold_locales, simp, simp)
huffman@23123
   336
apply (rule_tac x=1 in exI)
huffman@23123
   337
apply (simp add: complex_norm_def)
huffman@23123
   338
done
huffman@23123
   339
wenzelm@30729
   340
interpretation Im: bounded_linear "Im"
huffman@23123
   341
apply (unfold_locales, simp, simp)
huffman@23123
   342
apply (rule_tac x=1 in exI)
huffman@23123
   343
apply (simp add: complex_norm_def)
huffman@23123
   344
done
huffman@23123
   345
huffman@23123
   346
lemma LIMSEQ_Complex:
huffman@23123
   347
  "\<lbrakk>X ----> a; Y ----> b\<rbrakk> \<Longrightarrow> (\<lambda>n. Complex (X n) (Y n)) ----> Complex a b"
huffman@23123
   348
apply (rule LIMSEQ_I)
huffman@23123
   349
apply (subgoal_tac "0 < r / sqrt 2")
huffman@23123
   350
apply (drule_tac r="r / sqrt 2" in LIMSEQ_D, safe)
huffman@23123
   351
apply (drule_tac r="r / sqrt 2" in LIMSEQ_D, safe)
huffman@23123
   352
apply (rename_tac M N, rule_tac x="max M N" in exI, safe)
huffman@23123
   353
apply (simp add: real_sqrt_sum_squares_less)
huffman@23123
   354
apply (simp add: divide_pos_pos)
huffman@23123
   355
done
huffman@23123
   356
huffman@23123
   357
instance complex :: banach
huffman@23123
   358
proof
huffman@23123
   359
  fix X :: "nat \<Rightarrow> complex"
huffman@23123
   360
  assume X: "Cauchy X"
huffman@23123
   361
  from Re.Cauchy [OF X] have 1: "(\<lambda>n. Re (X n)) ----> lim (\<lambda>n. Re (X n))"
huffman@23123
   362
    by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
huffman@23123
   363
  from Im.Cauchy [OF X] have 2: "(\<lambda>n. Im (X n)) ----> lim (\<lambda>n. Im (X n))"
huffman@23123
   364
    by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
huffman@23123
   365
  have "X ----> Complex (lim (\<lambda>n. Re (X n))) (lim (\<lambda>n. Im (X n)))"
huffman@23123
   366
    using LIMSEQ_Complex [OF 1 2] by simp
huffman@23123
   367
  thus "convergent X"
huffman@23123
   368
    by (rule convergentI)
huffman@23123
   369
qed
huffman@23123
   370
huffman@23123
   371
huffman@23125
   372
subsection {* The Complex Number @{term "\<i>"} *}
huffman@23125
   373
huffman@23125
   374
definition
huffman@23125
   375
  "ii" :: complex  ("\<i>") where
huffman@23125
   376
  i_def: "ii \<equiv> Complex 0 1"
huffman@23125
   377
huffman@23125
   378
lemma complex_Re_i [simp]: "Re ii = 0"
huffman@23125
   379
by (simp add: i_def)
paulson@14354
   380
huffman@23125
   381
lemma complex_Im_i [simp]: "Im ii = 1"
huffman@23125
   382
by (simp add: i_def)
huffman@23125
   383
huffman@23125
   384
lemma Complex_eq_i [simp]: "(Complex x y = ii) = (x = 0 \<and> y = 1)"
huffman@23125
   385
by (simp add: i_def)
huffman@23125
   386
huffman@23125
   387
lemma complex_i_not_zero [simp]: "ii \<noteq> 0"
huffman@23125
   388
by (simp add: expand_complex_eq)
huffman@23125
   389
huffman@23125
   390
lemma complex_i_not_one [simp]: "ii \<noteq> 1"
huffman@23125
   391
by (simp add: expand_complex_eq)
huffman@23124
   392
huffman@23125
   393
lemma complex_i_not_number_of [simp]: "ii \<noteq> number_of w"
huffman@23125
   394
by (simp add: expand_complex_eq)
huffman@23125
   395
huffman@23125
   396
lemma i_mult_Complex [simp]: "ii * Complex a b = Complex (- b) a"
huffman@23125
   397
by (simp add: expand_complex_eq)
huffman@23125
   398
huffman@23125
   399
lemma Complex_mult_i [simp]: "Complex a b * ii = Complex (- b) a"
huffman@23125
   400
by (simp add: expand_complex_eq)
huffman@23125
   401
huffman@23125
   402
lemma i_complex_of_real [simp]: "ii * complex_of_real r = Complex 0 r"
huffman@23125
   403
by (simp add: i_def complex_of_real_def)
huffman@23125
   404
huffman@23125
   405
lemma complex_of_real_i [simp]: "complex_of_real r * ii = Complex 0 r"
huffman@23125
   406
by (simp add: i_def complex_of_real_def)
huffman@23125
   407
huffman@23125
   408
lemma i_squared [simp]: "ii * ii = -1"
huffman@23125
   409
by (simp add: i_def)
huffman@23125
   410
huffman@23125
   411
lemma power2_i [simp]: "ii\<twosuperior> = -1"
huffman@23125
   412
by (simp add: power2_eq_square)
huffman@23125
   413
huffman@23125
   414
lemma inverse_i [simp]: "inverse ii = - ii"
huffman@23125
   415
by (rule inverse_unique, simp)
paulson@14354
   416
paulson@14354
   417
huffman@23125
   418
subsection {* Complex Conjugation *}
huffman@23125
   419
huffman@23125
   420
definition
huffman@23125
   421
  cnj :: "complex \<Rightarrow> complex" where
huffman@23125
   422
  "cnj z = Complex (Re z) (- Im z)"
huffman@23125
   423
huffman@23125
   424
lemma complex_cnj [simp]: "cnj (Complex a b) = Complex a (- b)"
huffman@23125
   425
by (simp add: cnj_def)
huffman@23125
   426
huffman@23125
   427
lemma complex_Re_cnj [simp]: "Re (cnj x) = Re x"
huffman@23125
   428
by (simp add: cnj_def)
huffman@23125
   429
huffman@23125
   430
lemma complex_Im_cnj [simp]: "Im (cnj x) = - Im x"
huffman@23125
   431
by (simp add: cnj_def)
huffman@23125
   432
huffman@23125
   433
lemma complex_cnj_cancel_iff [simp]: "(cnj x = cnj y) = (x = y)"
huffman@23125
   434
by (simp add: expand_complex_eq)
huffman@23125
   435
huffman@23125
   436
lemma complex_cnj_cnj [simp]: "cnj (cnj z) = z"
huffman@23125
   437
by (simp add: cnj_def)
huffman@23125
   438
huffman@23125
   439
lemma complex_cnj_zero [simp]: "cnj 0 = 0"
huffman@23125
   440
by (simp add: expand_complex_eq)
huffman@23125
   441
huffman@23125
   442
lemma complex_cnj_zero_iff [iff]: "(cnj z = 0) = (z = 0)"
huffman@23125
   443
by (simp add: expand_complex_eq)
huffman@23125
   444
huffman@23125
   445
lemma complex_cnj_add: "cnj (x + y) = cnj x + cnj y"
huffman@23125
   446
by (simp add: expand_complex_eq)
huffman@23125
   447
huffman@23125
   448
lemma complex_cnj_diff: "cnj (x - y) = cnj x - cnj y"
huffman@23125
   449
by (simp add: expand_complex_eq)
huffman@23125
   450
huffman@23125
   451
lemma complex_cnj_minus: "cnj (- x) = - cnj x"
huffman@23125
   452
by (simp add: expand_complex_eq)
huffman@23125
   453
huffman@23125
   454
lemma complex_cnj_one [simp]: "cnj 1 = 1"
huffman@23125
   455
by (simp add: expand_complex_eq)
huffman@23125
   456
huffman@23125
   457
lemma complex_cnj_mult: "cnj (x * y) = cnj x * cnj y"
huffman@23125
   458
by (simp add: expand_complex_eq)
huffman@23125
   459
huffman@23125
   460
lemma complex_cnj_inverse: "cnj (inverse x) = inverse (cnj x)"
huffman@23125
   461
by (simp add: complex_inverse_def)
paulson@14323
   462
huffman@23125
   463
lemma complex_cnj_divide: "cnj (x / y) = cnj x / cnj y"
huffman@23125
   464
by (simp add: complex_divide_def complex_cnj_mult complex_cnj_inverse)
huffman@23125
   465
huffman@23125
   466
lemma complex_cnj_power: "cnj (x ^ n) = cnj x ^ n"
huffman@23125
   467
by (induct n, simp_all add: complex_cnj_mult)
huffman@23125
   468
huffman@23125
   469
lemma complex_cnj_of_nat [simp]: "cnj (of_nat n) = of_nat n"
huffman@23125
   470
by (simp add: expand_complex_eq)
huffman@23125
   471
huffman@23125
   472
lemma complex_cnj_of_int [simp]: "cnj (of_int z) = of_int z"
huffman@23125
   473
by (simp add: expand_complex_eq)
huffman@23125
   474
huffman@23125
   475
lemma complex_cnj_number_of [simp]: "cnj (number_of w) = number_of w"
huffman@23125
   476
by (simp add: expand_complex_eq)
huffman@23125
   477
huffman@23125
   478
lemma complex_cnj_scaleR: "cnj (scaleR r x) = scaleR r (cnj x)"
huffman@23125
   479
by (simp add: expand_complex_eq)
huffman@23125
   480
huffman@23125
   481
lemma complex_mod_cnj [simp]: "cmod (cnj z) = cmod z"
huffman@23125
   482
by (simp add: complex_norm_def)
paulson@14323
   483
huffman@23125
   484
lemma complex_cnj_complex_of_real [simp]: "cnj (of_real x) = of_real x"
huffman@23125
   485
by (simp add: expand_complex_eq)
huffman@23125
   486
huffman@23125
   487
lemma complex_cnj_i [simp]: "cnj ii = - ii"
huffman@23125
   488
by (simp add: expand_complex_eq)
huffman@23125
   489
huffman@23125
   490
lemma complex_add_cnj: "z + cnj z = complex_of_real (2 * Re z)"
huffman@23125
   491
by (simp add: expand_complex_eq)
huffman@23125
   492
huffman@23125
   493
lemma complex_diff_cnj: "z - cnj z = complex_of_real (2 * Im z) * ii"
huffman@23125
   494
by (simp add: expand_complex_eq)
paulson@14354
   495
huffman@23125
   496
lemma complex_mult_cnj: "z * cnj z = complex_of_real ((Re z)\<twosuperior> + (Im z)\<twosuperior>)"
huffman@23125
   497
by (simp add: expand_complex_eq power2_eq_square)
huffman@23125
   498
huffman@23125
   499
lemma complex_mod_mult_cnj: "cmod (z * cnj z) = (cmod z)\<twosuperior>"
huffman@23125
   500
by (simp add: norm_mult power2_eq_square)
huffman@23125
   501
wenzelm@30729
   502
interpretation cnj: bounded_linear "cnj"
huffman@23125
   503
apply (unfold_locales)
huffman@23125
   504
apply (rule complex_cnj_add)
huffman@23125
   505
apply (rule complex_cnj_scaleR)
huffman@23125
   506
apply (rule_tac x=1 in exI, simp)
huffman@23125
   507
done
paulson@14354
   508
paulson@14354
   509
huffman@22972
   510
subsection{*The Functions @{term sgn} and @{term arg}*}
paulson@14323
   511
huffman@22972
   512
text {*------------ Argand -------------*}
huffman@20557
   513
wenzelm@21404
   514
definition
wenzelm@21404
   515
  arg :: "complex => real" where
huffman@20557
   516
  "arg z = (SOME a. Re(sgn z) = cos a & Im(sgn z) = sin a & -pi < a & a \<le> pi)"
huffman@20557
   517
paulson@14374
   518
lemma sgn_eq: "sgn z = z / complex_of_real (cmod z)"
nipkow@24506
   519
by (simp add: complex_sgn_def divide_inverse scaleR_conv_of_real mult_commute)
paulson@14323
   520
paulson@14323
   521
lemma i_mult_eq: "ii * ii = complex_of_real (-1)"
huffman@20725
   522
by (simp add: i_def complex_of_real_def)
paulson@14323
   523
paulson@14374
   524
lemma i_mult_eq2 [simp]: "ii * ii = -(1::complex)"
huffman@20725
   525
by (simp add: i_def complex_one_def)
paulson@14323
   526
paulson@14374
   527
lemma complex_eq_cancel_iff2 [simp]:
paulson@14377
   528
     "(Complex x y = complex_of_real xa) = (x = xa & y = 0)"
paulson@14377
   529
by (simp add: complex_of_real_def)
paulson@14323
   530
paulson@14374
   531
lemma Re_sgn [simp]: "Re(sgn z) = Re(z)/cmod z"
nipkow@24506
   532
by (simp add: complex_sgn_def divide_inverse)
paulson@14323
   533
paulson@14374
   534
lemma Im_sgn [simp]: "Im(sgn z) = Im(z)/cmod z"
nipkow@24506
   535
by (simp add: complex_sgn_def divide_inverse)
paulson@14323
   536
paulson@14323
   537
lemma complex_inverse_complex_split:
paulson@14323
   538
     "inverse(complex_of_real x + ii * complex_of_real y) =
paulson@14323
   539
      complex_of_real(x/(x ^ 2 + y ^ 2)) -
paulson@14323
   540
      ii * complex_of_real(y/(x ^ 2 + y ^ 2))"
huffman@20725
   541
by (simp add: complex_of_real_def i_def diff_minus divide_inverse)
paulson@14323
   542
paulson@14323
   543
(*----------------------------------------------------------------------------*)
paulson@14323
   544
(* Many of the theorems below need to be moved elsewhere e.g. Transc. Also *)
paulson@14323
   545
(* many of the theorems are not used - so should they be kept?                *)
paulson@14323
   546
(*----------------------------------------------------------------------------*)
paulson@14323
   547
paulson@14354
   548
lemma cos_arg_i_mult_zero_pos:
paulson@14377
   549
   "0 < y ==> cos (arg(Complex 0 y)) = 0"
paulson@14373
   550
apply (simp add: arg_def abs_if)
paulson@14334
   551
apply (rule_tac a = "pi/2" in someI2, auto)
paulson@14334
   552
apply (rule order_less_trans [of _ 0], auto)
paulson@14323
   553
done
paulson@14323
   554
paulson@14354
   555
lemma cos_arg_i_mult_zero_neg:
paulson@14377
   556
   "y < 0 ==> cos (arg(Complex 0 y)) = 0"
paulson@14373
   557
apply (simp add: arg_def abs_if)
paulson@14334
   558
apply (rule_tac a = "- pi/2" in someI2, auto)
paulson@14334
   559
apply (rule order_trans [of _ 0], auto)
paulson@14323
   560
done
paulson@14323
   561
paulson@14374
   562
lemma cos_arg_i_mult_zero [simp]:
paulson@14377
   563
     "y \<noteq> 0 ==> cos (arg(Complex 0 y)) = 0"
paulson@14377
   564
by (auto simp add: linorder_neq_iff cos_arg_i_mult_zero_pos cos_arg_i_mult_zero_neg)
paulson@14323
   565
paulson@14323
   566
paulson@14323
   567
subsection{*Finally! Polar Form for Complex Numbers*}
paulson@14323
   568
huffman@20557
   569
definition
huffman@20557
   570
huffman@20557
   571
  (* abbreviation for (cos a + i sin a) *)
wenzelm@21404
   572
  cis :: "real => complex" where
huffman@20557
   573
  "cis a = Complex (cos a) (sin a)"
huffman@20557
   574
wenzelm@21404
   575
definition
huffman@20557
   576
  (* abbreviation for r*(cos a + i sin a) *)
wenzelm@21404
   577
  rcis :: "[real, real] => complex" where
huffman@20557
   578
  "rcis r a = complex_of_real r * cis a"
huffman@20557
   579
wenzelm@21404
   580
definition
huffman@20557
   581
  (* e ^ (x + iy) *)
wenzelm@21404
   582
  expi :: "complex => complex" where
huffman@20557
   583
  "expi z = complex_of_real(exp (Re z)) * cis (Im z)"
huffman@20557
   584
paulson@14374
   585
lemma complex_split_polar:
paulson@14377
   586
     "\<exists>r a. z = complex_of_real r * (Complex (cos a) (sin a))"
huffman@20725
   587
apply (induct z)
paulson@14377
   588
apply (auto simp add: polar_Ex complex_of_real_mult_Complex)
paulson@14323
   589
done
paulson@14323
   590
paulson@14354
   591
lemma rcis_Ex: "\<exists>r a. z = rcis r a"
huffman@20725
   592
apply (induct z)
paulson@14377
   593
apply (simp add: rcis_def cis_def polar_Ex complex_of_real_mult_Complex)
paulson@14323
   594
done
paulson@14323
   595
paulson@14374
   596
lemma Re_rcis [simp]: "Re(rcis r a) = r * cos a"
paulson@14373
   597
by (simp add: rcis_def cis_def)
paulson@14323
   598
paulson@14348
   599
lemma Im_rcis [simp]: "Im(rcis r a) = r * sin a"
paulson@14373
   600
by (simp add: rcis_def cis_def)
paulson@14323
   601
paulson@14377
   602
lemma sin_cos_squared_add2_mult: "(r * cos a)\<twosuperior> + (r * sin a)\<twosuperior> = r\<twosuperior>"
paulson@14377
   603
proof -
paulson@14377
   604
  have "(r * cos a)\<twosuperior> + (r * sin a)\<twosuperior> = r\<twosuperior> * ((cos a)\<twosuperior> + (sin a)\<twosuperior>)"
huffman@20725
   605
    by (simp only: power_mult_distrib right_distrib)
paulson@14377
   606
  thus ?thesis by simp
paulson@14377
   607
qed
paulson@14323
   608
paulson@14374
   609
lemma complex_mod_rcis [simp]: "cmod(rcis r a) = abs r"
paulson@14377
   610
by (simp add: rcis_def cis_def sin_cos_squared_add2_mult)
paulson@14323
   611
huffman@23125
   612
lemma complex_mod_sqrt_Re_mult_cnj: "cmod z = sqrt (Re (z * cnj z))"
huffman@23125
   613
by (simp add: cmod_def power2_eq_square)
huffman@23125
   614
paulson@14374
   615
lemma complex_In_mult_cnj_zero [simp]: "Im (z * cnj z) = 0"
huffman@23125
   616
by simp
paulson@14323
   617
paulson@14323
   618
paulson@14323
   619
(*---------------------------------------------------------------------------*)
paulson@14323
   620
(*  (r1 * cis a) * (r2 * cis b) = r1 * r2 * cis (a + b)                      *)
paulson@14323
   621
(*---------------------------------------------------------------------------*)
paulson@14323
   622
paulson@14323
   623
lemma cis_rcis_eq: "cis a = rcis 1 a"
paulson@14373
   624
by (simp add: rcis_def)
paulson@14323
   625
paulson@14374
   626
lemma rcis_mult: "rcis r1 a * rcis r2 b = rcis (r1*r2) (a + b)"
paulson@15013
   627
by (simp add: rcis_def cis_def cos_add sin_add right_distrib right_diff_distrib
paulson@15013
   628
              complex_of_real_def)
paulson@14323
   629
paulson@14323
   630
lemma cis_mult: "cis a * cis b = cis (a + b)"
paulson@14373
   631
by (simp add: cis_rcis_eq rcis_mult)
paulson@14323
   632
paulson@14374
   633
lemma cis_zero [simp]: "cis 0 = 1"
paulson@14377
   634
by (simp add: cis_def complex_one_def)
paulson@14323
   635
paulson@14374
   636
lemma rcis_zero_mod [simp]: "rcis 0 a = 0"
paulson@14373
   637
by (simp add: rcis_def)
paulson@14323
   638
paulson@14374
   639
lemma rcis_zero_arg [simp]: "rcis r 0 = complex_of_real r"
paulson@14373
   640
by (simp add: rcis_def)
paulson@14323
   641
paulson@14323
   642
lemma complex_of_real_minus_one:
paulson@14323
   643
   "complex_of_real (-(1::real)) = -(1::complex)"
huffman@20725
   644
by (simp add: complex_of_real_def complex_one_def)
paulson@14323
   645
paulson@14374
   646
lemma complex_i_mult_minus [simp]: "ii * (ii * x) = - x"
huffman@23125
   647
by (simp add: mult_assoc [symmetric])
paulson@14323
   648
paulson@14323
   649
paulson@14323
   650
lemma cis_real_of_nat_Suc_mult:
paulson@14323
   651
   "cis (real (Suc n) * a) = cis a * cis (real n * a)"
paulson@14377
   652
by (simp add: cis_def real_of_nat_Suc left_distrib cos_add sin_add right_distrib)
paulson@14323
   653
paulson@14323
   654
lemma DeMoivre: "(cis a) ^ n = cis (real n * a)"
paulson@14323
   655
apply (induct_tac "n")
paulson@14323
   656
apply (auto simp add: cis_real_of_nat_Suc_mult)
paulson@14323
   657
done
paulson@14323
   658
paulson@14374
   659
lemma DeMoivre2: "(rcis r a) ^ n = rcis (r ^ n) (real n * a)"
huffman@22890
   660
by (simp add: rcis_def power_mult_distrib DeMoivre)
paulson@14323
   661
paulson@14374
   662
lemma cis_inverse [simp]: "inverse(cis a) = cis (-a)"
huffman@20725
   663
by (simp add: cis_def complex_inverse_complex_split diff_minus)
paulson@14323
   664
paulson@14323
   665
lemma rcis_inverse: "inverse(rcis r a) = rcis (1/r) (-a)"
huffman@22884
   666
by (simp add: divide_inverse rcis_def)
paulson@14323
   667
paulson@14323
   668
lemma cis_divide: "cis a / cis b = cis (a - b)"
paulson@14373
   669
by (simp add: complex_divide_def cis_mult real_diff_def)
paulson@14323
   670
paulson@14354
   671
lemma rcis_divide: "rcis r1 a / rcis r2 b = rcis (r1/r2) (a - b)"
paulson@14373
   672
apply (simp add: complex_divide_def)
paulson@14373
   673
apply (case_tac "r2=0", simp)
paulson@14373
   674
apply (simp add: rcis_inverse rcis_mult real_diff_def)
paulson@14323
   675
done
paulson@14323
   676
paulson@14374
   677
lemma Re_cis [simp]: "Re(cis a) = cos a"
paulson@14373
   678
by (simp add: cis_def)
paulson@14323
   679
paulson@14374
   680
lemma Im_cis [simp]: "Im(cis a) = sin a"
paulson@14373
   681
by (simp add: cis_def)
paulson@14323
   682
paulson@14323
   683
lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re(cis a ^ n)"
paulson@14334
   684
by (auto simp add: DeMoivre)
paulson@14323
   685
paulson@14323
   686
lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im(cis a ^ n)"
paulson@14334
   687
by (auto simp add: DeMoivre)
paulson@14323
   688
paulson@14323
   689
lemma expi_add: "expi(a + b) = expi(a) * expi(b)"
huffman@20725
   690
by (simp add: expi_def exp_add cis_mult [symmetric] mult_ac)
paulson@14323
   691
paulson@14374
   692
lemma expi_zero [simp]: "expi (0::complex) = 1"
paulson@14373
   693
by (simp add: expi_def)
paulson@14323
   694
paulson@14374
   695
lemma complex_expi_Ex: "\<exists>a r. z = complex_of_real r * expi a"
paulson@14373
   696
apply (insert rcis_Ex [of z])
huffman@23125
   697
apply (auto simp add: expi_def rcis_def mult_assoc [symmetric])
paulson@14334
   698
apply (rule_tac x = "ii * complex_of_real a" in exI, auto)
paulson@14323
   699
done
paulson@14323
   700
paulson@14387
   701
lemma expi_two_pi_i [simp]: "expi((2::complex) * complex_of_real pi * ii) = 1"
huffman@23125
   702
by (simp add: expi_def cis_def)
paulson@14387
   703
paulson@13957
   704
end