src/HOL/Real/RealPow.thy
author nipkow
Wed Jan 09 19:23:50 2008 +0100 (2008-01-09)
changeset 25875 536dfdc25e0a
parent 23477 f4b83f03cac9
child 26565 522f45a8604e
permissions -rw-r--r--
added simp attributes/ proofs fixed
wenzelm@9435
     1
(*  Title       : HOL/Real/RealPow.thy
paulson@7219
     2
    ID          : $Id$
paulson@7077
     3
    Author      : Jacques D. Fleuriot  
paulson@7077
     4
    Copyright   : 1998  University of Cambridge
huffman@20634
     5
*)
paulson@7077
     6
huffman@20634
     7
header {* Natural powers theory *}
paulson@7077
     8
nipkow@15131
     9
theory RealPow
nipkow@15140
    10
imports RealDef
nipkow@15131
    11
begin
wenzelm@9435
    12
paulson@14348
    13
declare abs_mult_self [simp]
paulson@14348
    14
wenzelm@10309
    15
instance real :: power ..
paulson@7077
    16
wenzelm@8856
    17
primrec (realpow)
paulson@12018
    18
     realpow_0:   "r ^ 0       = 1"
wenzelm@9435
    19
     realpow_Suc: "r ^ (Suc n) = (r::real) * (r ^ n)"
paulson@7077
    20
paulson@14265
    21
paulson@15003
    22
instance real :: recpower
paulson@14348
    23
proof
paulson@14348
    24
  fix z :: real
paulson@14348
    25
  fix n :: nat
paulson@14348
    26
  show "z^0 = 1" by simp
paulson@14348
    27
  show "z^(Suc n) = z * (z^n)" by simp
paulson@14348
    28
qed
paulson@14265
    29
paulson@14348
    30
paulson@14268
    31
lemma two_realpow_ge_one [simp]: "(1::real) \<le> 2 ^ n"
nipkow@25875
    32
by simp
paulson@14265
    33
paulson@14268
    34
lemma two_realpow_gt [simp]: "real (n::nat) < 2 ^ n"
paulson@15251
    35
apply (induct "n")
paulson@14265
    36
apply (auto simp add: real_of_nat_Suc)
paulson@14387
    37
apply (subst mult_2)
huffman@22962
    38
apply (rule add_less_le_mono)
paulson@14265
    39
apply (auto simp add: two_realpow_ge_one)
paulson@14265
    40
done
paulson@14265
    41
paulson@14348
    42
lemma realpow_Suc_le_self: "[| 0 \<le> r; r \<le> (1::real) |] ==> r ^ Suc n \<le> r"
paulson@14348
    43
by (insert power_decreasing [of 1 "Suc n" r], simp)
paulson@14265
    44
paulson@14348
    45
lemma realpow_minus_mult [rule_format]:
paulson@14348
    46
     "0 < n --> (x::real) ^ (n - 1) * x = x ^ n" 
paulson@14348
    47
apply (simp split add: nat_diff_split)
paulson@14265
    48
done
paulson@14265
    49
paulson@14348
    50
lemma realpow_two_mult_inverse [simp]:
paulson@14348
    51
     "r \<noteq> 0 ==> r * inverse r ^Suc (Suc 0) = inverse (r::real)"
obua@23292
    52
by (simp add:  real_mult_assoc [symmetric])
paulson@14265
    53
paulson@14268
    54
lemma realpow_two_minus [simp]: "(-x)^Suc (Suc 0) = (x::real)^Suc (Suc 0)"
paulson@14268
    55
by simp
paulson@14265
    56
paulson@14348
    57
lemma realpow_two_diff:
paulson@14348
    58
     "(x::real)^Suc (Suc 0) - y^Suc (Suc 0) = (x - y) * (x + y)"
paulson@14265
    59
apply (unfold real_diff_def)
nipkow@23477
    60
apply (simp add: ring_simps)
paulson@14265
    61
done
paulson@14265
    62
paulson@14348
    63
lemma realpow_two_disj:
paulson@14348
    64
     "((x::real)^Suc (Suc 0) = y^Suc (Suc 0)) = (x = y | x = -y)"
paulson@14268
    65
apply (cut_tac x = x and y = y in realpow_two_diff)
paulson@14265
    66
apply (auto simp del: realpow_Suc)
paulson@14265
    67
done
paulson@14265
    68
paulson@14265
    69
lemma realpow_real_of_nat: "real (m::nat) ^ n = real (m ^ n)"
paulson@15251
    70
apply (induct "n")
paulson@14265
    71
apply (auto simp add: real_of_nat_one real_of_nat_mult)
paulson@14265
    72
done
paulson@14265
    73
paulson@14268
    74
lemma realpow_real_of_nat_two_pos [simp] : "0 < real (Suc (Suc 0) ^ n)"
paulson@15251
    75
apply (induct "n")
paulson@14334
    76
apply (auto simp add: real_of_nat_mult zero_less_mult_iff)
paulson@14265
    77
done
paulson@14265
    78
huffman@22962
    79
(* used by AFP Integration theory *)
paulson@14265
    80
lemma realpow_increasing:
paulson@14348
    81
     "[|(0::real) \<le> x; 0 \<le> y; x ^ Suc n \<le> y ^ Suc n|] ==> x \<le> y"
paulson@14348
    82
  by (rule power_le_imp_le_base)
paulson@14265
    83
paulson@14265
    84
paulson@14348
    85
subsection{*Literal Arithmetic Involving Powers, Type @{typ real}*}
paulson@14265
    86
paulson@14265
    87
lemma real_of_int_power: "real (x::int) ^ n = real (x ^ n)"
paulson@15251
    88
apply (induct "n")
paulson@14387
    89
apply (simp_all add: nat_mult_distrib)
paulson@14265
    90
done
paulson@14265
    91
declare real_of_int_power [symmetric, simp]
paulson@14265
    92
paulson@14348
    93
lemma power_real_number_of:
paulson@14348
    94
     "(number_of v :: real) ^ n = real ((number_of v :: int) ^ n)"
paulson@14387
    95
by (simp only: real_number_of [symmetric] real_of_int_power)
paulson@14265
    96
paulson@14265
    97
declare power_real_number_of [of _ "number_of w", standard, simp]
paulson@14265
    98
paulson@14265
    99
huffman@22967
   100
subsection {* Properties of Squares *}
huffman@22967
   101
huffman@22967
   102
lemma sum_squares_ge_zero:
huffman@22967
   103
  fixes x y :: "'a::ordered_ring_strict"
huffman@22967
   104
  shows "0 \<le> x * x + y * y"
huffman@22967
   105
by (intro add_nonneg_nonneg zero_le_square)
huffman@22967
   106
huffman@22967
   107
lemma not_sum_squares_lt_zero:
huffman@22967
   108
  fixes x y :: "'a::ordered_ring_strict"
huffman@22967
   109
  shows "\<not> x * x + y * y < 0"
huffman@22967
   110
by (simp add: linorder_not_less sum_squares_ge_zero)
huffman@22967
   111
huffman@22967
   112
lemma sum_nonneg_eq_zero_iff:
huffman@22967
   113
  fixes x y :: "'a::pordered_ab_group_add"
huffman@22967
   114
  assumes x: "0 \<le> x" and y: "0 \<le> y"
huffman@22967
   115
  shows "(x + y = 0) = (x = 0 \<and> y = 0)"
huffman@22967
   116
proof (auto)
huffman@22967
   117
  from y have "x + 0 \<le> x + y" by (rule add_left_mono)
huffman@22967
   118
  also assume "x + y = 0"
huffman@22967
   119
  finally have "x \<le> 0" by simp
huffman@22967
   120
  thus "x = 0" using x by (rule order_antisym)
huffman@22967
   121
next
huffman@22967
   122
  from x have "0 + y \<le> x + y" by (rule add_right_mono)
huffman@22967
   123
  also assume "x + y = 0"
huffman@22967
   124
  finally have "y \<le> 0" by simp
huffman@22967
   125
  thus "y = 0" using y by (rule order_antisym)
huffman@22967
   126
qed
huffman@22967
   127
huffman@22967
   128
lemma sum_squares_eq_zero_iff:
huffman@22967
   129
  fixes x y :: "'a::ordered_ring_strict"
huffman@22967
   130
  shows "(x * x + y * y = 0) = (x = 0 \<and> y = 0)"
nipkow@23096
   131
by (simp add: sum_nonneg_eq_zero_iff)
huffman@22967
   132
huffman@22967
   133
lemma sum_squares_le_zero_iff:
huffman@22967
   134
  fixes x y :: "'a::ordered_ring_strict"
huffman@22967
   135
  shows "(x * x + y * y \<le> 0) = (x = 0 \<and> y = 0)"
huffman@22967
   136
by (simp add: order_le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff)
huffman@22967
   137
huffman@22967
   138
lemma sum_squares_gt_zero_iff:
huffman@22967
   139
  fixes x y :: "'a::ordered_ring_strict"
huffman@22967
   140
  shows "(0 < x * x + y * y) = (x \<noteq> 0 \<or> y \<noteq> 0)"
huffman@22967
   141
by (simp add: order_less_le sum_squares_ge_zero sum_squares_eq_zero_iff)
huffman@22967
   142
huffman@22967
   143
lemma sum_power2_ge_zero:
huffman@22967
   144
  fixes x y :: "'a::{ordered_idom,recpower}"
huffman@22967
   145
  shows "0 \<le> x\<twosuperior> + y\<twosuperior>"
huffman@22967
   146
unfolding power2_eq_square by (rule sum_squares_ge_zero)
huffman@22967
   147
huffman@22967
   148
lemma not_sum_power2_lt_zero:
huffman@22967
   149
  fixes x y :: "'a::{ordered_idom,recpower}"
huffman@22967
   150
  shows "\<not> x\<twosuperior> + y\<twosuperior> < 0"
huffman@22967
   151
unfolding power2_eq_square by (rule not_sum_squares_lt_zero)
huffman@22967
   152
huffman@22967
   153
lemma sum_power2_eq_zero_iff:
huffman@22967
   154
  fixes x y :: "'a::{ordered_idom,recpower}"
huffman@22967
   155
  shows "(x\<twosuperior> + y\<twosuperior> = 0) = (x = 0 \<and> y = 0)"
huffman@22967
   156
unfolding power2_eq_square by (rule sum_squares_eq_zero_iff)
huffman@22967
   157
huffman@22967
   158
lemma sum_power2_le_zero_iff:
huffman@22967
   159
  fixes x y :: "'a::{ordered_idom,recpower}"
huffman@22967
   160
  shows "(x\<twosuperior> + y\<twosuperior> \<le> 0) = (x = 0 \<and> y = 0)"
huffman@22967
   161
unfolding power2_eq_square by (rule sum_squares_le_zero_iff)
huffman@22967
   162
huffman@22967
   163
lemma sum_power2_gt_zero_iff:
huffman@22967
   164
  fixes x y :: "'a::{ordered_idom,recpower}"
huffman@22967
   165
  shows "(0 < x\<twosuperior> + y\<twosuperior>) = (x \<noteq> 0 \<or> y \<noteq> 0)"
huffman@22967
   166
unfolding power2_eq_square by (rule sum_squares_gt_zero_iff)
huffman@22967
   167
huffman@22967
   168
huffman@22970
   169
subsection{* Squares of Reals *}
huffman@22970
   170
huffman@22970
   171
lemma real_two_squares_add_zero_iff [simp]:
huffman@22970
   172
  "(x * x + y * y = 0) = ((x::real) = 0 \<and> y = 0)"
huffman@22970
   173
by (rule sum_squares_eq_zero_iff)
huffman@22970
   174
huffman@22970
   175
lemma real_sum_squares_cancel: "x * x + y * y = 0 ==> x = (0::real)"
huffman@22970
   176
by simp
huffman@22970
   177
huffman@22970
   178
lemma real_sum_squares_cancel2: "x * x + y * y = 0 ==> y = (0::real)"
huffman@22970
   179
by simp
huffman@22970
   180
huffman@22970
   181
lemma real_mult_self_sum_ge_zero: "(0::real) \<le> x*x + y*y"
huffman@22970
   182
by (rule sum_squares_ge_zero)
paulson@14268
   183
paulson@14268
   184
lemma real_sum_squares_cancel_a: "x * x = -(y * y) ==> x = (0::real) & y=0"
huffman@22970
   185
by (simp add: real_add_eq_0_iff [symmetric])
paulson@14268
   186
paulson@14268
   187
lemma real_squared_diff_one_factored: "x*x - (1::real) = (x + 1)*(x - 1)"
huffman@22970
   188
by (simp add: left_distrib right_diff_distrib)
paulson@14268
   189
paulson@14348
   190
lemma real_mult_is_one [simp]: "(x*x = (1::real)) = (x = 1 | x = - 1)"
paulson@14268
   191
apply auto
paulson@14268
   192
apply (drule right_minus_eq [THEN iffD2]) 
paulson@14268
   193
apply (auto simp add: real_squared_diff_one_factored)
paulson@14268
   194
done
paulson@14268
   195
huffman@22970
   196
lemma real_sum_squares_not_zero: "x ~= 0 ==> x * x + y * y ~= (0::real)"
huffman@22970
   197
by simp
huffman@22970
   198
huffman@22970
   199
lemma real_sum_squares_not_zero2: "y ~= 0 ==> x * x + y * y ~= (0::real)"
huffman@22970
   200
by simp
huffman@22970
   201
huffman@22970
   202
lemma realpow_two_sum_zero_iff [simp]:
huffman@22970
   203
     "(x ^ 2 + y ^ 2 = (0::real)) = (x = 0 & y = 0)"
huffman@22970
   204
by (rule sum_power2_eq_zero_iff)
huffman@22970
   205
huffman@22970
   206
lemma realpow_two_le_add_order [simp]: "(0::real) \<le> u ^ 2 + v ^ 2"
huffman@22970
   207
by (rule sum_power2_ge_zero)
huffman@22970
   208
huffman@22970
   209
lemma realpow_two_le_add_order2 [simp]: "(0::real) \<le> u ^ 2 + v ^ 2 + w ^ 2"
huffman@22970
   210
by (intro add_nonneg_nonneg zero_le_power2)
huffman@22970
   211
huffman@22970
   212
lemma real_sum_square_gt_zero: "x ~= 0 ==> (0::real) < x * x + y * y"
huffman@22970
   213
by (simp add: sum_squares_gt_zero_iff)
huffman@22970
   214
huffman@22970
   215
lemma real_sum_square_gt_zero2: "y ~= 0 ==> (0::real) < x * x + y * y"
huffman@22970
   216
by (simp add: sum_squares_gt_zero_iff)
huffman@22970
   217
huffman@22970
   218
lemma real_minus_mult_self_le [simp]: "-(u * u) \<le> (x * (x::real))"
huffman@22970
   219
by (rule_tac j = 0 in real_le_trans, auto)
huffman@22970
   220
huffman@22970
   221
lemma realpow_square_minus_le [simp]: "-(u ^ 2) \<le> (x::real) ^ 2"
huffman@22970
   222
by (auto simp add: power2_eq_square)
huffman@22970
   223
huffman@22970
   224
(* The following theorem is by Benjamin Porter *)
huffman@22970
   225
lemma real_sq_order:
huffman@22970
   226
  fixes x::real
huffman@22970
   227
  assumes xgt0: "0 \<le> x" and ygt0: "0 \<le> y" and sq: "x^2 \<le> y^2"
huffman@22970
   228
  shows "x \<le> y"
huffman@22970
   229
proof -
huffman@22970
   230
  from sq have "x ^ Suc (Suc 0) \<le> y ^ Suc (Suc 0)"
huffman@22970
   231
    by (simp only: numeral_2_eq_2)
huffman@22970
   232
  thus "x \<le> y" using ygt0
huffman@22970
   233
    by (rule power_le_imp_le_base)
huffman@22970
   234
qed
huffman@22970
   235
huffman@22970
   236
huffman@22970
   237
subsection {*Various Other Theorems*}
huffman@22970
   238
paulson@14304
   239
lemma real_le_add_half_cancel: "(x + y/2 \<le> (y::real)) = (x \<le> y /2)"
paulson@14348
   240
by auto
paulson@14268
   241
paulson@14348
   242
lemma real_minus_half_eq [simp]: "(x::real) - x/2 = x/2"
paulson@14348
   243
by auto
paulson@14268
   244
paulson@14268
   245
lemma real_mult_inverse_cancel:
paulson@14268
   246
     "[|(0::real) < x; 0 < x1; x1 * y < x * u |] 
paulson@14268
   247
      ==> inverse x * y < inverse x1 * u"
paulson@14268
   248
apply (rule_tac c=x in mult_less_imp_less_left) 
paulson@14268
   249
apply (auto simp add: real_mult_assoc [symmetric])
paulson@14334
   250
apply (simp (no_asm) add: mult_ac)
paulson@14268
   251
apply (rule_tac c=x1 in mult_less_imp_less_right) 
paulson@14334
   252
apply (auto simp add: mult_ac)
paulson@14268
   253
done
paulson@14268
   254
paulson@14348
   255
lemma real_mult_inverse_cancel2:
paulson@14348
   256
     "[|(0::real) < x;0 < x1; x1 * y < x * u |] ==> y * inverse x < u * inverse x1"
paulson@14334
   257
apply (auto dest: real_mult_inverse_cancel simp add: mult_ac)
paulson@14268
   258
done
paulson@14268
   259
paulson@14348
   260
lemma inverse_real_of_nat_gt_zero [simp]: "0 < inverse (real (Suc n))"
huffman@20517
   261
by simp
paulson@14268
   262
paulson@14348
   263
lemma inverse_real_of_nat_ge_zero [simp]: "0 \<le> inverse (real (Suc n))"
huffman@20517
   264
by simp
paulson@14268
   265
paulson@14268
   266
lemma realpow_num_eq_if: "(m::real) ^ n = (if n=0 then 1 else m * m ^ (n - 1))"
paulson@14348
   267
by (case_tac "n", auto)
paulson@14268
   268
paulson@7077
   269
end