src/HOL/Algebra/Congruence.thy
author wenzelm
Sun Mar 21 16:51:37 2010 +0100 (2010-03-21)
changeset 35848 5443079512ea
parent 35847 19f1f7066917
child 35849 b5522b51cb1e
permissions -rw-r--r--
slightly more uniform definitions -- eliminated old-style meta-equality;
ballarin@27701
     1
(*
ballarin@27701
     2
  Title:  Algebra/Congruence.thy
ballarin@27701
     3
  Author: Clemens Ballarin, started 3 January 2008
ballarin@27701
     4
  Copyright: Clemens Ballarin
ballarin@27701
     5
*)
ballarin@27701
     6
ballarin@27701
     7
theory Congruence imports Main begin
ballarin@27701
     8
ballarin@27701
     9
section {* Objects *}
ballarin@27701
    10
ballarin@27717
    11
subsection {* Structure with Carrier Set. *}
ballarin@27701
    12
ballarin@27701
    13
record 'a partial_object =
ballarin@27701
    14
  carrier :: "'a set"
ballarin@27701
    15
ballarin@27717
    16
ballarin@27717
    17
subsection {* Structure with Carrier and Equivalence Relation @{text eq} *}
ballarin@27701
    18
ballarin@27701
    19
record 'a eq_object = "'a partial_object" +
ballarin@27701
    20
  eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl ".=\<index>" 50)
ballarin@27701
    21
wenzelm@35847
    22
definition
ballarin@27701
    23
  elem :: "_ \<Rightarrow> 'a \<Rightarrow> 'a set \<Rightarrow> bool" (infixl ".\<in>\<index>" 50)
wenzelm@35848
    24
  where "x .\<in>\<^bsub>S\<^esub> A \<longleftrightarrow> (\<exists>y \<in> A. x .=\<^bsub>S\<^esub> y)"
ballarin@27701
    25
wenzelm@35847
    26
definition
ballarin@27701
    27
  set_eq :: "_ \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> bool" (infixl "{.=}\<index>" 50)
wenzelm@35848
    28
  where "A {.=}\<^bsub>S\<^esub> B \<longleftrightarrow> ((\<forall>x \<in> A. x .\<in>\<^bsub>S\<^esub> B) \<and> (\<forall>x \<in> B. x .\<in>\<^bsub>S\<^esub> A))"
ballarin@27701
    29
wenzelm@35847
    30
definition
ballarin@27701
    31
  eq_class_of :: "_ \<Rightarrow> 'a \<Rightarrow> 'a set" ("class'_of\<index> _")
wenzelm@35848
    32
  where "class_of\<^bsub>S\<^esub> x = {y \<in> carrier S. x .=\<^bsub>S\<^esub> y}"
ballarin@27701
    33
wenzelm@35847
    34
definition
ballarin@27701
    35
  eq_closure_of :: "_ \<Rightarrow> 'a set \<Rightarrow> 'a set" ("closure'_of\<index> _")
wenzelm@35848
    36
  where "closure_of\<^bsub>S\<^esub> A = {y \<in> carrier S. y .\<in>\<^bsub>S\<^esub> A}"
ballarin@27701
    37
wenzelm@35847
    38
definition
ballarin@27701
    39
  eq_is_closed :: "_ \<Rightarrow> 'a set \<Rightarrow> bool" ("is'_closed\<index> _")
wenzelm@35848
    40
  where "is_closed\<^bsub>S\<^esub> A \<longleftrightarrow> A \<subseteq> carrier S \<and> closure_of\<^bsub>S\<^esub> A = A"
ballarin@27701
    41
wenzelm@35355
    42
abbreviation
ballarin@27701
    43
  not_eq :: "_ \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl ".\<noteq>\<index>" 50)
wenzelm@35355
    44
  where "x .\<noteq>\<^bsub>S\<^esub> y == ~(x .=\<^bsub>S\<^esub> y)"
ballarin@27701
    45
wenzelm@35355
    46
abbreviation
wenzelm@35355
    47
  not_elem :: "_ \<Rightarrow> 'a \<Rightarrow> 'a set \<Rightarrow> bool" (infixl ".\<notin>\<index>" 50)
wenzelm@35355
    48
  where "x .\<notin>\<^bsub>S\<^esub> A == ~(x .\<in>\<^bsub>S\<^esub> A)"
wenzelm@35355
    49
wenzelm@35355
    50
abbreviation
wenzelm@35355
    51
  set_not_eq :: "_ \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> bool" (infixl "{.\<noteq>}\<index>" 50)
wenzelm@35355
    52
  where "A {.\<noteq>}\<^bsub>S\<^esub> B == ~(A {.=}\<^bsub>S\<^esub> B)"
ballarin@27701
    53
ballarin@27701
    54
locale equivalence =
ballarin@27701
    55
  fixes S (structure)
ballarin@27701
    56
  assumes refl [simp, intro]: "x \<in> carrier S \<Longrightarrow> x .= x"
ballarin@27701
    57
    and sym [sym]: "\<lbrakk> x .= y; x \<in> carrier S; y \<in> carrier S \<rbrakk> \<Longrightarrow> y .= x"
ballarin@27701
    58
    and trans [trans]: "\<lbrakk> x .= y; y .= z; x \<in> carrier S; y \<in> carrier S; z \<in> carrier S \<rbrakk> \<Longrightarrow> x .= z"
ballarin@27701
    59
ballarin@27717
    60
(* Lemmas by Stephan Hohe *)
ballarin@27717
    61
ballarin@27701
    62
lemma elemI:
ballarin@27701
    63
  fixes R (structure)
ballarin@27701
    64
  assumes "a' \<in> A" and "a .= a'"
ballarin@27701
    65
  shows "a .\<in> A"
ballarin@27701
    66
unfolding elem_def
ballarin@27701
    67
using assms
ballarin@27701
    68
by fast
ballarin@27701
    69
ballarin@27701
    70
lemma (in equivalence) elem_exact:
ballarin@27701
    71
  assumes "a \<in> carrier S" and "a \<in> A"
ballarin@27701
    72
  shows "a .\<in> A"
ballarin@27701
    73
using assms
ballarin@27701
    74
by (fast intro: elemI)
ballarin@27701
    75
ballarin@27701
    76
lemma elemE:
ballarin@27701
    77
  fixes S (structure)
ballarin@27701
    78
  assumes "a .\<in> A"
ballarin@27701
    79
    and "\<And>a'. \<lbrakk>a' \<in> A; a .= a'\<rbrakk> \<Longrightarrow> P"
ballarin@27701
    80
  shows "P"
ballarin@27701
    81
using assms
ballarin@27701
    82
unfolding elem_def
ballarin@27701
    83
by fast
ballarin@27701
    84
ballarin@27701
    85
lemma (in equivalence) elem_cong_l [trans]:
ballarin@27701
    86
  assumes cong: "a' .= a"
ballarin@27701
    87
    and a: "a .\<in> A"
ballarin@27701
    88
    and carr: "a \<in> carrier S"  "a' \<in> carrier S"
ballarin@27701
    89
    and Acarr: "A \<subseteq> carrier S"
ballarin@27701
    90
  shows "a' .\<in> A"
ballarin@27701
    91
using a
ballarin@27701
    92
apply (elim elemE, intro elemI)
ballarin@27701
    93
proof assumption
ballarin@27701
    94
  fix b
ballarin@27701
    95
  assume bA: "b \<in> A"
ballarin@27701
    96
  note [simp] = carr bA[THEN subsetD[OF Acarr]]
ballarin@27701
    97
  note cong
ballarin@27701
    98
  also assume "a .= b"
ballarin@27701
    99
  finally show "a' .= b" by simp
ballarin@27701
   100
qed
ballarin@27701
   101
ballarin@27701
   102
lemma (in equivalence) elem_subsetD:
ballarin@27701
   103
  assumes "A \<subseteq> B"
ballarin@27701
   104
    and aA: "a .\<in> A"
ballarin@27701
   105
  shows "a .\<in> B"
ballarin@27701
   106
using assms
ballarin@27701
   107
by (fast intro: elemI elim: elemE dest: subsetD)
ballarin@27701
   108
ballarin@27701
   109
lemma (in equivalence) mem_imp_elem [simp, intro]:
ballarin@27701
   110
  "[| x \<in> A; x \<in> carrier S |] ==> x .\<in> A"
ballarin@27701
   111
  unfolding elem_def by blast
ballarin@27701
   112
ballarin@27701
   113
lemma set_eqI:
ballarin@27701
   114
  fixes R (structure)
ballarin@27701
   115
  assumes ltr: "\<And>a. a \<in> A \<Longrightarrow> a .\<in> B"
ballarin@27701
   116
    and rtl: "\<And>b. b \<in> B \<Longrightarrow> b .\<in> A"
ballarin@27701
   117
  shows "A {.=} B"
ballarin@27701
   118
unfolding set_eq_def
ballarin@27701
   119
by (fast intro: ltr rtl)
ballarin@27701
   120
ballarin@27701
   121
lemma set_eqI2:
ballarin@27701
   122
  fixes R (structure)
ballarin@27701
   123
  assumes ltr: "\<And>a b. a \<in> A \<Longrightarrow> \<exists>b\<in>B. a .= b"
ballarin@27701
   124
    and rtl: "\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. b .= a"
ballarin@27701
   125
  shows "A {.=} B"
ballarin@27701
   126
  by (intro set_eqI, unfold elem_def) (fast intro: ltr rtl)+
ballarin@27701
   127
ballarin@27701
   128
lemma set_eqD1:
ballarin@27701
   129
  fixes R (structure)
ballarin@27701
   130
  assumes AA': "A {.=} A'"
ballarin@27701
   131
    and "a \<in> A"
ballarin@27701
   132
  shows "\<exists>a'\<in>A'. a .= a'"
ballarin@27701
   133
using assms
ballarin@27701
   134
unfolding set_eq_def elem_def
ballarin@27701
   135
by fast
ballarin@27701
   136
ballarin@27701
   137
lemma set_eqD2:
ballarin@27701
   138
  fixes R (structure)
ballarin@27701
   139
  assumes AA': "A {.=} A'"
ballarin@27701
   140
    and "a' \<in> A'"
ballarin@27701
   141
  shows "\<exists>a\<in>A. a' .= a"
ballarin@27701
   142
using assms
ballarin@27701
   143
unfolding set_eq_def elem_def
ballarin@27701
   144
by fast
ballarin@27701
   145
ballarin@27701
   146
lemma set_eqE:
ballarin@27701
   147
  fixes R (structure)
ballarin@27701
   148
  assumes AB: "A {.=} B"
ballarin@27701
   149
    and r: "\<lbrakk>\<forall>a\<in>A. a .\<in> B; \<forall>b\<in>B. b .\<in> A\<rbrakk> \<Longrightarrow> P"
ballarin@27701
   150
  shows "P"
ballarin@27701
   151
using AB
ballarin@27701
   152
unfolding set_eq_def
ballarin@27701
   153
by (blast dest: r)
ballarin@27701
   154
ballarin@27701
   155
lemma set_eqE2:
ballarin@27701
   156
  fixes R (structure)
ballarin@27701
   157
  assumes AB: "A {.=} B"
ballarin@27701
   158
    and r: "\<lbrakk>\<forall>a\<in>A. (\<exists>b\<in>B. a .= b); \<forall>b\<in>B. (\<exists>a\<in>A. b .= a)\<rbrakk> \<Longrightarrow> P"
ballarin@27701
   159
  shows "P"
ballarin@27701
   160
using AB
ballarin@27701
   161
unfolding set_eq_def elem_def
ballarin@27701
   162
by (blast dest: r)
ballarin@27701
   163
ballarin@27701
   164
lemma set_eqE':
ballarin@27701
   165
  fixes R (structure)
ballarin@27701
   166
  assumes AB: "A {.=} B"
ballarin@27701
   167
    and aA: "a \<in> A" and bB: "b \<in> B"
ballarin@27701
   168
    and r: "\<And>a' b'. \<lbrakk>a' \<in> A; b .= a'; b' \<in> B; a .= b'\<rbrakk> \<Longrightarrow> P"
ballarin@27701
   169
  shows "P"
ballarin@27701
   170
proof -
ballarin@27701
   171
  from AB aA
ballarin@27701
   172
      have "\<exists>b'\<in>B. a .= b'" by (rule set_eqD1)
ballarin@27701
   173
  from this obtain b'
ballarin@27701
   174
      where b': "b' \<in> B" "a .= b'" by auto
ballarin@27701
   175
ballarin@27701
   176
  from AB bB
ballarin@27701
   177
      have "\<exists>a'\<in>A. b .= a'" by (rule set_eqD2)
ballarin@27701
   178
  from this obtain a'
ballarin@27701
   179
      where a': "a' \<in> A" "b .= a'" by auto
ballarin@27701
   180
ballarin@27701
   181
  from a' b'
ballarin@27701
   182
      show "P" by (rule r)
ballarin@27701
   183
qed
ballarin@27701
   184
ballarin@27701
   185
lemma (in equivalence) eq_elem_cong_r [trans]:
ballarin@27701
   186
  assumes a: "a .\<in> A"
ballarin@27701
   187
    and cong: "A {.=} A'"
ballarin@27701
   188
    and carr: "a \<in> carrier S"
ballarin@27701
   189
    and Carr: "A \<subseteq> carrier S" "A' \<subseteq> carrier S"
ballarin@27701
   190
  shows "a .\<in> A'"
ballarin@27701
   191
using a cong
ballarin@27701
   192
proof (elim elemE set_eqE)
ballarin@27701
   193
  fix b
ballarin@27701
   194
  assume bA: "b \<in> A"
ballarin@27701
   195
     and inA': "\<forall>b\<in>A. b .\<in> A'"
ballarin@27701
   196
  note [simp] = carr Carr Carr[THEN subsetD] bA
ballarin@27701
   197
  assume "a .= b"
ballarin@27701
   198
  also from bA inA'
ballarin@27701
   199
       have "b .\<in> A'" by fast
ballarin@27701
   200
  finally
ballarin@27701
   201
       show "a .\<in> A'" by simp
ballarin@27701
   202
qed
ballarin@27701
   203
ballarin@27701
   204
lemma (in equivalence) set_eq_sym [sym]:
ballarin@27701
   205
  assumes "A {.=} B"
ballarin@27701
   206
    and "A \<subseteq> carrier S" "B \<subseteq> carrier S"
ballarin@27701
   207
  shows "B {.=} A"
ballarin@27701
   208
using assms
ballarin@27701
   209
unfolding set_eq_def elem_def
ballarin@27701
   210
by fast
ballarin@27701
   211
ballarin@27701
   212
(* FIXME: the following two required in Isabelle 2008, not Isabelle 2007 *)
ballarin@27717
   213
(* alternatively, could declare lemmas [trans] = ssubst [where 'a = "'a set"] *)
ballarin@27701
   214
ballarin@27701
   215
lemma (in equivalence) equal_set_eq_trans [trans]:
ballarin@27701
   216
  assumes AB: "A = B" and BC: "B {.=} C"
ballarin@27701
   217
  shows "A {.=} C"
ballarin@27701
   218
  using AB BC by simp
ballarin@27701
   219
ballarin@27701
   220
lemma (in equivalence) set_eq_equal_trans [trans]:
ballarin@27701
   221
  assumes AB: "A {.=} B" and BC: "B = C"
ballarin@27701
   222
  shows "A {.=} C"
ballarin@27701
   223
  using AB BC by simp
ballarin@27701
   224
ballarin@27717
   225
ballarin@27701
   226
lemma (in equivalence) set_eq_trans [trans]:
ballarin@27701
   227
  assumes AB: "A {.=} B" and BC: "B {.=} C"
ballarin@27701
   228
    and carr: "A \<subseteq> carrier S"  "B \<subseteq> carrier S"  "C \<subseteq> carrier S"
ballarin@27701
   229
  shows "A {.=} C"
ballarin@27701
   230
proof (intro set_eqI)
ballarin@27701
   231
  fix a
ballarin@27701
   232
  assume aA: "a \<in> A"
ballarin@27701
   233
  with carr have "a \<in> carrier S" by fast
ballarin@27701
   234
  note [simp] = carr this
ballarin@27701
   235
ballarin@27701
   236
  from aA
ballarin@27701
   237
       have "a .\<in> A" by (simp add: elem_exact)
ballarin@27701
   238
  also note AB
ballarin@27701
   239
  also note BC
ballarin@27701
   240
  finally
ballarin@27701
   241
       show "a .\<in> C" by simp
ballarin@27701
   242
next
ballarin@27701
   243
  fix c
ballarin@27701
   244
  assume cC: "c \<in> C"
ballarin@27701
   245
  with carr have "c \<in> carrier S" by fast
ballarin@27701
   246
  note [simp] = carr this
ballarin@27701
   247
ballarin@27701
   248
  from cC
ballarin@27701
   249
       have "c .\<in> C" by (simp add: elem_exact)
ballarin@27701
   250
  also note BC[symmetric]
ballarin@27701
   251
  also note AB[symmetric]
ballarin@27701
   252
  finally
ballarin@27701
   253
       show "c .\<in> A" by simp
ballarin@27701
   254
qed
ballarin@27701
   255
ballarin@27701
   256
(* FIXME: generalise for insert *)
ballarin@27701
   257
ballarin@27701
   258
(*
ballarin@27701
   259
lemma (in equivalence) set_eq_insert:
ballarin@27701
   260
  assumes x: "x .= x'"
ballarin@27701
   261
    and carr: "x \<in> carrier S" "x' \<in> carrier S" "A \<subseteq> carrier S"
ballarin@27701
   262
  shows "insert x A {.=} insert x' A"
ballarin@27701
   263
  unfolding set_eq_def elem_def
ballarin@27701
   264
apply rule
ballarin@27701
   265
apply rule
ballarin@27701
   266
apply (case_tac "xa = x")
ballarin@27701
   267
using x apply fast
ballarin@27701
   268
apply (subgoal_tac "xa \<in> A") prefer 2 apply fast
ballarin@27701
   269
apply (rule_tac x=xa in bexI)
ballarin@27701
   270
using carr apply (rule_tac refl) apply auto [1]
ballarin@27701
   271
apply safe
ballarin@27701
   272
*)
ballarin@27701
   273
ballarin@27701
   274
lemma (in equivalence) set_eq_pairI:
ballarin@27701
   275
  assumes xx': "x .= x'"
ballarin@27701
   276
    and carr: "x \<in> carrier S" "x' \<in> carrier S" "y \<in> carrier S"
ballarin@27701
   277
  shows "{x, y} {.=} {x', y}"
ballarin@27701
   278
unfolding set_eq_def elem_def
ballarin@27701
   279
proof safe
ballarin@27701
   280
  have "x' \<in> {x', y}" by fast
ballarin@27701
   281
  with xx' show "\<exists>b\<in>{x', y}. x .= b" by fast
ballarin@27701
   282
next
ballarin@27701
   283
  have "y \<in> {x', y}" by fast
ballarin@27701
   284
  with carr show "\<exists>b\<in>{x', y}. y .= b" by fast
ballarin@27701
   285
next
ballarin@27701
   286
  have "x \<in> {x, y}" by fast
ballarin@27701
   287
  with xx'[symmetric] carr
ballarin@27701
   288
  show "\<exists>a\<in>{x, y}. x' .= a" by fast
ballarin@27701
   289
next
ballarin@27701
   290
  have "y \<in> {x, y}" by fast
ballarin@27701
   291
  with carr show "\<exists>a\<in>{x, y}. y .= a" by fast
ballarin@27701
   292
qed
ballarin@27701
   293
ballarin@27701
   294
lemma (in equivalence) is_closedI:
ballarin@27701
   295
  assumes closed: "!!x y. [| x .= y; x \<in> A; y \<in> carrier S |] ==> y \<in> A"
ballarin@27701
   296
    and S: "A \<subseteq> carrier S"
ballarin@27701
   297
  shows "is_closed A"
ballarin@27701
   298
  unfolding eq_is_closed_def eq_closure_of_def elem_def
ballarin@27701
   299
  using S
ballarin@27701
   300
  by (blast dest: closed sym)
ballarin@27701
   301
ballarin@27701
   302
lemma (in equivalence) closure_of_eq:
ballarin@27701
   303
  "[| x .= x'; A \<subseteq> carrier S; x \<in> closure_of A; x \<in> carrier S; x' \<in> carrier S |] ==> x' \<in> closure_of A"
ballarin@27701
   304
  unfolding eq_closure_of_def elem_def
ballarin@27701
   305
  by (blast intro: trans sym)
ballarin@27701
   306
ballarin@27701
   307
lemma (in equivalence) is_closed_eq [dest]:
ballarin@27701
   308
  "[| x .= x'; x \<in> A; is_closed A; x \<in> carrier S; x' \<in> carrier S |] ==> x' \<in> A"
ballarin@27701
   309
  unfolding eq_is_closed_def
ballarin@27701
   310
  using closure_of_eq [where A = A]
ballarin@27701
   311
  by simp
ballarin@27701
   312
ballarin@27701
   313
lemma (in equivalence) is_closed_eq_rev [dest]:
ballarin@27701
   314
  "[| x .= x'; x' \<in> A; is_closed A; x \<in> carrier S; x' \<in> carrier S |] ==> x \<in> A"
ballarin@27701
   315
  by (drule sym) (simp_all add: is_closed_eq)
ballarin@27701
   316
ballarin@27701
   317
lemma closure_of_closed [simp, intro]:
ballarin@27701
   318
  fixes S (structure)
ballarin@27701
   319
  shows "closure_of A \<subseteq> carrier S"
ballarin@27701
   320
unfolding eq_closure_of_def
ballarin@27701
   321
by fast
ballarin@27701
   322
ballarin@27701
   323
lemma closure_of_memI:
ballarin@27701
   324
  fixes S (structure)
ballarin@27701
   325
  assumes "a .\<in> A"
ballarin@27701
   326
    and "a \<in> carrier S"
ballarin@27701
   327
  shows "a \<in> closure_of A"
ballarin@27701
   328
unfolding eq_closure_of_def
ballarin@27701
   329
using assms
ballarin@27701
   330
by fast
ballarin@27701
   331
ballarin@27701
   332
lemma closure_ofI2:
ballarin@27701
   333
  fixes S (structure)
ballarin@27701
   334
  assumes "a .= a'"
ballarin@27701
   335
    and "a' \<in> A"
ballarin@27701
   336
    and "a \<in> carrier S"
ballarin@27701
   337
  shows "a \<in> closure_of A"
ballarin@27701
   338
unfolding eq_closure_of_def elem_def
ballarin@27701
   339
using assms
ballarin@27701
   340
by fast
ballarin@27701
   341
ballarin@27701
   342
lemma closure_of_memE:
ballarin@27701
   343
  fixes S (structure)
ballarin@27701
   344
  assumes p: "a \<in> closure_of A"
ballarin@27701
   345
    and r: "\<lbrakk>a \<in> carrier S; a .\<in> A\<rbrakk> \<Longrightarrow> P"
ballarin@27701
   346
  shows "P"
ballarin@27701
   347
proof -
ballarin@27701
   348
  from p
ballarin@27701
   349
      have acarr: "a \<in> carrier S"
ballarin@27701
   350
      and "a .\<in> A"
ballarin@27701
   351
      by (simp add: eq_closure_of_def)+
ballarin@27701
   352
  thus "P" by (rule r)
ballarin@27701
   353
qed
ballarin@27701
   354
ballarin@27701
   355
lemma closure_ofE2:
ballarin@27701
   356
  fixes S (structure)
ballarin@27701
   357
  assumes p: "a \<in> closure_of A"
ballarin@27701
   358
    and r: "\<And>a'. \<lbrakk>a \<in> carrier S; a' \<in> A; a .= a'\<rbrakk> \<Longrightarrow> P"
ballarin@27701
   359
  shows "P"
ballarin@27701
   360
proof -
ballarin@27701
   361
  from p have acarr: "a \<in> carrier S" by (simp add: eq_closure_of_def)
ballarin@27701
   362
ballarin@27701
   363
  from p have "\<exists>a'\<in>A. a .= a'" by (simp add: eq_closure_of_def elem_def)
ballarin@27701
   364
  from this obtain a'
ballarin@27701
   365
      where "a' \<in> A" and "a .= a'" by auto
ballarin@27701
   366
ballarin@27701
   367
  from acarr and this
ballarin@27701
   368
      show "P" by (rule r)
ballarin@27701
   369
qed
ballarin@27701
   370
ballarin@27701
   371
(*
ballarin@27701
   372
lemma (in equivalence) classes_consistent:
ballarin@27701
   373
  assumes Acarr: "A \<subseteq> carrier S"
ballarin@27701
   374
  shows "is_closed (closure_of A)"
ballarin@27701
   375
apply (blast intro: elemI elim elemE)
ballarin@27701
   376
using assms
ballarin@27701
   377
apply (intro is_closedI closure_of_memI, simp)
ballarin@27701
   378
 apply (elim elemE closure_of_memE)
ballarin@27701
   379
proof -
ballarin@27701
   380
  fix x a' a''
ballarin@27701
   381
  assume carr: "x \<in> carrier S" "a' \<in> carrier S"
ballarin@27701
   382
  assume a''A: "a'' \<in> A"
ballarin@27701
   383
  with Acarr have "a'' \<in> carrier S" by fast
ballarin@27701
   384
  note [simp] = carr this Acarr
ballarin@27701
   385
ballarin@27701
   386
  assume "x .= a'"
ballarin@27701
   387
  also assume "a' .= a''"
ballarin@27701
   388
  also from a''A
ballarin@27701
   389
       have "a'' .\<in> A" by (simp add: elem_exact)
ballarin@27701
   390
  finally show "x .\<in> A" by simp
ballarin@27701
   391
qed
ballarin@27701
   392
*)
ballarin@27701
   393
(*
ballarin@27701
   394
lemma (in equivalence) classes_small:
ballarin@27701
   395
  assumes "is_closed B"
ballarin@27701
   396
    and "A \<subseteq> B"
ballarin@27701
   397
  shows "closure_of A \<subseteq> B"
ballarin@27701
   398
using assms
ballarin@27701
   399
by (blast dest: is_closedD2 elem_subsetD elim: closure_of_memE)
ballarin@27701
   400
ballarin@27701
   401
lemma (in equivalence) classes_eq:
ballarin@27701
   402
  assumes "A \<subseteq> carrier S"
ballarin@27701
   403
  shows "A {.=} closure_of A"
ballarin@27701
   404
using assms
ballarin@27701
   405
by (blast intro: set_eqI elem_exact closure_of_memI elim: closure_of_memE)
ballarin@27701
   406
ballarin@27701
   407
lemma (in equivalence) complete_classes:
ballarin@27701
   408
  assumes c: "is_closed A"
ballarin@27701
   409
  shows "A = closure_of A"
ballarin@27701
   410
using assms
ballarin@27701
   411
by (blast intro: closure_of_memI elem_exact dest: is_closedD1 is_closedD2 closure_of_memE)
ballarin@27701
   412
*)
ballarin@27701
   413
ballarin@27701
   414
end