hoelzl@58607
|
1 |
(* Title: HOL/Library/Stream.thy
|
traytel@50518
|
2 |
Author: Dmitriy Traytel, TU Muenchen
|
traytel@50518
|
3 |
Author: Andrei Popescu, TU Muenchen
|
blanchet@51778
|
4 |
Copyright 2012, 2013
|
traytel@50518
|
5 |
|
traytel@50518
|
6 |
Infinite streams.
|
traytel@50518
|
7 |
*)
|
traytel@50518
|
8 |
|
wenzelm@60500
|
9 |
section \<open>Infinite Streams\<close>
|
traytel@50518
|
10 |
|
traytel@50518
|
11 |
theory Stream
|
blanchet@55076
|
12 |
imports "~~/src/HOL/Library/Nat_Bijection"
|
traytel@50518
|
13 |
begin
|
traytel@50518
|
14 |
|
blanchet@57206
|
15 |
codatatype (sset: 'a) stream =
|
traytel@54720
|
16 |
SCons (shd: 'a) (stl: "'a stream") (infixr "##" 65)
|
blanchet@57206
|
17 |
for
|
blanchet@57206
|
18 |
map: smap
|
blanchet@57206
|
19 |
rel: stream_all2
|
traytel@51409
|
20 |
|
wenzelm@60011
|
21 |
context
|
wenzelm@60011
|
22 |
begin
|
wenzelm@60011
|
23 |
|
traytel@51462
|
24 |
(*for code generation only*)
|
wenzelm@60011
|
25 |
qualified definition smember :: "'a \<Rightarrow> 'a stream \<Rightarrow> bool" where
|
traytel@51772
|
26 |
[code_abbrev]: "smember x s \<longleftrightarrow> x \<in> sset s"
|
traytel@51462
|
27 |
|
traytel@54720
|
28 |
lemma smember_code[code, simp]: "smember x (y ## s) = (if x = y then True else smember x s)"
|
traytel@51462
|
29 |
unfolding smember_def by auto
|
traytel@51462
|
30 |
|
wenzelm@60011
|
31 |
end
|
traytel@51462
|
32 |
|
blanchet@57983
|
33 |
lemmas smap_simps[simp] = stream.map_sel
|
blanchet@57983
|
34 |
lemmas shd_sset = stream.set_sel(1)
|
blanchet@57983
|
35 |
lemmas stl_sset = stream.set_sel(2)
|
traytel@50518
|
36 |
|
blanchet@57986
|
37 |
theorem sset_induct[consumes 1, case_names shd stl, induct set: sset]:
|
blanchet@57986
|
38 |
assumes "y \<in> sset s" and "\<And>s. P (shd s) s" and "\<And>s y. \<lbrakk>y \<in> sset (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s"
|
traytel@50518
|
39 |
shows "P y s"
|
blanchet@57986
|
40 |
using assms by induct (metis stream.sel(1), auto)
|
traytel@50518
|
41 |
|
hoelzl@59000
|
42 |
lemma smap_ctr: "smap f s = x ## s' \<longleftrightarrow> f (shd s) = x \<and> smap f (stl s) = s'"
|
hoelzl@59000
|
43 |
by (cases s) simp
|
traytel@50518
|
44 |
|
wenzelm@60500
|
45 |
subsection \<open>prepend list to stream\<close>
|
traytel@50518
|
46 |
|
traytel@50518
|
47 |
primrec shift :: "'a list \<Rightarrow> 'a stream \<Rightarrow> 'a stream" (infixr "@-" 65) where
|
traytel@50518
|
48 |
"shift [] s = s"
|
traytel@51023
|
49 |
| "shift (x # xs) s = x ## shift xs s"
|
traytel@50518
|
50 |
|
traytel@51772
|
51 |
lemma smap_shift[simp]: "smap f (xs @- s) = map f xs @- smap f s"
|
traytel@51353
|
52 |
by (induct xs) auto
|
traytel@51353
|
53 |
|
traytel@50518
|
54 |
lemma shift_append[simp]: "(xs @ ys) @- s = xs @- ys @- s"
|
traytel@51141
|
55 |
by (induct xs) auto
|
traytel@50518
|
56 |
|
traytel@50518
|
57 |
lemma shift_simps[simp]:
|
traytel@50518
|
58 |
"shd (xs @- s) = (if xs = [] then shd s else hd xs)"
|
traytel@50518
|
59 |
"stl (xs @- s) = (if xs = [] then stl s else tl xs @- s)"
|
traytel@51141
|
60 |
by (induct xs) auto
|
traytel@50518
|
61 |
|
traytel@51772
|
62 |
lemma sset_shift[simp]: "sset (xs @- s) = set xs \<union> sset s"
|
traytel@51141
|
63 |
by (induct xs) auto
|
traytel@50518
|
64 |
|
traytel@51352
|
65 |
lemma shift_left_inj[simp]: "xs @- s1 = xs @- s2 \<longleftrightarrow> s1 = s2"
|
traytel@51352
|
66 |
by (induct xs) auto
|
traytel@51352
|
67 |
|
traytel@50518
|
68 |
|
wenzelm@60500
|
69 |
subsection \<open>set of streams with elements in some fixed set\<close>
|
traytel@50518
|
70 |
|
wenzelm@61681
|
71 |
context
|
wenzelm@61681
|
72 |
notes [[inductive_defs]]
|
wenzelm@61681
|
73 |
begin
|
wenzelm@61681
|
74 |
|
traytel@50518
|
75 |
coinductive_set
|
hoelzl@54469
|
76 |
streams :: "'a set \<Rightarrow> 'a stream set"
|
traytel@50518
|
77 |
for A :: "'a set"
|
traytel@50518
|
78 |
where
|
traytel@51023
|
79 |
Stream[intro!, simp, no_atp]: "\<lbrakk>a \<in> A; s \<in> streams A\<rbrakk> \<Longrightarrow> a ## s \<in> streams A"
|
traytel@50518
|
80 |
|
wenzelm@61681
|
81 |
end
|
wenzelm@61681
|
82 |
|
hoelzl@59000
|
83 |
lemma in_streams: "stl s \<in> streams S \<Longrightarrow> shd s \<in> S \<Longrightarrow> s \<in> streams S"
|
hoelzl@59000
|
84 |
by (cases s) auto
|
hoelzl@59000
|
85 |
|
hoelzl@59000
|
86 |
lemma streamsE: "s \<in> streams A \<Longrightarrow> (shd s \<in> A \<Longrightarrow> stl s \<in> streams A \<Longrightarrow> P) \<Longrightarrow> P"
|
hoelzl@59000
|
87 |
by (erule streams.cases) simp_all
|
hoelzl@59000
|
88 |
|
hoelzl@59000
|
89 |
lemma Stream_image: "x ## y \<in> (op ## x') ` Y \<longleftrightarrow> x = x' \<and> y \<in> Y"
|
hoelzl@59000
|
90 |
by auto
|
hoelzl@59000
|
91 |
|
traytel@50518
|
92 |
lemma shift_streams: "\<lbrakk>w \<in> lists A; s \<in> streams A\<rbrakk> \<Longrightarrow> w @- s \<in> streams A"
|
traytel@51141
|
93 |
by (induct w) auto
|
traytel@50518
|
94 |
|
hoelzl@54469
|
95 |
lemma streams_Stream: "x ## s \<in> streams A \<longleftrightarrow> x \<in> A \<and> s \<in> streams A"
|
hoelzl@54469
|
96 |
by (auto elim: streams.cases)
|
hoelzl@54469
|
97 |
|
hoelzl@54469
|
98 |
lemma streams_stl: "s \<in> streams A \<Longrightarrow> stl s \<in> streams A"
|
hoelzl@54469
|
99 |
by (cases s) (auto simp: streams_Stream)
|
hoelzl@54469
|
100 |
|
hoelzl@54469
|
101 |
lemma streams_shd: "s \<in> streams A \<Longrightarrow> shd s \<in> A"
|
hoelzl@54469
|
102 |
by (cases s) (auto simp: streams_Stream)
|
hoelzl@54469
|
103 |
|
traytel@51772
|
104 |
lemma sset_streams:
|
traytel@51772
|
105 |
assumes "sset s \<subseteq> A"
|
traytel@50518
|
106 |
shows "s \<in> streams A"
|
traytel@54027
|
107 |
using assms proof (coinduction arbitrary: s)
|
traytel@54027
|
108 |
case streams then show ?case by (cases s) simp
|
traytel@50518
|
109 |
qed
|
traytel@50518
|
110 |
|
hoelzl@54469
|
111 |
lemma streams_sset:
|
hoelzl@54469
|
112 |
assumes "s \<in> streams A"
|
hoelzl@54469
|
113 |
shows "sset s \<subseteq> A"
|
hoelzl@54469
|
114 |
proof
|
wenzelm@60500
|
115 |
fix x assume "x \<in> sset s" from this \<open>s \<in> streams A\<close> show "x \<in> A"
|
hoelzl@54469
|
116 |
by (induct s) (auto intro: streams_shd streams_stl)
|
hoelzl@54469
|
117 |
qed
|
hoelzl@54469
|
118 |
|
hoelzl@54469
|
119 |
lemma streams_iff_sset: "s \<in> streams A \<longleftrightarrow> sset s \<subseteq> A"
|
hoelzl@54469
|
120 |
by (metis sset_streams streams_sset)
|
hoelzl@54469
|
121 |
|
hoelzl@54469
|
122 |
lemma streams_mono: "s \<in> streams A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> s \<in> streams B"
|
hoelzl@54469
|
123 |
unfolding streams_iff_sset by auto
|
hoelzl@54469
|
124 |
|
hoelzl@59000
|
125 |
lemma streams_mono2: "S \<subseteq> T \<Longrightarrow> streams S \<subseteq> streams T"
|
hoelzl@59000
|
126 |
by (auto intro: streams_mono)
|
hoelzl@59000
|
127 |
|
hoelzl@54469
|
128 |
lemma smap_streams: "s \<in> streams A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> smap f s \<in> streams B"
|
hoelzl@54469
|
129 |
unfolding streams_iff_sset stream.set_map by auto
|
hoelzl@54469
|
130 |
|
hoelzl@54469
|
131 |
lemma streams_empty: "streams {} = {}"
|
hoelzl@54469
|
132 |
by (auto elim: streams.cases)
|
hoelzl@54469
|
133 |
|
hoelzl@54469
|
134 |
lemma streams_UNIV[simp]: "streams UNIV = UNIV"
|
hoelzl@54469
|
135 |
by (auto simp: streams_iff_sset)
|
traytel@50518
|
136 |
|
wenzelm@60500
|
137 |
subsection \<open>nth, take, drop for streams\<close>
|
traytel@51141
|
138 |
|
traytel@51141
|
139 |
primrec snth :: "'a stream \<Rightarrow> nat \<Rightarrow> 'a" (infixl "!!" 100) where
|
traytel@51141
|
140 |
"s !! 0 = shd s"
|
traytel@51141
|
141 |
| "s !! Suc n = stl s !! n"
|
traytel@51141
|
142 |
|
hoelzl@59000
|
143 |
lemma snth_Stream: "(x ## s) !! Suc i = s !! i"
|
hoelzl@59000
|
144 |
by simp
|
hoelzl@59000
|
145 |
|
traytel@51772
|
146 |
lemma snth_smap[simp]: "smap f s !! n = f (s !! n)"
|
traytel@51141
|
147 |
by (induct n arbitrary: s) auto
|
traytel@51141
|
148 |
|
traytel@51141
|
149 |
lemma shift_snth_less[simp]: "p < length xs \<Longrightarrow> (xs @- s) !! p = xs ! p"
|
traytel@51141
|
150 |
by (induct p arbitrary: xs) (auto simp: hd_conv_nth nth_tl)
|
traytel@51141
|
151 |
|
traytel@51141
|
152 |
lemma shift_snth_ge[simp]: "p \<ge> length xs \<Longrightarrow> (xs @- s) !! p = s !! (p - length xs)"
|
traytel@51141
|
153 |
by (induct p arbitrary: xs) (auto simp: Suc_diff_eq_diff_pred)
|
traytel@51141
|
154 |
|
traytel@57175
|
155 |
lemma shift_snth: "(xs @- s) !! n = (if n < length xs then xs ! n else s !! (n - length xs))"
|
traytel@57175
|
156 |
by auto
|
traytel@57175
|
157 |
|
traytel@51772
|
158 |
lemma snth_sset[simp]: "s !! n \<in> sset s"
|
traytel@51772
|
159 |
by (induct n arbitrary: s) (auto intro: shd_sset stl_sset)
|
traytel@51141
|
160 |
|
traytel@51772
|
161 |
lemma sset_range: "sset s = range (snth s)"
|
traytel@51141
|
162 |
proof (intro equalityI subsetI)
|
traytel@51772
|
163 |
fix x assume "x \<in> sset s"
|
traytel@51141
|
164 |
thus "x \<in> range (snth s)"
|
traytel@51141
|
165 |
proof (induct s)
|
traytel@51141
|
166 |
case (stl s x)
|
traytel@51141
|
167 |
then obtain n where "x = stl s !! n" by auto
|
traytel@51141
|
168 |
thus ?case by (auto intro: range_eqI[of _ _ "Suc n"])
|
traytel@51141
|
169 |
qed (auto intro: range_eqI[of _ _ 0])
|
traytel@51141
|
170 |
qed auto
|
traytel@50518
|
171 |
|
hoelzl@59000
|
172 |
lemma streams_iff_snth: "s \<in> streams X \<longleftrightarrow> (\<forall>n. s !! n \<in> X)"
|
hoelzl@59000
|
173 |
by (force simp: streams_iff_sset sset_range)
|
hoelzl@59000
|
174 |
|
hoelzl@59000
|
175 |
lemma snth_in: "s \<in> streams X \<Longrightarrow> s !! n \<in> X"
|
hoelzl@59000
|
176 |
by (simp add: streams_iff_snth)
|
hoelzl@59000
|
177 |
|
traytel@50518
|
178 |
primrec stake :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a list" where
|
traytel@50518
|
179 |
"stake 0 s = []"
|
traytel@50518
|
180 |
| "stake (Suc n) s = shd s # stake n (stl s)"
|
traytel@50518
|
181 |
|
traytel@51141
|
182 |
lemma length_stake[simp]: "length (stake n s) = n"
|
traytel@51141
|
183 |
by (induct n arbitrary: s) auto
|
traytel@51141
|
184 |
|
traytel@51772
|
185 |
lemma stake_smap[simp]: "stake n (smap f s) = map f (stake n s)"
|
traytel@51141
|
186 |
by (induct n arbitrary: s) auto
|
traytel@51141
|
187 |
|
traytel@57175
|
188 |
lemma take_stake: "take n (stake m s) = stake (min n m) s"
|
traytel@57175
|
189 |
proof (induct m arbitrary: s n)
|
traytel@57175
|
190 |
case (Suc m) thus ?case by (cases n) auto
|
traytel@57175
|
191 |
qed simp
|
traytel@57175
|
192 |
|
traytel@50518
|
193 |
primrec sdrop :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where
|
traytel@50518
|
194 |
"sdrop 0 s = s"
|
traytel@50518
|
195 |
| "sdrop (Suc n) s = sdrop n (stl s)"
|
traytel@50518
|
196 |
|
traytel@51141
|
197 |
lemma sdrop_simps[simp]:
|
traytel@51141
|
198 |
"shd (sdrop n s) = s !! n" "stl (sdrop n s) = sdrop (Suc n) s"
|
traytel@51141
|
199 |
by (induct n arbitrary: s) auto
|
traytel@51141
|
200 |
|
traytel@51772
|
201 |
lemma sdrop_smap[simp]: "sdrop n (smap f s) = smap f (sdrop n s)"
|
traytel@51141
|
202 |
by (induct n arbitrary: s) auto
|
traytel@50518
|
203 |
|
traytel@51352
|
204 |
lemma sdrop_stl: "sdrop n (stl s) = stl (sdrop n s)"
|
traytel@51352
|
205 |
by (induct n) auto
|
traytel@51352
|
206 |
|
traytel@57175
|
207 |
lemma drop_stake: "drop n (stake m s) = stake (m - n) (sdrop n s)"
|
traytel@57175
|
208 |
proof (induct m arbitrary: s n)
|
traytel@57175
|
209 |
case (Suc m) thus ?case by (cases n) auto
|
traytel@57175
|
210 |
qed simp
|
traytel@57175
|
211 |
|
traytel@50518
|
212 |
lemma stake_sdrop: "stake n s @- sdrop n s = s"
|
traytel@51141
|
213 |
by (induct n arbitrary: s) auto
|
traytel@51141
|
214 |
|
traytel@51141
|
215 |
lemma id_stake_snth_sdrop:
|
traytel@51141
|
216 |
"s = stake i s @- s !! i ## sdrop (Suc i) s"
|
traytel@51141
|
217 |
by (subst stake_sdrop[symmetric, of _ i]) (metis sdrop_simps stream.collapse)
|
traytel@50518
|
218 |
|
traytel@51772
|
219 |
lemma smap_alt: "smap f s = s' \<longleftrightarrow> (\<forall>n. f (s !! n) = s' !! n)" (is "?L = ?R")
|
traytel@51141
|
220 |
proof
|
traytel@51141
|
221 |
assume ?R
|
traytel@54027
|
222 |
then have "\<And>n. smap f (sdrop n s) = sdrop n s'"
|
traytel@54027
|
223 |
by coinduction (auto intro: exI[of _ 0] simp del: sdrop.simps(2))
|
traytel@54027
|
224 |
then show ?L using sdrop.simps(1) by metis
|
traytel@51141
|
225 |
qed auto
|
traytel@51141
|
226 |
|
traytel@51141
|
227 |
lemma stake_invert_Nil[iff]: "stake n s = [] \<longleftrightarrow> n = 0"
|
traytel@51141
|
228 |
by (induct n) auto
|
traytel@50518
|
229 |
|
traytel@57175
|
230 |
lemma sdrop_shift: "sdrop i (w @- s) = drop i w @- sdrop (i - length w) s"
|
traytel@57175
|
231 |
by (induct i arbitrary: w s) (auto simp: drop_tl drop_Suc neq_Nil_conv)
|
traytel@50518
|
232 |
|
traytel@57175
|
233 |
lemma stake_shift: "stake i (w @- s) = take i w @ stake (i - length w) s"
|
traytel@57175
|
234 |
by (induct i arbitrary: w s) (auto simp: neq_Nil_conv)
|
traytel@50518
|
235 |
|
traytel@50518
|
236 |
lemma stake_add[simp]: "stake m s @ stake n (sdrop m s) = stake (m + n) s"
|
traytel@51141
|
237 |
by (induct m arbitrary: s) auto
|
traytel@50518
|
238 |
|
traytel@50518
|
239 |
lemma sdrop_add[simp]: "sdrop n (sdrop m s) = sdrop (m + n) s"
|
traytel@51141
|
240 |
by (induct m arbitrary: s) auto
|
traytel@51141
|
241 |
|
traytel@57175
|
242 |
lemma sdrop_snth: "sdrop n s !! m = s !! (n + m)"
|
traytel@57175
|
243 |
by (induct n arbitrary: m s) auto
|
traytel@57175
|
244 |
|
traytel@51430
|
245 |
partial_function (tailrec) sdrop_while :: "('a \<Rightarrow> bool) \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where
|
traytel@51430
|
246 |
"sdrop_while P s = (if P (shd s) then sdrop_while P (stl s) else s)"
|
traytel@51430
|
247 |
|
traytel@54720
|
248 |
lemma sdrop_while_SCons[code]:
|
traytel@54720
|
249 |
"sdrop_while P (a ## s) = (if P a then sdrop_while P s else a ## s)"
|
traytel@51430
|
250 |
by (subst sdrop_while.simps) simp
|
traytel@51430
|
251 |
|
traytel@51430
|
252 |
lemma sdrop_while_sdrop_LEAST:
|
traytel@51430
|
253 |
assumes "\<exists>n. P (s !! n)"
|
traytel@51430
|
254 |
shows "sdrop_while (Not o P) s = sdrop (LEAST n. P (s !! n)) s"
|
traytel@51430
|
255 |
proof -
|
traytel@51430
|
256 |
from assms obtain m where "P (s !! m)" "\<And>n. P (s !! n) \<Longrightarrow> m \<le> n"
|
traytel@51430
|
257 |
and *: "(LEAST n. P (s !! n)) = m" by atomize_elim (auto intro: LeastI Least_le)
|
traytel@51430
|
258 |
thus ?thesis unfolding *
|
traytel@51430
|
259 |
proof (induct m arbitrary: s)
|
traytel@51430
|
260 |
case (Suc m)
|
traytel@51430
|
261 |
hence "sdrop_while (Not \<circ> P) (stl s) = sdrop m (stl s)"
|
traytel@51430
|
262 |
by (metis (full_types) not_less_eq_eq snth.simps(2))
|
traytel@51430
|
263 |
moreover from Suc(3) have "\<not> (P (s !! 0))" by blast
|
traytel@51430
|
264 |
ultimately show ?case by (subst sdrop_while.simps) simp
|
traytel@51430
|
265 |
qed (metis comp_apply sdrop.simps(1) sdrop_while.simps snth.simps(1))
|
traytel@51430
|
266 |
qed
|
traytel@51430
|
267 |
|
traytel@54027
|
268 |
primcorec sfilter where
|
traytel@54027
|
269 |
"shd (sfilter P s) = shd (sdrop_while (Not o P) s)"
|
traytel@54027
|
270 |
| "stl (sfilter P s) = sfilter P (stl (sdrop_while (Not o P) s))"
|
traytel@52905
|
271 |
|
traytel@52905
|
272 |
lemma sfilter_Stream: "sfilter P (x ## s) = (if P x then x ## sfilter P s else sfilter P s)"
|
traytel@52905
|
273 |
proof (cases "P x")
|
traytel@54720
|
274 |
case True thus ?thesis by (subst sfilter.ctr) (simp add: sdrop_while_SCons)
|
traytel@52905
|
275 |
next
|
traytel@54720
|
276 |
case False thus ?thesis by (subst (1 2) sfilter.ctr) (simp add: sdrop_while_SCons)
|
traytel@52905
|
277 |
qed
|
traytel@52905
|
278 |
|
traytel@51141
|
279 |
|
wenzelm@60500
|
280 |
subsection \<open>unary predicates lifted to streams\<close>
|
traytel@51141
|
281 |
|
traytel@51141
|
282 |
definition "stream_all P s = (\<forall>p. P (s !! p))"
|
traytel@51141
|
283 |
|
traytel@51772
|
284 |
lemma stream_all_iff[iff]: "stream_all P s \<longleftrightarrow> Ball (sset s) P"
|
traytel@51772
|
285 |
unfolding stream_all_def sset_range by auto
|
traytel@51141
|
286 |
|
traytel@51141
|
287 |
lemma stream_all_shift[simp]: "stream_all P (xs @- s) = (list_all P xs \<and> stream_all P s)"
|
traytel@51141
|
288 |
unfolding stream_all_iff list_all_iff by auto
|
traytel@51141
|
289 |
|
hoelzl@54469
|
290 |
lemma stream_all_Stream: "stream_all P (x ## X) \<longleftrightarrow> P x \<and> stream_all P X"
|
hoelzl@54469
|
291 |
by simp
|
hoelzl@54469
|
292 |
|
traytel@51141
|
293 |
|
wenzelm@60500
|
294 |
subsection \<open>recurring stream out of a list\<close>
|
traytel@51141
|
295 |
|
traytel@54027
|
296 |
primcorec cycle :: "'a list \<Rightarrow> 'a stream" where
|
traytel@54027
|
297 |
"shd (cycle xs) = hd xs"
|
traytel@54027
|
298 |
| "stl (cycle xs) = cycle (tl xs @ [hd xs])"
|
traytel@54720
|
299 |
|
traytel@51141
|
300 |
lemma cycle_decomp: "u \<noteq> [] \<Longrightarrow> cycle u = u @- cycle u"
|
traytel@54027
|
301 |
proof (coinduction arbitrary: u)
|
traytel@54027
|
302 |
case Eq_stream then show ?case using stream.collapse[of "cycle u"]
|
traytel@54027
|
303 |
by (auto intro!: exI[of _ "tl u @ [hd u]"])
|
traytel@54027
|
304 |
qed
|
traytel@51141
|
305 |
|
traytel@51409
|
306 |
lemma cycle_Cons[code]: "cycle (x # xs) = x ## cycle (xs @ [x])"
|
traytel@54027
|
307 |
by (subst cycle.ctr) simp
|
traytel@50518
|
308 |
|
traytel@50518
|
309 |
lemma cycle_rotated: "\<lbrakk>v \<noteq> []; cycle u = v @- s\<rbrakk> \<Longrightarrow> cycle (tl u @ [hd u]) = tl v @- s"
|
traytel@51141
|
310 |
by (auto dest: arg_cong[of _ _ stl])
|
traytel@50518
|
311 |
|
traytel@50518
|
312 |
lemma stake_append: "stake n (u @- s) = take (min (length u) n) u @ stake (n - length u) s"
|
traytel@50518
|
313 |
proof (induct n arbitrary: u)
|
traytel@50518
|
314 |
case (Suc n) thus ?case by (cases u) auto
|
traytel@50518
|
315 |
qed auto
|
traytel@50518
|
316 |
|
traytel@50518
|
317 |
lemma stake_cycle_le[simp]:
|
traytel@50518
|
318 |
assumes "u \<noteq> []" "n < length u"
|
traytel@50518
|
319 |
shows "stake n (cycle u) = take n u"
|
traytel@50518
|
320 |
using min_absorb2[OF less_imp_le_nat[OF assms(2)]]
|
traytel@51141
|
321 |
by (subst cycle_decomp[OF assms(1)], subst stake_append) auto
|
traytel@50518
|
322 |
|
traytel@50518
|
323 |
lemma stake_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> stake (length u) (cycle u) = u"
|
traytel@57175
|
324 |
by (subst cycle_decomp) (auto simp: stake_shift)
|
traytel@50518
|
325 |
|
traytel@50518
|
326 |
lemma sdrop_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> sdrop (length u) (cycle u) = cycle u"
|
traytel@57175
|
327 |
by (subst cycle_decomp) (auto simp: sdrop_shift)
|
traytel@50518
|
328 |
|
traytel@50518
|
329 |
lemma stake_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
|
traytel@50518
|
330 |
stake n (cycle u) = concat (replicate (n div length u) u)"
|
traytel@51141
|
331 |
by (induct "n div length u" arbitrary: n u) (auto simp: stake_add[symmetric])
|
traytel@50518
|
332 |
|
traytel@50518
|
333 |
lemma sdrop_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
|
traytel@50518
|
334 |
sdrop n (cycle u) = cycle u"
|
traytel@51141
|
335 |
by (induct "n div length u" arbitrary: n u) (auto simp: sdrop_add[symmetric])
|
traytel@50518
|
336 |
|
traytel@50518
|
337 |
lemma stake_cycle: "u \<noteq> [] \<Longrightarrow>
|
traytel@50518
|
338 |
stake n (cycle u) = concat (replicate (n div length u) u) @ take (n mod length u) u"
|
traytel@51141
|
339 |
by (subst mod_div_equality[of n "length u", symmetric], unfold stake_add[symmetric]) auto
|
traytel@50518
|
340 |
|
traytel@50518
|
341 |
lemma sdrop_cycle: "u \<noteq> [] \<Longrightarrow> sdrop n (cycle u) = cycle (rotate (n mod length u) u)"
|
traytel@51141
|
342 |
by (induct n arbitrary: u) (auto simp: rotate1_rotate_swap rotate1_hd_tl rotate_conv_mod[symmetric])
|
traytel@51141
|
343 |
|
traytel@51141
|
344 |
|
wenzelm@60500
|
345 |
subsection \<open>iterated application of a function\<close>
|
hoelzl@54497
|
346 |
|
hoelzl@54497
|
347 |
primcorec siterate where
|
hoelzl@54497
|
348 |
"shd (siterate f x) = x"
|
hoelzl@54497
|
349 |
| "stl (siterate f x) = siterate f (f x)"
|
hoelzl@54497
|
350 |
|
hoelzl@54497
|
351 |
lemma stake_Suc: "stake (Suc n) s = stake n s @ [s !! n]"
|
hoelzl@54497
|
352 |
by (induct n arbitrary: s) auto
|
hoelzl@54497
|
353 |
|
hoelzl@54497
|
354 |
lemma snth_siterate[simp]: "siterate f x !! n = (f^^n) x"
|
hoelzl@54497
|
355 |
by (induct n arbitrary: x) (auto simp: funpow_swap1)
|
hoelzl@54497
|
356 |
|
hoelzl@54497
|
357 |
lemma sdrop_siterate[simp]: "sdrop n (siterate f x) = siterate f ((f^^n) x)"
|
hoelzl@54497
|
358 |
by (induct n arbitrary: x) (auto simp: funpow_swap1)
|
hoelzl@54497
|
359 |
|
hoelzl@54497
|
360 |
lemma stake_siterate[simp]: "stake n (siterate f x) = map (\<lambda>n. (f^^n) x) [0 ..< n]"
|
hoelzl@54497
|
361 |
by (induct n arbitrary: x) (auto simp del: stake.simps(2) simp: stake_Suc)
|
hoelzl@54497
|
362 |
|
hoelzl@54497
|
363 |
lemma sset_siterate: "sset (siterate f x) = {(f^^n) x | n. True}"
|
hoelzl@54497
|
364 |
by (auto simp: sset_range)
|
hoelzl@54497
|
365 |
|
hoelzl@54497
|
366 |
lemma smap_siterate: "smap f (siterate f x) = siterate f (f x)"
|
hoelzl@54497
|
367 |
by (coinduction arbitrary: x) auto
|
hoelzl@54497
|
368 |
|
hoelzl@54497
|
369 |
|
wenzelm@60500
|
370 |
subsection \<open>stream repeating a single element\<close>
|
traytel@51141
|
371 |
|
hoelzl@54497
|
372 |
abbreviation "sconst \<equiv> siterate id"
|
traytel@51141
|
373 |
|
hoelzl@54497
|
374 |
lemma shift_replicate_sconst[simp]: "replicate n x @- sconst x = sconst x"
|
hoelzl@54497
|
375 |
by (subst (3) stake_sdrop[symmetric]) (simp add: map_replicate_trivial)
|
traytel@51141
|
376 |
|
traytel@57175
|
377 |
lemma sset_sconst[simp]: "sset (sconst x) = {x}"
|
hoelzl@54497
|
378 |
by (simp add: sset_siterate)
|
traytel@51141
|
379 |
|
traytel@57175
|
380 |
lemma sconst_alt: "s = sconst x \<longleftrightarrow> sset s = {x}"
|
traytel@57175
|
381 |
proof
|
traytel@57175
|
382 |
assume "sset s = {x}"
|
traytel@57175
|
383 |
then show "s = sconst x"
|
traytel@57175
|
384 |
proof (coinduction arbitrary: s)
|
traytel@57175
|
385 |
case Eq_stream
|
traytel@57175
|
386 |
then have "shd s = x" "sset (stl s) \<subseteq> {x}" by (case_tac [!] s) auto
|
traytel@57175
|
387 |
then have "sset (stl s) = {x}" by (cases "stl s") auto
|
wenzelm@60500
|
388 |
with \<open>shd s = x\<close> show ?case by auto
|
traytel@57175
|
389 |
qed
|
traytel@57175
|
390 |
qed simp
|
traytel@57175
|
391 |
|
traytel@59016
|
392 |
lemma sconst_cycle: "sconst x = cycle [x]"
|
hoelzl@54497
|
393 |
by coinduction auto
|
traytel@51141
|
394 |
|
hoelzl@54497
|
395 |
lemma smap_sconst: "smap f (sconst x) = sconst (f x)"
|
hoelzl@54497
|
396 |
by coinduction auto
|
traytel@51141
|
397 |
|
hoelzl@54497
|
398 |
lemma sconst_streams: "x \<in> A \<Longrightarrow> sconst x \<in> streams A"
|
hoelzl@54497
|
399 |
by (simp add: streams_iff_sset)
|
traytel@51141
|
400 |
|
traytel@51141
|
401 |
|
wenzelm@60500
|
402 |
subsection \<open>stream of natural numbers\<close>
|
traytel@51141
|
403 |
|
hoelzl@54497
|
404 |
abbreviation "fromN \<equiv> siterate Suc"
|
hoelzl@54469
|
405 |
|
traytel@51141
|
406 |
abbreviation "nats \<equiv> fromN 0"
|
traytel@51141
|
407 |
|
hoelzl@54497
|
408 |
lemma sset_fromN[simp]: "sset (fromN n) = {n ..}"
|
traytel@54720
|
409 |
by (auto simp add: sset_siterate le_iff_add)
|
hoelzl@54497
|
410 |
|
traytel@57175
|
411 |
lemma stream_smap_fromN: "s = smap (\<lambda>j. let i = j - n in s !! i) (fromN n)"
|
traytel@57175
|
412 |
by (coinduction arbitrary: s n)
|
traytel@57175
|
413 |
(force simp: neq_Nil_conv Let_def snth.simps(2)[symmetric] Suc_diff_Suc
|
traytel@57175
|
414 |
intro: stream.map_cong split: if_splits simp del: snth.simps(2))
|
traytel@57175
|
415 |
|
traytel@57175
|
416 |
lemma stream_smap_nats: "s = smap (snth s) nats"
|
traytel@57175
|
417 |
using stream_smap_fromN[where n = 0] by simp
|
traytel@57175
|
418 |
|
traytel@51141
|
419 |
|
wenzelm@60500
|
420 |
subsection \<open>flatten a stream of lists\<close>
|
traytel@51462
|
421 |
|
traytel@54027
|
422 |
primcorec flat where
|
traytel@51462
|
423 |
"shd (flat ws) = hd (shd ws)"
|
traytel@54027
|
424 |
| "stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)"
|
traytel@51462
|
425 |
|
traytel@51462
|
426 |
lemma flat_Cons[simp, code]: "flat ((x # xs) ## ws) = x ## flat (if xs = [] then ws else xs ## ws)"
|
traytel@54027
|
427 |
by (subst flat.ctr) simp
|
traytel@51462
|
428 |
|
traytel@51462
|
429 |
lemma flat_Stream[simp]: "xs \<noteq> [] \<Longrightarrow> flat (xs ## ws) = xs @- flat ws"
|
traytel@51462
|
430 |
by (induct xs) auto
|
traytel@51462
|
431 |
|
traytel@51462
|
432 |
lemma flat_unfold: "shd ws \<noteq> [] \<Longrightarrow> flat ws = shd ws @- flat (stl ws)"
|
traytel@51462
|
433 |
by (cases ws) auto
|
traytel@51462
|
434 |
|
traytel@51772
|
435 |
lemma flat_snth: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> flat s !! n = (if n < length (shd s) then
|
traytel@51462
|
436 |
shd s ! n else flat (stl s) !! (n - length (shd s)))"
|
traytel@51772
|
437 |
by (metis flat_unfold not_less shd_sset shift_snth_ge shift_snth_less)
|
traytel@51462
|
438 |
|
traytel@51772
|
439 |
lemma sset_flat[simp]: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow>
|
traytel@51772
|
440 |
sset (flat s) = (\<Union>xs \<in> sset s. set xs)" (is "?P \<Longrightarrow> ?L = ?R")
|
traytel@51462
|
441 |
proof safe
|
traytel@51462
|
442 |
fix x assume ?P "x : ?L"
|
traytel@51772
|
443 |
then obtain m where "x = flat s !! m" by (metis image_iff sset_range)
|
wenzelm@60500
|
444 |
with \<open>?P\<close> obtain n m' where "x = s !! n ! m'" "m' < length (s !! n)"
|
traytel@51462
|
445 |
proof (atomize_elim, induct m arbitrary: s rule: less_induct)
|
traytel@51462
|
446 |
case (less y)
|
traytel@51462
|
447 |
thus ?case
|
traytel@51462
|
448 |
proof (cases "y < length (shd s)")
|
traytel@51462
|
449 |
case True thus ?thesis by (metis flat_snth less(2,3) snth.simps(1))
|
traytel@51462
|
450 |
next
|
traytel@51462
|
451 |
case False
|
traytel@51462
|
452 |
hence "x = flat (stl s) !! (y - length (shd s))" by (metis less(2,3) flat_snth)
|
traytel@51462
|
453 |
moreover
|
wenzelm@53374
|
454 |
{ from less(2) have *: "length (shd s) > 0" by (cases s) simp_all
|
wenzelm@53374
|
455 |
with False have "y > 0" by (cases y) simp_all
|
wenzelm@53374
|
456 |
with * have "y - length (shd s) < y" by simp
|
traytel@51462
|
457 |
}
|
traytel@51772
|
458 |
moreover have "\<forall>xs \<in> sset (stl s). xs \<noteq> []" using less(2) by (cases s) auto
|
traytel@51462
|
459 |
ultimately have "\<exists>n m'. x = stl s !! n ! m' \<and> m' < length (stl s !! n)" by (intro less(1)) auto
|
traytel@51462
|
460 |
thus ?thesis by (metis snth.simps(2))
|
traytel@51462
|
461 |
qed
|
traytel@51462
|
462 |
qed
|
traytel@51772
|
463 |
thus "x \<in> ?R" by (auto simp: sset_range dest!: nth_mem)
|
traytel@51462
|
464 |
next
|
traytel@51772
|
465 |
fix x xs assume "xs \<in> sset s" ?P "x \<in> set xs" thus "x \<in> ?L"
|
blanchet@57986
|
466 |
by (induct rule: sset_induct)
|
traytel@51772
|
467 |
(metis UnI1 flat_unfold shift.simps(1) sset_shift,
|
traytel@51772
|
468 |
metis UnI2 flat_unfold shd_sset stl_sset sset_shift)
|
traytel@51462
|
469 |
qed
|
traytel@51462
|
470 |
|
traytel@51462
|
471 |
|
wenzelm@60500
|
472 |
subsection \<open>merge a stream of streams\<close>
|
traytel@51462
|
473 |
|
traytel@51462
|
474 |
definition smerge :: "'a stream stream \<Rightarrow> 'a stream" where
|
traytel@51772
|
475 |
"smerge ss = flat (smap (\<lambda>n. map (\<lambda>s. s !! n) (stake (Suc n) ss) @ stake n (ss !! n)) nats)"
|
traytel@51462
|
476 |
|
traytel@51462
|
477 |
lemma stake_nth[simp]: "m < n \<Longrightarrow> stake n s ! m = s !! m"
|
traytel@51462
|
478 |
by (induct n arbitrary: s m) (auto simp: nth_Cons', metis Suc_pred snth.simps(2))
|
traytel@51462
|
479 |
|
traytel@51772
|
480 |
lemma snth_sset_smerge: "ss !! n !! m \<in> sset (smerge ss)"
|
traytel@51462
|
481 |
proof (cases "n \<le> m")
|
traytel@51462
|
482 |
case False thus ?thesis unfolding smerge_def
|
traytel@51772
|
483 |
by (subst sset_flat)
|
blanchet@53290
|
484 |
(auto simp: stream.set_map in_set_conv_nth simp del: stake.simps
|
traytel@51462
|
485 |
intro!: exI[of _ n, OF disjI2] exI[of _ m, OF mp])
|
traytel@51462
|
486 |
next
|
traytel@51462
|
487 |
case True thus ?thesis unfolding smerge_def
|
traytel@51772
|
488 |
by (subst sset_flat)
|
blanchet@53290
|
489 |
(auto simp: stream.set_map in_set_conv_nth image_iff simp del: stake.simps snth.simps
|
traytel@51462
|
490 |
intro!: exI[of _ m, OF disjI1] bexI[of _ "ss !! n"] exI[of _ n, OF mp])
|
traytel@51462
|
491 |
qed
|
traytel@51462
|
492 |
|
traytel@51772
|
493 |
lemma sset_smerge: "sset (smerge ss) = UNION (sset ss) sset"
|
traytel@51462
|
494 |
proof safe
|
traytel@51772
|
495 |
fix x assume "x \<in> sset (smerge ss)"
|
traytel@51772
|
496 |
thus "x \<in> UNION (sset ss) sset"
|
traytel@51772
|
497 |
unfolding smerge_def by (subst (asm) sset_flat)
|
blanchet@53290
|
498 |
(auto simp: stream.set_map in_set_conv_nth sset_range simp del: stake.simps, fast+)
|
traytel@51462
|
499 |
next
|
traytel@51772
|
500 |
fix s x assume "s \<in> sset ss" "x \<in> sset s"
|
traytel@51772
|
501 |
thus "x \<in> sset (smerge ss)" using snth_sset_smerge by (auto simp: sset_range)
|
traytel@51462
|
502 |
qed
|
traytel@51462
|
503 |
|
traytel@51462
|
504 |
|
wenzelm@60500
|
505 |
subsection \<open>product of two streams\<close>
|
traytel@51462
|
506 |
|
traytel@51462
|
507 |
definition sproduct :: "'a stream \<Rightarrow> 'b stream \<Rightarrow> ('a \<times> 'b) stream" where
|
traytel@51772
|
508 |
"sproduct s1 s2 = smerge (smap (\<lambda>x. smap (Pair x) s2) s1)"
|
traytel@51462
|
509 |
|
traytel@51772
|
510 |
lemma sset_sproduct: "sset (sproduct s1 s2) = sset s1 \<times> sset s2"
|
blanchet@53290
|
511 |
unfolding sproduct_def sset_smerge by (auto simp: stream.set_map)
|
traytel@51462
|
512 |
|
traytel@51462
|
513 |
|
wenzelm@60500
|
514 |
subsection \<open>interleave two streams\<close>
|
traytel@51462
|
515 |
|
traytel@54027
|
516 |
primcorec sinterleave where
|
traytel@54027
|
517 |
"shd (sinterleave s1 s2) = shd s1"
|
traytel@54027
|
518 |
| "stl (sinterleave s1 s2) = sinterleave s2 (stl s1)"
|
traytel@51462
|
519 |
|
traytel@51462
|
520 |
lemma sinterleave_code[code]:
|
traytel@51462
|
521 |
"sinterleave (x ## s1) s2 = x ## sinterleave s2 s1"
|
traytel@54027
|
522 |
by (subst sinterleave.ctr) simp
|
traytel@51462
|
523 |
|
traytel@51462
|
524 |
lemma sinterleave_snth[simp]:
|
traytel@51462
|
525 |
"even n \<Longrightarrow> sinterleave s1 s2 !! n = s1 !! (n div 2)"
|
haftmann@58710
|
526 |
"odd n \<Longrightarrow> sinterleave s1 s2 !! n = s2 !! (n div 2)"
|
haftmann@58710
|
527 |
by (induct n arbitrary: s1 s2) simp_all
|
traytel@51462
|
528 |
|
traytel@51772
|
529 |
lemma sset_sinterleave: "sset (sinterleave s1 s2) = sset s1 \<union> sset s2"
|
traytel@51462
|
530 |
proof (intro equalityI subsetI)
|
traytel@51772
|
531 |
fix x assume "x \<in> sset (sinterleave s1 s2)"
|
traytel@51772
|
532 |
then obtain n where "x = sinterleave s1 s2 !! n" unfolding sset_range by blast
|
traytel@51772
|
533 |
thus "x \<in> sset s1 \<union> sset s2" by (cases "even n") auto
|
traytel@51462
|
534 |
next
|
traytel@51772
|
535 |
fix x assume "x \<in> sset s1 \<union> sset s2"
|
traytel@51772
|
536 |
thus "x \<in> sset (sinterleave s1 s2)"
|
traytel@51462
|
537 |
proof
|
traytel@51772
|
538 |
assume "x \<in> sset s1"
|
traytel@51772
|
539 |
then obtain n where "x = s1 !! n" unfolding sset_range by blast
|
traytel@51462
|
540 |
hence "sinterleave s1 s2 !! (2 * n) = x" by simp
|
traytel@51772
|
541 |
thus ?thesis unfolding sset_range by blast
|
traytel@51462
|
542 |
next
|
traytel@51772
|
543 |
assume "x \<in> sset s2"
|
traytel@51772
|
544 |
then obtain n where "x = s2 !! n" unfolding sset_range by blast
|
traytel@51462
|
545 |
hence "sinterleave s1 s2 !! (2 * n + 1) = x" by simp
|
traytel@51772
|
546 |
thus ?thesis unfolding sset_range by blast
|
traytel@51462
|
547 |
qed
|
traytel@51462
|
548 |
qed
|
traytel@51462
|
549 |
|
traytel@51462
|
550 |
|
wenzelm@60500
|
551 |
subsection \<open>zip\<close>
|
traytel@51141
|
552 |
|
traytel@54027
|
553 |
primcorec szip where
|
traytel@54027
|
554 |
"shd (szip s1 s2) = (shd s1, shd s2)"
|
traytel@54027
|
555 |
| "stl (szip s1 s2) = szip (stl s1) (stl s2)"
|
traytel@51141
|
556 |
|
traytel@54720
|
557 |
lemma szip_unfold[code]: "szip (a ## s1) (b ## s2) = (a, b) ## (szip s1 s2)"
|
traytel@54027
|
558 |
by (subst szip.ctr) simp
|
traytel@51409
|
559 |
|
traytel@51141
|
560 |
lemma snth_szip[simp]: "szip s1 s2 !! n = (s1 !! n, s2 !! n)"
|
traytel@51141
|
561 |
by (induct n arbitrary: s1 s2) auto
|
traytel@51141
|
562 |
|
traytel@57175
|
563 |
lemma stake_szip[simp]:
|
traytel@57175
|
564 |
"stake n (szip s1 s2) = zip (stake n s1) (stake n s2)"
|
traytel@57175
|
565 |
by (induct n arbitrary: s1 s2) auto
|
traytel@57175
|
566 |
|
traytel@57175
|
567 |
lemma sdrop_szip[simp]: "sdrop n (szip s1 s2) = szip (sdrop n s1) (sdrop n s2)"
|
traytel@57175
|
568 |
by (induct n arbitrary: s1 s2) auto
|
traytel@57175
|
569 |
|
traytel@57175
|
570 |
lemma smap_szip_fst:
|
traytel@57175
|
571 |
"smap (\<lambda>x. f (fst x)) (szip s1 s2) = smap f s1"
|
traytel@57175
|
572 |
by (coinduction arbitrary: s1 s2) auto
|
traytel@57175
|
573 |
|
traytel@57175
|
574 |
lemma smap_szip_snd:
|
traytel@57175
|
575 |
"smap (\<lambda>x. g (snd x)) (szip s1 s2) = smap g s2"
|
traytel@57175
|
576 |
by (coinduction arbitrary: s1 s2) auto
|
traytel@57175
|
577 |
|
traytel@51141
|
578 |
|
wenzelm@60500
|
579 |
subsection \<open>zip via function\<close>
|
traytel@51141
|
580 |
|
traytel@54027
|
581 |
primcorec smap2 where
|
traytel@51772
|
582 |
"shd (smap2 f s1 s2) = f (shd s1) (shd s2)"
|
traytel@54027
|
583 |
| "stl (smap2 f s1 s2) = smap2 f (stl s1) (stl s2)"
|
traytel@51141
|
584 |
|
traytel@51772
|
585 |
lemma smap2_unfold[code]:
|
traytel@54720
|
586 |
"smap2 f (a ## s1) (b ## s2) = f a b ## (smap2 f s1 s2)"
|
traytel@54027
|
587 |
by (subst smap2.ctr) simp
|
traytel@51409
|
588 |
|
traytel@51772
|
589 |
lemma smap2_szip:
|
haftmann@61424
|
590 |
"smap2 f s1 s2 = smap (case_prod f) (szip s1 s2)"
|
traytel@54027
|
591 |
by (coinduction arbitrary: s1 s2) auto
|
traytel@50518
|
592 |
|
traytel@57175
|
593 |
lemma smap_smap2[simp]:
|
traytel@57175
|
594 |
"smap f (smap2 g s1 s2) = smap2 (\<lambda>x y. f (g x y)) s1 s2"
|
traytel@57175
|
595 |
unfolding smap2_szip stream.map_comp o_def split_def ..
|
traytel@57175
|
596 |
|
traytel@57175
|
597 |
lemma smap2_alt:
|
traytel@57175
|
598 |
"(smap2 f s1 s2 = s) = (\<forall>n. f (s1 !! n) (s2 !! n) = s !! n)"
|
traytel@57175
|
599 |
unfolding smap2_szip smap_alt by auto
|
traytel@57175
|
600 |
|
traytel@57175
|
601 |
lemma snth_smap2[simp]:
|
traytel@57175
|
602 |
"smap2 f s1 s2 !! n = f (s1 !! n) (s2 !! n)"
|
traytel@57175
|
603 |
by (induct n arbitrary: s1 s2) auto
|
traytel@57175
|
604 |
|
traytel@57175
|
605 |
lemma stake_smap2[simp]:
|
haftmann@61424
|
606 |
"stake n (smap2 f s1 s2) = map (case_prod f) (zip (stake n s1) (stake n s2))"
|
traytel@57175
|
607 |
by (induct n arbitrary: s1 s2) auto
|
traytel@57175
|
608 |
|
traytel@57175
|
609 |
lemma sdrop_smap2[simp]:
|
traytel@57175
|
610 |
"sdrop n (smap2 f s1 s2) = smap2 f (sdrop n s1) (sdrop n s2)"
|
traytel@57175
|
611 |
by (induct n arbitrary: s1 s2) auto
|
traytel@57175
|
612 |
|
traytel@50518
|
613 |
end
|