src/HOL/Library/Permutation.thy
author paulson
Thu Jun 24 17:54:53 2004 +0200 (2004-06-24)
changeset 15005 546c8e7e28d4
parent 14706 71590b7733b7
child 15072 4861bf6af0b4
permissions -rw-r--r--
Norbert Voelker
wenzelm@11054
     1
(*  Title:      HOL/Library/Permutation.thy
paulson@15005
     2
    Author:     Lawrence C Paulson and Thomas M Rasmussen and Norbert Voelker
wenzelm@11054
     3
*)
wenzelm@11054
     4
wenzelm@14706
     5
header {* Permutations *}
wenzelm@11054
     6
paulson@15005
     7
theory Permutation = Multiset:
wenzelm@11054
     8
wenzelm@11054
     9
consts
wenzelm@11054
    10
  perm :: "('a list * 'a list) set"
wenzelm@11054
    11
wenzelm@11054
    12
syntax
wenzelm@11054
    13
  "_perm" :: "'a list => 'a list => bool"    ("_ <~~> _"  [50, 50] 50)
wenzelm@11054
    14
translations
wenzelm@11054
    15
  "x <~~> y" == "(x, y) \<in> perm"
wenzelm@11054
    16
wenzelm@11054
    17
inductive perm
paulson@11153
    18
  intros
paulson@11153
    19
    Nil  [intro!]: "[] <~~> []"
paulson@11153
    20
    swap [intro!]: "y # x # l <~~> x # y # l"
paulson@11153
    21
    Cons [intro!]: "xs <~~> ys ==> z # xs <~~> z # ys"
paulson@11153
    22
    trans [intro]: "xs <~~> ys ==> ys <~~> zs ==> xs <~~> zs"
wenzelm@11054
    23
wenzelm@11054
    24
lemma perm_refl [iff]: "l <~~> l"
paulson@15005
    25
by (induct l, auto)
wenzelm@11054
    26
wenzelm@11054
    27
wenzelm@11054
    28
subsection {* Some examples of rule induction on permutations *}
wenzelm@11054
    29
wenzelm@11054
    30
lemma xperm_empty_imp_aux: "xs <~~> ys ==> xs = [] --> ys = []"
wenzelm@11054
    31
    -- {* the form of the premise lets the induction bind @{term xs} and @{term ys} *}
wenzelm@11054
    32
  apply (erule perm.induct)
wenzelm@11054
    33
     apply (simp_all (no_asm_simp))
wenzelm@11054
    34
  done
wenzelm@11054
    35
wenzelm@11054
    36
lemma xperm_empty_imp: "[] <~~> ys ==> ys = []"
paulson@15005
    37
by (insert xperm_empty_imp_aux, blast)
wenzelm@11054
    38
wenzelm@11054
    39
wenzelm@11054
    40
text {*
wenzelm@11054
    41
  \medskip This more general theorem is easier to understand!
wenzelm@11054
    42
  *}
wenzelm@11054
    43
wenzelm@11054
    44
lemma perm_length: "xs <~~> ys ==> length xs = length ys"
paulson@15005
    45
by (erule perm.induct, simp_all)
wenzelm@11054
    46
wenzelm@11054
    47
lemma perm_empty_imp: "[] <~~> xs ==> xs = []"
paulson@15005
    48
by (drule perm_length, auto)
wenzelm@11054
    49
wenzelm@11054
    50
lemma perm_sym: "xs <~~> ys ==> ys <~~> xs"
paulson@15005
    51
by (erule perm.induct, auto)
wenzelm@11054
    52
wenzelm@11054
    53
lemma perm_mem [rule_format]: "xs <~~> ys ==> x mem xs --> x mem ys"
paulson@15005
    54
by (erule perm.induct, auto)
wenzelm@11054
    55
wenzelm@11054
    56
wenzelm@11054
    57
subsection {* Ways of making new permutations *}
wenzelm@11054
    58
wenzelm@11054
    59
text {*
wenzelm@11054
    60
  We can insert the head anywhere in the list.
wenzelm@11054
    61
*}
wenzelm@11054
    62
wenzelm@11054
    63
lemma perm_append_Cons: "a # xs @ ys <~~> xs @ a # ys"
paulson@15005
    64
by (induct xs, auto)
wenzelm@11054
    65
wenzelm@11054
    66
lemma perm_append_swap: "xs @ ys <~~> ys @ xs"
paulson@15005
    67
  apply (induct xs, simp_all)
wenzelm@11054
    68
  apply (blast intro: perm_append_Cons)
wenzelm@11054
    69
  done
wenzelm@11054
    70
wenzelm@11054
    71
lemma perm_append_single: "a # xs <~~> xs @ [a]"
wenzelm@11054
    72
  apply (rule perm.trans)
wenzelm@11054
    73
   prefer 2
paulson@15005
    74
   apply (rule perm_append_swap, simp)
wenzelm@11054
    75
  done
wenzelm@11054
    76
wenzelm@11054
    77
lemma perm_rev: "rev xs <~~> xs"
paulson@15005
    78
  apply (induct xs, simp_all)
paulson@11153
    79
  apply (blast intro!: perm_append_single intro: perm_sym)
wenzelm@11054
    80
  done
wenzelm@11054
    81
wenzelm@11054
    82
lemma perm_append1: "xs <~~> ys ==> l @ xs <~~> l @ ys"
paulson@15005
    83
by (induct l, auto)
wenzelm@11054
    84
wenzelm@11054
    85
lemma perm_append2: "xs <~~> ys ==> xs @ l <~~> ys @ l"
paulson@15005
    86
by (blast intro!: perm_append_swap perm_append1)
wenzelm@11054
    87
wenzelm@11054
    88
wenzelm@11054
    89
subsection {* Further results *}
wenzelm@11054
    90
wenzelm@11054
    91
lemma perm_empty [iff]: "([] <~~> xs) = (xs = [])"
paulson@15005
    92
by (blast intro: perm_empty_imp)
wenzelm@11054
    93
wenzelm@11054
    94
lemma perm_empty2 [iff]: "(xs <~~> []) = (xs = [])"
wenzelm@11054
    95
  apply auto
wenzelm@11054
    96
  apply (erule perm_sym [THEN perm_empty_imp])
wenzelm@11054
    97
  done
wenzelm@11054
    98
wenzelm@11054
    99
lemma perm_sing_imp [rule_format]: "ys <~~> xs ==> xs = [y] --> ys = [y]"
paulson@15005
   100
by (erule perm.induct, auto)
wenzelm@11054
   101
wenzelm@11054
   102
lemma perm_sing_eq [iff]: "(ys <~~> [y]) = (ys = [y])"
paulson@15005
   103
by (blast intro: perm_sing_imp)
wenzelm@11054
   104
wenzelm@11054
   105
lemma perm_sing_eq2 [iff]: "([y] <~~> ys) = (ys = [y])"
paulson@15005
   106
by (blast dest: perm_sym)
wenzelm@11054
   107
wenzelm@11054
   108
wenzelm@11054
   109
subsection {* Removing elements *}
wenzelm@11054
   110
wenzelm@11054
   111
consts
wenzelm@11054
   112
  remove :: "'a => 'a list => 'a list"
wenzelm@11054
   113
primrec
wenzelm@11054
   114
  "remove x [] = []"
wenzelm@11054
   115
  "remove x (y # ys) = (if x = y then ys else y # remove x ys)"
wenzelm@11054
   116
wenzelm@11054
   117
lemma perm_remove: "x \<in> set ys ==> ys <~~> x # remove x ys"
paulson@15005
   118
by (induct ys, auto)
wenzelm@11054
   119
wenzelm@11054
   120
lemma remove_commute: "remove x (remove y l) = remove y (remove x l)"
paulson@15005
   121
by (induct l, auto)
wenzelm@11054
   122
wenzelm@11054
   123
wenzelm@11054
   124
text {* \medskip Congruence rule *}
wenzelm@11054
   125
wenzelm@11054
   126
lemma perm_remove_perm: "xs <~~> ys ==> remove z xs <~~> remove z ys"
paulson@15005
   127
by (erule perm.induct, auto)
wenzelm@11054
   128
wenzelm@11054
   129
lemma remove_hd [simp]: "remove z (z # xs) = xs"
wenzelm@11054
   130
  apply auto
wenzelm@11054
   131
  done
wenzelm@11054
   132
wenzelm@11054
   133
lemma cons_perm_imp_perm: "z # xs <~~> z # ys ==> xs <~~> ys"
paulson@15005
   134
by (drule_tac z = z in perm_remove_perm, auto)
wenzelm@11054
   135
wenzelm@11054
   136
lemma cons_perm_eq [iff]: "(z#xs <~~> z#ys) = (xs <~~> ys)"
paulson@15005
   137
by (blast intro: cons_perm_imp_perm)
wenzelm@11054
   138
wenzelm@11054
   139
lemma append_perm_imp_perm: "!!xs ys. zs @ xs <~~> zs @ ys ==> xs <~~> ys"
wenzelm@11054
   140
  apply (induct zs rule: rev_induct)
wenzelm@11054
   141
   apply (simp_all (no_asm_use))
wenzelm@11054
   142
  apply blast
wenzelm@11054
   143
  done
wenzelm@11054
   144
wenzelm@11054
   145
lemma perm_append1_eq [iff]: "(zs @ xs <~~> zs @ ys) = (xs <~~> ys)"
paulson@15005
   146
by (blast intro: append_perm_imp_perm perm_append1)
wenzelm@11054
   147
wenzelm@11054
   148
lemma perm_append2_eq [iff]: "(xs @ zs <~~> ys @ zs) = (xs <~~> ys)"
wenzelm@11054
   149
  apply (safe intro!: perm_append2)
wenzelm@11054
   150
  apply (rule append_perm_imp_perm)
wenzelm@11054
   151
  apply (rule perm_append_swap [THEN perm.trans])
wenzelm@11054
   152
    -- {* the previous step helps this @{text blast} call succeed quickly *}
wenzelm@11054
   153
  apply (blast intro: perm_append_swap)
wenzelm@11054
   154
  done
wenzelm@11054
   155
paulson@15005
   156
(****************** Norbert Voelker 17 June 2004 **************) 
paulson@15005
   157
paulson@15005
   158
consts 
paulson@15005
   159
  multiset_of :: "'a list \<Rightarrow> 'a multiset"
paulson@15005
   160
primrec
paulson@15005
   161
  "multiset_of [] = {#}"
paulson@15005
   162
  "multiset_of (a # x) = multiset_of x + {# a #}"
paulson@15005
   163
paulson@15005
   164
lemma multiset_of_zero_iff[simp]: "(multiset_of x = {#}) = (x = [])"
paulson@15005
   165
  by (induct_tac x, auto) 
paulson@15005
   166
paulson@15005
   167
lemma multiset_of_zero_iff_right[simp]: "({#} = multiset_of x) = (x = [])"
paulson@15005
   168
  by (induct_tac x, auto)
paulson@15005
   169
paulson@15005
   170
lemma set_of_multiset_of[simp]: "set_of(multiset_of x) = set x"
paulson@15005
   171
 by (induct_tac x, auto) 
paulson@15005
   172
paulson@15005
   173
lemma multiset_of_remove[simp]: 
paulson@15005
   174
  "multiset_of (remove a x) = multiset_of x - {#a#}"
paulson@15005
   175
  by (induct_tac x, auto simp: multiset_eq_conv_count_eq) 
paulson@15005
   176
paulson@15005
   177
lemma multiset_of_eq_perm:  "(multiset_of xs = multiset_of ys) = (xs <~~> ys) "
paulson@15005
   178
  apply (rule iffI) 
paulson@15005
   179
  apply (erule_tac [2] perm.induct, simp_all add: union_ac) 
paulson@15005
   180
  apply (erule rev_mp, rule_tac x=ys in spec, induct_tac xs, auto) 
paulson@15005
   181
  apply (erule_tac x = "remove a x" in allE, drule sym, simp) 
paulson@15005
   182
  apply (subgoal_tac "a \<in> set x") 
paulson@15005
   183
  apply (drule_tac z=a in perm.Cons) 
paulson@15005
   184
  apply (erule perm.trans, rule perm_sym, erule perm_remove) 
paulson@15005
   185
  apply (drule_tac f=set_of in arg_cong, simp)
paulson@15005
   186
  done
paulson@15005
   187
paulson@15005
   188
lemma set_count_multiset_of: "set x = {a. 0 < count (multiset_of x) a}"
paulson@15005
   189
  by (induct_tac x, auto)  
paulson@15005
   190
paulson@15005
   191
lemma distinct_count_multiset_of: 
paulson@15005
   192
   "distinct x \<Longrightarrow> count (multiset_of x) a = (if a \<in> set x then 1 else 0)"
paulson@15005
   193
  by (erule rev_mp, induct_tac x, auto) 
paulson@15005
   194
paulson@15005
   195
lemma distinct_set_eq_iff_multiset_of_eq: 
paulson@15005
   196
  "\<lbrakk>distinct x; distinct y\<rbrakk> \<Longrightarrow> (set x = set y) = (multiset_of x = multiset_of y)"
paulson@15005
   197
  by (auto simp: multiset_eq_conv_count_eq distinct_count_multiset_of) 
paulson@15005
   198
wenzelm@11054
   199
end