src/HOL/Decision_Procs/cooper_tac.ML
author haftmann
Wed May 05 18:25:34 2010 +0200 (2010-05-05)
changeset 36692 54b64d4ad524
parent 35625 9c818cab0dd0
child 36945 9bec62c10714
permissions -rw-r--r--
farewell to old-style mem infixes -- type inference in situations with mem_int and mem_string should provide enough information to resolve the type of (op =)
hoelzl@30439
     1
(*  Title:      HOL/Decision_Procs/cooper_tac.ML
haftmann@29788
     2
    Author:     Amine Chaieb, TU Muenchen
haftmann@29788
     3
*)
haftmann@29788
     4
wenzelm@31240
     5
signature COOPER_TAC =
wenzelm@31240
     6
sig
wenzelm@32740
     7
  val trace: bool Unsynchronized.ref
wenzelm@31240
     8
  val linz_tac: Proof.context -> bool -> int -> tactic
wenzelm@31240
     9
  val setup: theory -> theory
wenzelm@31240
    10
end
wenzelm@31240
    11
wenzelm@31240
    12
structure Cooper_Tac: COOPER_TAC =
chaieb@23274
    13
struct
chaieb@23274
    14
wenzelm@32740
    15
val trace = Unsynchronized.ref false;
chaieb@23274
    16
fun trace_msg s = if !trace then tracing s else ();
chaieb@23274
    17
chaieb@23274
    18
val cooper_ss = @{simpset};
chaieb@23274
    19
chaieb@23274
    20
val nT = HOLogic.natT;
huffman@26075
    21
val binarith = @{thms normalize_bin_simps};
chaieb@23318
    22
val comp_arith = binarith @ simp_thms
chaieb@23274
    23
haftmann@27651
    24
val zdvd_int = @{thm zdvd_int};
haftmann@27651
    25
val zdiff_int_split = @{thm zdiff_int_split};
haftmann@27651
    26
val all_nat = @{thm all_nat};
haftmann@27651
    27
val ex_nat = @{thm ex_nat};
haftmann@27651
    28
val number_of1 = @{thm number_of1};
haftmann@27651
    29
val number_of2 = @{thm number_of2};
haftmann@27651
    30
val split_zdiv = @{thm split_zdiv};
haftmann@27651
    31
val split_zmod = @{thm split_zmod};
haftmann@27651
    32
val mod_div_equality' = @{thm mod_div_equality'};
haftmann@27651
    33
val split_div' = @{thm split_div'};
nipkow@31790
    34
val Suc_eq_plus1 = @{thm Suc_eq_plus1};
haftmann@27651
    35
val imp_le_cong = @{thm imp_le_cong};
haftmann@27651
    36
val conj_le_cong = @{thm conj_le_cong};
nipkow@30034
    37
val mod_add_left_eq = @{thm mod_add_left_eq} RS sym;
nipkow@30034
    38
val mod_add_right_eq = @{thm mod_add_right_eq} RS sym;
nipkow@30224
    39
val mod_add_eq = @{thm mod_add_eq} RS sym;
haftmann@27651
    40
val nat_div_add_eq = @{thm div_add1_eq} RS sym;
haftmann@27651
    41
val int_div_add_eq = @{thm zdiv_zadd1_eq} RS sym;
chaieb@23274
    42
wenzelm@31240
    43
fun prepare_for_linz q fm =
chaieb@23274
    44
  let
chaieb@23274
    45
    val ps = Logic.strip_params fm
chaieb@23274
    46
    val hs = map HOLogic.dest_Trueprop (Logic.strip_assums_hyp fm)
chaieb@23274
    47
    val c = HOLogic.dest_Trueprop (Logic.strip_assums_concl fm)
chaieb@23274
    48
    fun mk_all ((s, T), (P,n)) =
haftmann@36692
    49
      if member (op =) (loose_bnos P) 0 then
chaieb@23274
    50
        (HOLogic.all_const T $ Abs (s, T, P), n)
chaieb@23274
    51
      else (incr_boundvars ~1 P, n-1)
chaieb@23274
    52
    fun mk_all2 (v, t) = HOLogic.all_const (fastype_of v) $ lambda v t;
haftmann@27651
    53
    val rhs = hs
chaieb@23274
    54
    val np = length ps
wenzelm@33004
    55
    val (fm',np) = List.foldr (fn ((x, T), (fm,n)) => mk_all ((x, T), (fm,n)))
wenzelm@33004
    56
      (List.foldr HOLogic.mk_imp c rhs, np) ps
chaieb@23274
    57
    val (vs, _) = List.partition (fn t => q orelse (type_of t) = nT)
wenzelm@29265
    58
      (OldTerm.term_frees fm' @ OldTerm.term_vars fm');
wenzelm@33004
    59
    val fm2 = List.foldr mk_all2 fm' vs
chaieb@23274
    60
  in (fm2, np + length vs, length rhs) end;
chaieb@23274
    61
chaieb@23274
    62
(*Object quantifier to meta --*)
chaieb@23274
    63
fun spec_step n th = if (n=0) then th else (spec_step (n-1) th) RS spec ;
chaieb@23274
    64
chaieb@23274
    65
(* object implication to meta---*)
chaieb@23274
    66
fun mp_step n th = if (n=0) then th else (mp_step (n-1) th) RS mp;
chaieb@23274
    67
chaieb@23274
    68
wenzelm@35625
    69
fun linz_tac ctxt q i = Object_Logic.atomize_prems_tac i THEN (fn st =>
chaieb@23274
    70
  let
chaieb@23274
    71
    val g = List.nth (prems_of st, i - 1)
chaieb@23274
    72
    val thy = ProofContext.theory_of ctxt
chaieb@23274
    73
    (* Transform the term*)
chaieb@23274
    74
    val (t,np,nh) = prepare_for_linz q g
chaieb@23274
    75
    (* Some simpsets for dealing with mod div abs and nat*)
wenzelm@31240
    76
    val mod_div_simpset = HOL_basic_ss
wenzelm@32960
    77
      addsimps [refl,mod_add_eq, mod_add_left_eq,
wenzelm@32960
    78
          mod_add_right_eq,
wenzelm@32960
    79
          nat_div_add_eq, int_div_add_eq,
wenzelm@32960
    80
          @{thm mod_self}, @{thm "zmod_self"},
wenzelm@32960
    81
          @{thm mod_by_0}, @{thm div_by_0},
wenzelm@32960
    82
          @{thm "zdiv_zero"}, @{thm "zmod_zero"}, @{thm "div_0"}, @{thm "mod_0"},
wenzelm@32960
    83
          @{thm "div_by_1"}, @{thm "mod_by_1"}, @{thm "div_1"}, @{thm "mod_1"},
wenzelm@32960
    84
          Suc_eq_plus1]
wenzelm@32960
    85
      addsimps @{thms add_ac}
wenzelm@32960
    86
      addsimprocs [cancel_div_mod_nat_proc, cancel_div_mod_int_proc]
chaieb@23274
    87
    val simpset0 = HOL_basic_ss
nipkow@31790
    88
      addsimps [mod_div_equality', Suc_eq_plus1]
chaieb@23274
    89
      addsimps comp_arith
chaieb@23274
    90
      addsplits [split_zdiv, split_zmod, split_div', @{thm "split_min"}, @{thm "split_max"}]
chaieb@23274
    91
    (* Simp rules for changing (n::int) to int n *)
chaieb@23274
    92
    val simpset1 = HOL_basic_ss
haftmann@31070
    93
      addsimps [@{thm nat_number_of_def}, zdvd_int] @ map (fn r => r RS sym)
huffman@23364
    94
        [@{thm int_int_eq}, @{thm zle_int}, @{thm zless_int}, @{thm zadd_int}, @{thm zmult_int}]
chaieb@23274
    95
      addsplits [zdiff_int_split]
chaieb@23274
    96
    (*simp rules for elimination of int n*)
chaieb@23274
    97
chaieb@23274
    98
    val simpset2 = HOL_basic_ss
huffman@23364
    99
      addsimps [@{thm nat_0_le}, @{thm all_nat}, @{thm ex_nat}, @{thm number_of1}, @{thm number_of2}, @{thm int_0}, @{thm int_1}]
huffman@23364
   100
      addcongs [@{thm conj_le_cong}, @{thm imp_le_cong}]
chaieb@23274
   101
    (* simp rules for elimination of abs *)
huffman@23364
   102
    val simpset3 = HOL_basic_ss addsplits [@{thm abs_split}]
chaieb@23274
   103
    val ct = cterm_of thy (HOLogic.mk_Trueprop t)
chaieb@23274
   104
    (* Theorem for the nat --> int transformation *)
chaieb@23274
   105
    val pre_thm = Seq.hd (EVERY
chaieb@23274
   106
      [simp_tac mod_div_simpset 1, simp_tac simpset0 1,
chaieb@23274
   107
       TRY (simp_tac simpset1 1), TRY (simp_tac simpset2 1),
chaieb@23274
   108
       TRY (simp_tac simpset3 1), TRY (simp_tac cooper_ss 1)]
chaieb@23274
   109
      (trivial ct))
chaieb@23274
   110
    fun assm_tac i = REPEAT_DETERM_N nh (assume_tac i)
chaieb@23274
   111
    (* The result of the quantifier elimination *)
chaieb@23274
   112
    val (th, tac) = case (prop_of pre_thm) of
chaieb@23274
   113
        Const ("==>", _) $ (Const ("Trueprop", _) $ t1) $ _ =>
wenzelm@28290
   114
    let val pth = linzqe_oracle (cterm_of thy (Pattern.eta_long [] t1))
wenzelm@31240
   115
    in
chaieb@23274
   116
          ((pth RS iffD2) RS pre_thm,
chaieb@23274
   117
            assm_tac (i + 1) THEN (if q then I else TRY) (rtac TrueI i))
chaieb@23274
   118
    end
chaieb@23274
   119
      | _ => (pre_thm, assm_tac i)
wenzelm@31240
   120
  in (rtac (((mp_step nh) o (spec_step np)) th) i
chaieb@23274
   121
      THEN tac) st
chaieb@23274
   122
  end handle Subscript => no_tac st);
chaieb@23274
   123
chaieb@23274
   124
val setup =
wenzelm@31240
   125
  Method.setup @{binding cooper}
wenzelm@31240
   126
    let
wenzelm@31240
   127
      val parse_flag = Args.$$$ "no_quantify" >> K (K false)
wenzelm@31240
   128
    in
wenzelm@31240
   129
      Scan.lift (Scan.optional (Args.$$$ "(" |-- Scan.repeat1 parse_flag --| Args.$$$ ")") [] >>
wenzelm@31240
   130
        curry (Library.foldl op |>) true) >>
wenzelm@31240
   131
      (fn q => fn ctxt => SIMPLE_METHOD' (linz_tac ctxt q))
wenzelm@31240
   132
    end
wenzelm@31240
   133
    "decision procedure for linear integer arithmetic";
chaieb@23274
   134
wenzelm@23590
   135
end