src/HOLCF/Bifinite.thy
author huffman
Mon Nov 09 15:51:32 2009 -0800 (2009-11-09)
changeset 33587 54f98d225163
parent 33504 b4210cc3ac97
child 33808 31169fdc5ae7
permissions -rw-r--r--
add map_map lemmas
huffman@25903
     1
(*  Title:      HOLCF/Bifinite.thy
huffman@25903
     2
    Author:     Brian Huffman
huffman@25903
     3
*)
huffman@25903
     4
huffman@25903
     5
header {* Bifinite domains and approximation *}
huffman@25903
     6
huffman@25903
     7
theory Bifinite
huffman@27402
     8
imports Deflation
huffman@25903
     9
begin
huffman@25903
    10
huffman@26407
    11
subsection {* Omega-profinite and bifinite domains *}
huffman@25903
    12
haftmann@29614
    13
class profinite =
huffman@26962
    14
  fixes approx :: "nat \<Rightarrow> 'a \<rightarrow> 'a"
huffman@27310
    15
  assumes chain_approx [simp]: "chain approx"
huffman@26962
    16
  assumes lub_approx_app [simp]: "(\<Squnion>i. approx i\<cdot>x) = x"
huffman@26962
    17
  assumes approx_idem: "approx i\<cdot>(approx i\<cdot>x) = approx i\<cdot>x"
huffman@26962
    18
  assumes finite_fixes_approx: "finite {x. approx i\<cdot>x = x}"
huffman@25903
    19
huffman@26962
    20
class bifinite = profinite + pcpo
huffman@25909
    21
huffman@31076
    22
lemma approx_below: "approx i\<cdot>x \<sqsubseteq> x"
huffman@27402
    23
proof -
huffman@27402
    24
  have "chain (\<lambda>i. approx i\<cdot>x)" by simp
huffman@27402
    25
  hence "approx i\<cdot>x \<sqsubseteq> (\<Squnion>i. approx i\<cdot>x)" by (rule is_ub_thelub)
huffman@27402
    26
  thus "approx i\<cdot>x \<sqsubseteq> x" by simp
huffman@27402
    27
qed
huffman@27402
    28
huffman@27402
    29
lemma finite_deflation_approx: "finite_deflation (approx i)"
huffman@27402
    30
proof
huffman@27402
    31
  fix x :: 'a
huffman@27402
    32
  show "approx i\<cdot>(approx i\<cdot>x) = approx i\<cdot>x"
huffman@27402
    33
    by (rule approx_idem)
huffman@27402
    34
  show "approx i\<cdot>x \<sqsubseteq> x"
huffman@31076
    35
    by (rule approx_below)
huffman@27402
    36
  show "finite {x. approx i\<cdot>x = x}"
huffman@27402
    37
    by (rule finite_fixes_approx)
huffman@27402
    38
qed
huffman@27402
    39
wenzelm@30729
    40
interpretation approx: finite_deflation "approx i"
huffman@27402
    41
by (rule finite_deflation_approx)
huffman@27402
    42
ballarin@28234
    43
lemma (in deflation) deflation: "deflation d" ..
ballarin@28234
    44
huffman@27402
    45
lemma deflation_approx: "deflation (approx i)"
ballarin@28234
    46
by (rule approx.deflation)
huffman@25903
    47
huffman@27186
    48
lemma lub_approx [simp]: "(\<Squnion>i. approx i) = (\<Lambda> x. x)"
huffman@25903
    49
by (rule ext_cfun, simp add: contlub_cfun_fun)
huffman@25903
    50
huffman@27309
    51
lemma approx_strict [simp]: "approx i\<cdot>\<bottom> = \<bottom>"
huffman@31076
    52
by (rule UU_I, rule approx_below)
huffman@25903
    53
huffman@25903
    54
lemma approx_approx1:
huffman@27186
    55
  "i \<le> j \<Longrightarrow> approx i\<cdot>(approx j\<cdot>x) = approx i\<cdot>x"
huffman@31076
    56
apply (rule deflation_below_comp1 [OF deflation_approx deflation_approx])
huffman@25922
    57
apply (erule chain_mono [OF chain_approx])
huffman@25903
    58
done
huffman@25903
    59
huffman@25903
    60
lemma approx_approx2:
huffman@27186
    61
  "j \<le> i \<Longrightarrow> approx i\<cdot>(approx j\<cdot>x) = approx j\<cdot>x"
huffman@31076
    62
apply (rule deflation_below_comp2 [OF deflation_approx deflation_approx])
huffman@25922
    63
apply (erule chain_mono [OF chain_approx])
huffman@25903
    64
done
huffman@25903
    65
huffman@25903
    66
lemma approx_approx [simp]:
huffman@27186
    67
  "approx i\<cdot>(approx j\<cdot>x) = approx (min i j)\<cdot>x"
huffman@25903
    68
apply (rule_tac x=i and y=j in linorder_le_cases)
huffman@25903
    69
apply (simp add: approx_approx1 min_def)
huffman@25903
    70
apply (simp add: approx_approx2 min_def)
huffman@25903
    71
done
huffman@25903
    72
huffman@27402
    73
lemma finite_image_approx: "finite ((\<lambda>x. approx n\<cdot>x) ` A)"
huffman@27402
    74
by (rule approx.finite_image)
huffman@25903
    75
huffman@27402
    76
lemma finite_range_approx: "finite (range (\<lambda>x. approx i\<cdot>x))"
huffman@27402
    77
by (rule approx.finite_range)
huffman@27186
    78
huffman@27186
    79
lemma compact_approx [simp]: "compact (approx n\<cdot>x)"
huffman@27402
    80
by (rule approx.compact)
huffman@25903
    81
huffman@27309
    82
lemma profinite_compact_eq_approx: "compact x \<Longrightarrow> \<exists>i. approx i\<cdot>x = x"
huffman@27402
    83
by (rule admD2, simp_all)
huffman@25903
    84
huffman@27309
    85
lemma profinite_compact_iff: "compact x \<longleftrightarrow> (\<exists>n. approx n\<cdot>x = x)"
huffman@25903
    86
 apply (rule iffI)
huffman@27309
    87
  apply (erule profinite_compact_eq_approx)
huffman@25903
    88
 apply (erule exE)
huffman@25903
    89
 apply (erule subst)
huffman@25903
    90
 apply (rule compact_approx)
huffman@25903
    91
done
huffman@25903
    92
huffman@25903
    93
lemma approx_induct:
huffman@25903
    94
  assumes adm: "adm P" and P: "\<And>n x. P (approx n\<cdot>x)"
huffman@27186
    95
  shows "P x"
huffman@25903
    96
proof -
huffman@25903
    97
  have "P (\<Squnion>n. approx n\<cdot>x)"
huffman@25903
    98
    by (rule admD [OF adm], simp, simp add: P)
huffman@25903
    99
  thus "P x" by simp
huffman@25903
   100
qed
huffman@25903
   101
huffman@31076
   102
lemma profinite_below_ext: "(\<And>i. approx i\<cdot>x \<sqsubseteq> approx i\<cdot>y) \<Longrightarrow> x \<sqsubseteq> y"
huffman@25903
   103
apply (subgoal_tac "(\<Squnion>i. approx i\<cdot>x) \<sqsubseteq> (\<Squnion>i. approx i\<cdot>y)", simp)
huffman@25923
   104
apply (rule lub_mono, simp, simp, simp)
huffman@25903
   105
done
huffman@25903
   106
huffman@31113
   107
subsection {* Instance for product type *}
huffman@31113
   108
huffman@33504
   109
definition
huffman@33504
   110
  cprod_map :: "('a \<rightarrow> 'b) \<rightarrow> ('c \<rightarrow> 'd) \<rightarrow> 'a \<times> 'c \<rightarrow> 'b \<times> 'd"
huffman@33504
   111
where
huffman@33504
   112
  "cprod_map = (\<Lambda> f g p. (f\<cdot>(fst p), g\<cdot>(snd p)))"
huffman@33504
   113
huffman@33504
   114
lemma cprod_map_Pair [simp]: "cprod_map\<cdot>f\<cdot>g\<cdot>(x, y) = (f\<cdot>x, g\<cdot>y)"
huffman@33504
   115
unfolding cprod_map_def by simp
huffman@33504
   116
huffman@33587
   117
lemma cprod_map_map:
huffman@33587
   118
  "cprod_map\<cdot>f1\<cdot>g1\<cdot>(cprod_map\<cdot>f2\<cdot>g2\<cdot>p) =
huffman@33587
   119
    cprod_map\<cdot>(\<Lambda> x. f1\<cdot>(f2\<cdot>x))\<cdot>(\<Lambda> x. g1\<cdot>(g2\<cdot>x))\<cdot>p"
huffman@33587
   120
by (induct p) simp
huffman@33587
   121
huffman@33504
   122
lemma ep_pair_cprod_map:
huffman@33504
   123
  assumes "ep_pair e1 p1" and "ep_pair e2 p2"
huffman@33504
   124
  shows "ep_pair (cprod_map\<cdot>e1\<cdot>e2) (cprod_map\<cdot>p1\<cdot>p2)"
huffman@33504
   125
proof
huffman@33504
   126
  interpret e1p1: ep_pair e1 p1 by fact
huffman@33504
   127
  interpret e2p2: ep_pair e2 p2 by fact
huffman@33504
   128
  fix x show "cprod_map\<cdot>p1\<cdot>p2\<cdot>(cprod_map\<cdot>e1\<cdot>e2\<cdot>x) = x"
huffman@33504
   129
    by (induct x) simp
huffman@33504
   130
  fix y show "cprod_map\<cdot>e1\<cdot>e2\<cdot>(cprod_map\<cdot>p1\<cdot>p2\<cdot>y) \<sqsubseteq> y"
huffman@33504
   131
    by (induct y) (simp add: e1p1.e_p_below e2p2.e_p_below)
huffman@33504
   132
qed
huffman@33504
   133
huffman@33504
   134
lemma deflation_cprod_map:
huffman@33504
   135
  assumes "deflation d1" and "deflation d2"
huffman@33504
   136
  shows "deflation (cprod_map\<cdot>d1\<cdot>d2)"
huffman@33504
   137
proof
huffman@33504
   138
  interpret d1: deflation d1 by fact
huffman@33504
   139
  interpret d2: deflation d2 by fact
huffman@33504
   140
  fix x
huffman@33504
   141
  show "cprod_map\<cdot>d1\<cdot>d2\<cdot>(cprod_map\<cdot>d1\<cdot>d2\<cdot>x) = cprod_map\<cdot>d1\<cdot>d2\<cdot>x"
huffman@33504
   142
    by (induct x) (simp add: d1.idem d2.idem)
huffman@33504
   143
  show "cprod_map\<cdot>d1\<cdot>d2\<cdot>x \<sqsubseteq> x"
huffman@33504
   144
    by (induct x) (simp add: d1.below d2.below)
huffman@33504
   145
qed
huffman@33504
   146
huffman@33504
   147
lemma finite_deflation_cprod_map:
huffman@33504
   148
  assumes "finite_deflation d1" and "finite_deflation d2"
huffman@33504
   149
  shows "finite_deflation (cprod_map\<cdot>d1\<cdot>d2)"
huffman@33504
   150
proof (intro finite_deflation.intro finite_deflation_axioms.intro)
huffman@33504
   151
  interpret d1: finite_deflation d1 by fact
huffman@33504
   152
  interpret d2: finite_deflation d2 by fact
huffman@33504
   153
  have "deflation d1" and "deflation d2" by fact+
huffman@33504
   154
  thus "deflation (cprod_map\<cdot>d1\<cdot>d2)" by (rule deflation_cprod_map)
huffman@33504
   155
  have "{p. cprod_map\<cdot>d1\<cdot>d2\<cdot>p = p} \<subseteq> {x. d1\<cdot>x = x} \<times> {y. d2\<cdot>y = y}"
huffman@33504
   156
    by clarsimp
huffman@33504
   157
  thus "finite {p. cprod_map\<cdot>d1\<cdot>d2\<cdot>p = p}"
huffman@33504
   158
    by (rule finite_subset, simp add: d1.finite_fixes d2.finite_fixes)
huffman@33504
   159
qed
huffman@33504
   160
huffman@31113
   161
instantiation "*" :: (profinite, profinite) profinite
huffman@31113
   162
begin
huffman@31113
   163
huffman@33504
   164
definition
huffman@33504
   165
  approx_prod_def:
huffman@33504
   166
    "approx = (\<lambda>n. cprod_map\<cdot>(approx n)\<cdot>(approx n))"
huffman@31113
   167
huffman@31113
   168
instance proof
huffman@31113
   169
  fix i :: nat and x :: "'a \<times> 'b"
huffman@31113
   170
  show "chain (approx :: nat \<Rightarrow> 'a \<times> 'b \<rightarrow> 'a \<times> 'b)"
huffman@31113
   171
    unfolding approx_prod_def by simp
huffman@31113
   172
  show "(\<Squnion>i. approx i\<cdot>x) = x"
huffman@33504
   173
    unfolding approx_prod_def cprod_map_def
huffman@31113
   174
    by (simp add: lub_distribs thelub_Pair)
huffman@31113
   175
  show "approx i\<cdot>(approx i\<cdot>x) = approx i\<cdot>x"
huffman@33504
   176
    unfolding approx_prod_def cprod_map_def by simp
huffman@31113
   177
  have "{x::'a \<times> 'b. approx i\<cdot>x = x} \<subseteq>
huffman@31113
   178
        {x::'a. approx i\<cdot>x = x} \<times> {x::'b. approx i\<cdot>x = x}"
huffman@31113
   179
    unfolding approx_prod_def by clarsimp
huffman@31113
   180
  thus "finite {x::'a \<times> 'b. approx i\<cdot>x = x}"
huffman@31113
   181
    by (rule finite_subset,
huffman@31113
   182
        intro finite_cartesian_product finite_fixes_approx)
huffman@31113
   183
qed
huffman@31113
   184
huffman@31113
   185
end
huffman@31113
   186
huffman@31113
   187
instance "*" :: (bifinite, bifinite) bifinite ..
huffman@31113
   188
huffman@31113
   189
lemma approx_Pair [simp]:
huffman@31113
   190
  "approx i\<cdot>(x, y) = (approx i\<cdot>x, approx i\<cdot>y)"
huffman@31113
   191
unfolding approx_prod_def by simp
huffman@31113
   192
huffman@31113
   193
lemma fst_approx: "fst (approx i\<cdot>p) = approx i\<cdot>(fst p)"
huffman@31113
   194
by (induct p, simp)
huffman@31113
   195
huffman@31113
   196
lemma snd_approx: "snd (approx i\<cdot>p) = approx i\<cdot>(snd p)"
huffman@31113
   197
by (induct p, simp)
huffman@31113
   198
huffman@31113
   199
huffman@25903
   200
subsection {* Instance for continuous function space *}
huffman@25903
   201
huffman@33504
   202
definition
huffman@33504
   203
  cfun_map :: "('b \<rightarrow> 'a) \<rightarrow> ('c \<rightarrow> 'd) \<rightarrow> ('a \<rightarrow> 'c) \<rightarrow> ('b \<rightarrow> 'd)"
huffman@33504
   204
where
huffman@33504
   205
  "cfun_map = (\<Lambda> a b f x. b\<cdot>(f\<cdot>(a\<cdot>x)))"
huffman@33504
   206
huffman@33504
   207
lemma cfun_map_beta [simp]: "cfun_map\<cdot>a\<cdot>b\<cdot>f\<cdot>x = b\<cdot>(f\<cdot>(a\<cdot>x))"
huffman@33504
   208
unfolding cfun_map_def by simp
huffman@33504
   209
huffman@33587
   210
lemma cfun_map_map:
huffman@33587
   211
  "cfun_map\<cdot>f1\<cdot>g1\<cdot>(cfun_map\<cdot>f2\<cdot>g2\<cdot>p) =
huffman@33587
   212
    cfun_map\<cdot>(\<Lambda> x. f2\<cdot>(f1\<cdot>x))\<cdot>(\<Lambda> x. g1\<cdot>(g2\<cdot>x))\<cdot>p"
huffman@33587
   213
by (rule ext_cfun) simp
huffman@33587
   214
huffman@33504
   215
lemma ep_pair_cfun_map:
huffman@33504
   216
  assumes "ep_pair e1 p1" and "ep_pair e2 p2"
huffman@33504
   217
  shows "ep_pair (cfun_map\<cdot>p1\<cdot>e2) (cfun_map\<cdot>e1\<cdot>p2)"
huffman@33504
   218
proof
huffman@33504
   219
  interpret e1p1: ep_pair e1 p1 by fact
huffman@33504
   220
  interpret e2p2: ep_pair e2 p2 by fact
huffman@33504
   221
  fix f show "cfun_map\<cdot>e1\<cdot>p2\<cdot>(cfun_map\<cdot>p1\<cdot>e2\<cdot>f) = f"
huffman@33504
   222
    by (simp add: expand_cfun_eq)
huffman@33504
   223
  fix g show "cfun_map\<cdot>p1\<cdot>e2\<cdot>(cfun_map\<cdot>e1\<cdot>p2\<cdot>g) \<sqsubseteq> g"
huffman@33504
   224
    apply (rule below_cfun_ext, simp)
huffman@33504
   225
    apply (rule below_trans [OF e2p2.e_p_below])
huffman@33504
   226
    apply (rule monofun_cfun_arg)
huffman@33504
   227
    apply (rule e1p1.e_p_below)
huffman@33504
   228
    done
huffman@33504
   229
qed
huffman@33504
   230
huffman@33504
   231
lemma deflation_cfun_map:
huffman@33504
   232
  assumes "deflation d1" and "deflation d2"
huffman@33504
   233
  shows "deflation (cfun_map\<cdot>d1\<cdot>d2)"
huffman@33504
   234
proof
huffman@33504
   235
  interpret d1: deflation d1 by fact
huffman@33504
   236
  interpret d2: deflation d2 by fact
huffman@33504
   237
  fix f
huffman@33504
   238
  show "cfun_map\<cdot>d1\<cdot>d2\<cdot>(cfun_map\<cdot>d1\<cdot>d2\<cdot>f) = cfun_map\<cdot>d1\<cdot>d2\<cdot>f"
huffman@33504
   239
    by (simp add: expand_cfun_eq d1.idem d2.idem)
huffman@33504
   240
  show "cfun_map\<cdot>d1\<cdot>d2\<cdot>f \<sqsubseteq> f"
huffman@33504
   241
    apply (rule below_cfun_ext, simp)
huffman@33504
   242
    apply (rule below_trans [OF d2.below])
huffman@33504
   243
    apply (rule monofun_cfun_arg)
huffman@33504
   244
    apply (rule d1.below)
huffman@33504
   245
    done
huffman@33504
   246
qed
huffman@33504
   247
huffman@33504
   248
lemma finite_range_cfun_map:
huffman@27402
   249
  assumes a: "finite (range (\<lambda>x. a\<cdot>x))"
huffman@27402
   250
  assumes b: "finite (range (\<lambda>y. b\<cdot>y))"
huffman@33504
   251
  shows "finite (range (\<lambda>f. cfun_map\<cdot>a\<cdot>b\<cdot>f))"  (is "finite (range ?h)")
huffman@27402
   252
proof (rule finite_imageD)
huffman@27402
   253
  let ?f = "\<lambda>g. range (\<lambda>x. (a\<cdot>x, g\<cdot>x))"
huffman@27402
   254
  show "finite (?f ` range ?h)"
huffman@27402
   255
  proof (rule finite_subset)
huffman@27402
   256
    let ?B = "Pow (range (\<lambda>x. a\<cdot>x) \<times> range (\<lambda>y. b\<cdot>y))"
huffman@27402
   257
    show "?f ` range ?h \<subseteq> ?B"
huffman@27402
   258
      by clarsimp
huffman@27402
   259
    show "finite ?B"
huffman@27402
   260
      by (simp add: a b)
huffman@27402
   261
  qed
huffman@27402
   262
  show "inj_on ?f (range ?h)"
huffman@27402
   263
  proof (rule inj_onI, rule ext_cfun, clarsimp)
huffman@27402
   264
    fix x f g
huffman@27402
   265
    assume "range (\<lambda>x. (a\<cdot>x, b\<cdot>(f\<cdot>(a\<cdot>x)))) = range (\<lambda>x. (a\<cdot>x, b\<cdot>(g\<cdot>(a\<cdot>x))))"
huffman@27402
   266
    hence "range (\<lambda>x. (a\<cdot>x, b\<cdot>(f\<cdot>(a\<cdot>x)))) \<subseteq> range (\<lambda>x. (a\<cdot>x, b\<cdot>(g\<cdot>(a\<cdot>x))))"
huffman@27402
   267
      by (rule equalityD1)
huffman@27402
   268
    hence "(a\<cdot>x, b\<cdot>(f\<cdot>(a\<cdot>x))) \<in> range (\<lambda>x. (a\<cdot>x, b\<cdot>(g\<cdot>(a\<cdot>x))))"
huffman@27402
   269
      by (simp add: subset_eq)
huffman@27402
   270
    then obtain y where "(a\<cdot>x, b\<cdot>(f\<cdot>(a\<cdot>x))) = (a\<cdot>y, b\<cdot>(g\<cdot>(a\<cdot>y)))"
huffman@27402
   271
      by (rule rangeE)
huffman@27402
   272
    thus "b\<cdot>(f\<cdot>(a\<cdot>x)) = b\<cdot>(g\<cdot>(a\<cdot>x))"
huffman@27402
   273
      by clarsimp
huffman@27402
   274
  qed
huffman@27402
   275
qed
huffman@25903
   276
huffman@33504
   277
lemma finite_deflation_cfun_map:
huffman@33504
   278
  assumes "finite_deflation d1" and "finite_deflation d2"
huffman@33504
   279
  shows "finite_deflation (cfun_map\<cdot>d1\<cdot>d2)"
huffman@33504
   280
proof (intro finite_deflation.intro finite_deflation_axioms.intro)
huffman@33504
   281
  interpret d1: finite_deflation d1 by fact
huffman@33504
   282
  interpret d2: finite_deflation d2 by fact
huffman@33504
   283
  have "deflation d1" and "deflation d2" by fact+
huffman@33504
   284
  thus "deflation (cfun_map\<cdot>d1\<cdot>d2)" by (rule deflation_cfun_map)
huffman@33504
   285
  have "finite (range (\<lambda>f. cfun_map\<cdot>d1\<cdot>d2\<cdot>f))"
huffman@33504
   286
    using d1.finite_range d2.finite_range
huffman@33504
   287
    by (rule finite_range_cfun_map)
huffman@33504
   288
  thus "finite {f. cfun_map\<cdot>d1\<cdot>d2\<cdot>f = f}"
huffman@33504
   289
    by (rule finite_range_imp_finite_fixes)
huffman@33504
   290
qed
huffman@33504
   291
huffman@26962
   292
instantiation "->" :: (profinite, profinite) profinite
huffman@26962
   293
begin
huffman@25903
   294
huffman@26962
   295
definition
huffman@25903
   296
  approx_cfun_def:
huffman@33504
   297
    "approx = (\<lambda>n. cfun_map\<cdot>(approx n)\<cdot>(approx n))"
huffman@25903
   298
huffman@27402
   299
instance proof
huffman@27402
   300
  show "chain (approx :: nat \<Rightarrow> ('a \<rightarrow> 'b) \<rightarrow> ('a \<rightarrow> 'b))"
huffman@27402
   301
    unfolding approx_cfun_def by simp
huffman@27402
   302
next
huffman@27402
   303
  fix x :: "'a \<rightarrow> 'b"
huffman@27402
   304
  show "(\<Squnion>i. approx i\<cdot>x) = x"
huffman@33504
   305
    unfolding approx_cfun_def cfun_map_def
huffman@27402
   306
    by (simp add: lub_distribs eta_cfun)
huffman@27402
   307
next
huffman@27402
   308
  fix i :: nat and x :: "'a \<rightarrow> 'b"
huffman@27402
   309
  show "approx i\<cdot>(approx i\<cdot>x) = approx i\<cdot>x"
huffman@33504
   310
    unfolding approx_cfun_def cfun_map_def by simp
huffman@27402
   311
next
huffman@27402
   312
  fix i :: nat
huffman@27402
   313
  show "finite {x::'a \<rightarrow> 'b. approx i\<cdot>x = x}"
huffman@33504
   314
    unfolding approx_cfun_def
huffman@33504
   315
    by (intro finite_deflation.finite_fixes
huffman@33504
   316
              finite_deflation_cfun_map
huffman@33504
   317
              finite_deflation_approx)
huffman@27402
   318
qed
huffman@25903
   319
huffman@26962
   320
end
huffman@26962
   321
huffman@26407
   322
instance "->" :: (profinite, bifinite) bifinite ..
huffman@25909
   323
huffman@25903
   324
lemma approx_cfun: "approx n\<cdot>f\<cdot>x = approx n\<cdot>(f\<cdot>(approx n\<cdot>x))"
huffman@25903
   325
by (simp add: approx_cfun_def)
huffman@25903
   326
huffman@25903
   327
end