src/HOL/Sum_Type.thy
author haftmann
Tue Dec 21 17:52:23 2010 +0100 (2010-12-21)
changeset 41372 551eb49a6e91
parent 40968 a6fcd305f7dc
child 41505 6d19301074cf
permissions -rw-r--r--
tuned type_lifting declarations
nipkow@10213
     1
(*  Title:      HOL/Sum_Type.thy
nipkow@10213
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
nipkow@10213
     3
    Copyright   1992  University of Cambridge
nipkow@10213
     4
*)
nipkow@10213
     5
paulson@15391
     6
header{*The Disjoint Sum of Two Types*}
nipkow@10213
     7
paulson@15391
     8
theory Sum_Type
haftmann@33961
     9
imports Typedef Inductive Fun
paulson@15391
    10
begin
paulson@15391
    11
haftmann@33962
    12
subsection {* Construction of the sum type and its basic abstract operations *}
nipkow@10213
    13
haftmann@33962
    14
definition Inl_Rep :: "'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool \<Rightarrow> bool" where
haftmann@33962
    15
  "Inl_Rep a x y p \<longleftrightarrow> x = a \<and> p"
nipkow@10213
    16
haftmann@33962
    17
definition Inr_Rep :: "'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool \<Rightarrow> bool" where
haftmann@33962
    18
  "Inr_Rep b x y p \<longleftrightarrow> y = b \<and> \<not> p"
paulson@15391
    19
haftmann@37678
    20
typedef ('a, 'b) sum (infixr "+" 10) = "{f. (\<exists>a. f = Inl_Rep (a::'a)) \<or> (\<exists>b. f = Inr_Rep (b::'b))}"
paulson@15391
    21
  by auto
nipkow@10213
    22
haftmann@37388
    23
lemma Inl_RepI: "Inl_Rep a \<in> sum"
haftmann@37388
    24
  by (auto simp add: sum_def)
paulson@15391
    25
haftmann@37388
    26
lemma Inr_RepI: "Inr_Rep b \<in> sum"
haftmann@37388
    27
  by (auto simp add: sum_def)
paulson@15391
    28
haftmann@37388
    29
lemma inj_on_Abs_sum: "A \<subseteq> sum \<Longrightarrow> inj_on Abs_sum A"
haftmann@37388
    30
  by (rule inj_on_inverseI, rule Abs_sum_inverse) auto
paulson@15391
    31
haftmann@33962
    32
lemma Inl_Rep_inject: "inj_on Inl_Rep A"
haftmann@33962
    33
proof (rule inj_onI)
haftmann@33962
    34
  show "\<And>a c. Inl_Rep a = Inl_Rep c \<Longrightarrow> a = c"
nipkow@39302
    35
    by (auto simp add: Inl_Rep_def fun_eq_iff)
haftmann@33962
    36
qed
paulson@15391
    37
haftmann@33962
    38
lemma Inr_Rep_inject: "inj_on Inr_Rep A"
haftmann@33962
    39
proof (rule inj_onI)
haftmann@33962
    40
  show "\<And>b d. Inr_Rep b = Inr_Rep d \<Longrightarrow> b = d"
nipkow@39302
    41
    by (auto simp add: Inr_Rep_def fun_eq_iff)
haftmann@33962
    42
qed
paulson@15391
    43
haftmann@33962
    44
lemma Inl_Rep_not_Inr_Rep: "Inl_Rep a \<noteq> Inr_Rep b"
nipkow@39302
    45
  by (auto simp add: Inl_Rep_def Inr_Rep_def fun_eq_iff)
paulson@15391
    46
haftmann@33962
    47
definition Inl :: "'a \<Rightarrow> 'a + 'b" where
haftmann@37388
    48
  "Inl = Abs_sum \<circ> Inl_Rep"
paulson@15391
    49
haftmann@33962
    50
definition Inr :: "'b \<Rightarrow> 'a + 'b" where
haftmann@37388
    51
  "Inr = Abs_sum \<circ> Inr_Rep"
paulson@15391
    52
huffman@29025
    53
lemma inj_Inl [simp]: "inj_on Inl A"
haftmann@37388
    54
by (auto simp add: Inl_def intro!: comp_inj_on Inl_Rep_inject inj_on_Abs_sum Inl_RepI)
huffman@29025
    55
haftmann@33962
    56
lemma Inl_inject: "Inl x = Inl y \<Longrightarrow> x = y"
haftmann@33962
    57
using inj_Inl by (rule injD)
paulson@15391
    58
huffman@29025
    59
lemma inj_Inr [simp]: "inj_on Inr A"
haftmann@37388
    60
by (auto simp add: Inr_def intro!: comp_inj_on Inr_Rep_inject inj_on_Abs_sum Inr_RepI)
paulson@15391
    61
haftmann@33962
    62
lemma Inr_inject: "Inr x = Inr y \<Longrightarrow> x = y"
haftmann@33962
    63
using inj_Inr by (rule injD)
paulson@15391
    64
haftmann@33962
    65
lemma Inl_not_Inr: "Inl a \<noteq> Inr b"
haftmann@33962
    66
proof -
haftmann@37388
    67
  from Inl_RepI [of a] Inr_RepI [of b] have "{Inl_Rep a, Inr_Rep b} \<subseteq> sum" by auto
haftmann@37388
    68
  with inj_on_Abs_sum have "inj_on Abs_sum {Inl_Rep a, Inr_Rep b}" .
haftmann@37388
    69
  with Inl_Rep_not_Inr_Rep [of a b] inj_on_contraD have "Abs_sum (Inl_Rep a) \<noteq> Abs_sum (Inr_Rep b)" by auto
haftmann@33962
    70
  then show ?thesis by (simp add: Inl_def Inr_def)
haftmann@33962
    71
qed
paulson@15391
    72
haftmann@33962
    73
lemma Inr_not_Inl: "Inr b \<noteq> Inl a" 
haftmann@33962
    74
  using Inl_not_Inr by (rule not_sym)
paulson@15391
    75
paulson@15391
    76
lemma sumE: 
haftmann@33962
    77
  assumes "\<And>x::'a. s = Inl x \<Longrightarrow> P"
haftmann@33962
    78
    and "\<And>y::'b. s = Inr y \<Longrightarrow> P"
haftmann@33962
    79
  shows P
haftmann@37388
    80
proof (rule Abs_sum_cases [of s])
haftmann@33962
    81
  fix f 
haftmann@37388
    82
  assume "s = Abs_sum f" and "f \<in> sum"
haftmann@37388
    83
  with assms show P by (auto simp add: sum_def Inl_def Inr_def)
haftmann@33962
    84
qed
haftmann@33961
    85
haftmann@37678
    86
rep_datatype Inl Inr
haftmann@33961
    87
proof -
haftmann@33961
    88
  fix P
haftmann@33961
    89
  fix s :: "'a + 'b"
haftmann@33961
    90
  assume x: "\<And>x\<Colon>'a. P (Inl x)" and y: "\<And>y\<Colon>'b. P (Inr y)"
haftmann@33961
    91
  then show "P s" by (auto intro: sumE [of s])
haftmann@33962
    92
qed (auto dest: Inl_inject Inr_inject simp add: Inl_not_Inr)
haftmann@33962
    93
haftmann@40610
    94
primrec sum_map :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> 'a + 'b \<Rightarrow> 'c + 'd" where
haftmann@40610
    95
  "sum_map f1 f2 (Inl a) = Inl (f1 a)"
haftmann@40610
    96
| "sum_map f1 f2 (Inr a) = Inr (f2 a)"
haftmann@40610
    97
haftmann@41372
    98
type_lifting sum_map: sum_map proof -
haftmann@41372
    99
  fix f g h i
haftmann@41372
   100
  show "sum_map f g \<circ> sum_map h i = sum_map (f \<circ> h) (g \<circ> i)"
haftmann@41372
   101
  proof
haftmann@41372
   102
    fix s
haftmann@41372
   103
    show "(sum_map f g \<circ> sum_map h i) s = sum_map (f \<circ> h) (g \<circ> i) s"
haftmann@41372
   104
      by (cases s) simp_all
haftmann@41372
   105
  qed
haftmann@40610
   106
next
haftmann@40610
   107
  fix s
haftmann@41372
   108
  show "sum_map id id = id"
haftmann@41372
   109
  proof
haftmann@41372
   110
    fix s
haftmann@41372
   111
    show "sum_map id id s = id s" 
haftmann@41372
   112
      by (cases s) simp_all
haftmann@41372
   113
  qed
haftmann@40610
   114
qed
haftmann@40610
   115
haftmann@33961
   116
haftmann@33962
   117
subsection {* Projections *}
haftmann@33962
   118
haftmann@33962
   119
lemma sum_case_KK [simp]: "sum_case (\<lambda>x. a) (\<lambda>x. a) = (\<lambda>x. a)"
haftmann@33961
   120
  by (rule ext) (simp split: sum.split)
haftmann@33961
   121
haftmann@33962
   122
lemma surjective_sum: "sum_case (\<lambda>x::'a. f (Inl x)) (\<lambda>y::'b. f (Inr y)) = f"
haftmann@33962
   123
proof
haftmann@33962
   124
  fix s :: "'a + 'b"
haftmann@33962
   125
  show "(case s of Inl (x\<Colon>'a) \<Rightarrow> f (Inl x) | Inr (y\<Colon>'b) \<Rightarrow> f (Inr y)) = f s"
haftmann@33962
   126
    by (cases s) simp_all
haftmann@33962
   127
qed
haftmann@33961
   128
haftmann@33962
   129
lemma sum_case_inject:
haftmann@33962
   130
  assumes a: "sum_case f1 f2 = sum_case g1 g2"
haftmann@33962
   131
  assumes r: "f1 = g1 \<Longrightarrow> f2 = g2 \<Longrightarrow> P"
haftmann@33962
   132
  shows P
haftmann@33962
   133
proof (rule r)
haftmann@33962
   134
  show "f1 = g1" proof
haftmann@33962
   135
    fix x :: 'a
haftmann@33962
   136
    from a have "sum_case f1 f2 (Inl x) = sum_case g1 g2 (Inl x)" by simp
haftmann@33962
   137
    then show "f1 x = g1 x" by simp
haftmann@33962
   138
  qed
haftmann@33962
   139
  show "f2 = g2" proof
haftmann@33962
   140
    fix y :: 'b
haftmann@33962
   141
    from a have "sum_case f1 f2 (Inr y) = sum_case g1 g2 (Inr y)" by simp
haftmann@33962
   142
    then show "f2 y = g2 y" by simp
haftmann@33962
   143
  qed
haftmann@33962
   144
qed
haftmann@33962
   145
haftmann@33962
   146
lemma sum_case_weak_cong:
haftmann@33962
   147
  "s = t \<Longrightarrow> sum_case f g s = sum_case f g t"
haftmann@33961
   148
  -- {* Prevents simplification of @{text f} and @{text g}: much faster. *}
haftmann@33961
   149
  by simp
haftmann@33961
   150
haftmann@33962
   151
primrec Projl :: "'a + 'b \<Rightarrow> 'a" where
haftmann@33962
   152
  Projl_Inl: "Projl (Inl x) = x"
haftmann@33962
   153
haftmann@33962
   154
primrec Projr :: "'a + 'b \<Rightarrow> 'b" where
haftmann@33962
   155
  Projr_Inr: "Projr (Inr x) = x"
haftmann@33962
   156
haftmann@33962
   157
primrec Suml :: "('a \<Rightarrow> 'c) \<Rightarrow> 'a + 'b \<Rightarrow> 'c" where
haftmann@33962
   158
  "Suml f (Inl x) = f x"
haftmann@33962
   159
haftmann@33962
   160
primrec Sumr :: "('b \<Rightarrow> 'c) \<Rightarrow> 'a + 'b \<Rightarrow> 'c" where
haftmann@33962
   161
  "Sumr f (Inr x) = f x"
haftmann@33962
   162
haftmann@33962
   163
lemma Suml_inject:
haftmann@33962
   164
  assumes "Suml f = Suml g" shows "f = g"
haftmann@33962
   165
proof
haftmann@33962
   166
  fix x :: 'a
haftmann@33962
   167
  let ?s = "Inl x \<Colon> 'a + 'b"
haftmann@33962
   168
  from assms have "Suml f ?s = Suml g ?s" by simp
haftmann@33962
   169
  then show "f x = g x" by simp
haftmann@33961
   170
qed
haftmann@33961
   171
haftmann@33962
   172
lemma Sumr_inject:
haftmann@33962
   173
  assumes "Sumr f = Sumr g" shows "f = g"
haftmann@33962
   174
proof
haftmann@33962
   175
  fix x :: 'b
haftmann@33962
   176
  let ?s = "Inr x \<Colon> 'a + 'b"
haftmann@33962
   177
  from assms have "Sumr f ?s = Sumr g ?s" by simp
haftmann@33962
   178
  then show "f x = g x" by simp
haftmann@33962
   179
qed
haftmann@33961
   180
haftmann@33995
   181
haftmann@33962
   182
subsection {* The Disjoint Sum of Sets *}
haftmann@33961
   183
haftmann@33962
   184
definition Plus :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a + 'b) set" (infixr "<+>" 65) where
haftmann@33962
   185
  "A <+> B = Inl ` A \<union> Inr ` B"
haftmann@33962
   186
nipkow@40271
   187
hide_const (open) Plus --"Valuable identifier"
nipkow@40271
   188
haftmann@33962
   189
lemma InlI [intro!]: "a \<in> A \<Longrightarrow> Inl a \<in> A <+> B"
haftmann@33962
   190
by (simp add: Plus_def)
haftmann@33961
   191
haftmann@33962
   192
lemma InrI [intro!]: "b \<in> B \<Longrightarrow> Inr b \<in> A <+> B"
haftmann@33962
   193
by (simp add: Plus_def)
haftmann@33961
   194
haftmann@33962
   195
text {* Exhaustion rule for sums, a degenerate form of induction *}
haftmann@33962
   196
haftmann@33962
   197
lemma PlusE [elim!]: 
haftmann@33962
   198
  "u \<in> A <+> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> u = Inl x \<Longrightarrow> P) \<Longrightarrow> (\<And>y. y \<in> B \<Longrightarrow> u = Inr y \<Longrightarrow> P) \<Longrightarrow> P"
haftmann@33962
   199
by (auto simp add: Plus_def)
haftmann@33961
   200
haftmann@33962
   201
lemma Plus_eq_empty_conv [simp]: "A <+> B = {} \<longleftrightarrow> A = {} \<and> B = {}"
haftmann@33962
   202
by auto
haftmann@33961
   203
haftmann@33962
   204
lemma UNIV_Plus_UNIV [simp]: "UNIV <+> UNIV = UNIV"
nipkow@39302
   205
proof (rule set_eqI)
haftmann@33962
   206
  fix u :: "'a + 'b"
haftmann@33962
   207
  show "u \<in> UNIV <+> UNIV \<longleftrightarrow> u \<in> UNIV" by (cases u) auto
haftmann@33962
   208
qed
haftmann@33961
   209
wenzelm@36176
   210
hide_const (open) Suml Sumr Projl Projr
haftmann@33961
   211
nipkow@10213
   212
end