src/HOL/Code_Numeral.thy
author haftmann
Wed, 27 May 2009 22:11:05 +0200
changeset 31266 55e70b6d812e
parent 31205 98370b26c2ce
child 31377 a48f9ef9de15
permissions -rw-r--r--
added lemma about 0 - 1
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
     1
(* Author: Florian Haftmann, TU Muenchen *)
24999
haftmann
parents:
diff changeset
     2
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
     3
header {* Type of target language numerals *}
24999
haftmann
parents:
diff changeset
     4
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
     5
theory Code_Numeral
31203
5c8fb4fd67e0 moved Code_Index, Random and Quickcheck before Main
haftmann
parents: 31192
diff changeset
     6
imports Nat_Numeral
24999
haftmann
parents:
diff changeset
     7
begin
haftmann
parents:
diff changeset
     8
haftmann
parents:
diff changeset
     9
text {*
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    10
  Code numerals are isomorphic to HOL @{typ nat} but
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    11
  mapped to target-language builtin numerals.
24999
haftmann
parents:
diff changeset
    12
*}
haftmann
parents:
diff changeset
    13
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    14
subsection {* Datatype of target language numerals *}
24999
haftmann
parents:
diff changeset
    15
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    16
typedef (open) code_numeral = "UNIV \<Colon> nat set"
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    17
  morphisms nat_of of_nat by rule
24999
haftmann
parents:
diff changeset
    18
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    19
lemma of_nat_nat_of [simp]:
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    20
  "of_nat (nat_of k) = k"
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    21
  by (rule nat_of_inverse)
24999
haftmann
parents:
diff changeset
    22
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    23
lemma nat_of_of_nat [simp]:
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    24
  "nat_of (of_nat n) = n"
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    25
  by (rule of_nat_inverse) (rule UNIV_I)
24999
haftmann
parents:
diff changeset
    26
28708
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
    27
lemma [measure_function]:
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    28
  "is_measure nat_of" by (rule is_measure_trivial)
28708
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
    29
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    30
lemma code_numeral:
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    31
  "(\<And>n\<Colon>code_numeral. PROP P n) \<equiv> (\<And>n\<Colon>nat. PROP P (of_nat n))"
24999
haftmann
parents:
diff changeset
    32
proof
25767
852bce03412a index now a copy of nat rather than int
haftmann
parents: 25691
diff changeset
    33
  fix n :: nat
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    34
  assume "\<And>n\<Colon>code_numeral. PROP P n"
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    35
  then show "PROP P (of_nat n)" .
24999
haftmann
parents:
diff changeset
    36
next
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    37
  fix n :: code_numeral
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    38
  assume "\<And>n\<Colon>nat. PROP P (of_nat n)"
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    39
  then have "PROP P (of_nat (nat_of n))" .
25767
852bce03412a index now a copy of nat rather than int
haftmann
parents: 25691
diff changeset
    40
  then show "PROP P n" by simp
24999
haftmann
parents:
diff changeset
    41
qed
haftmann
parents:
diff changeset
    42
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    43
lemma code_numeral_case:
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    44
  assumes "\<And>n. k = of_nat n \<Longrightarrow> P"
26140
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    45
  shows P
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    46
  by (rule assms [of "nat_of k"]) simp
26140
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    47
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    48
lemma code_numeral_induct_raw:
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    49
  assumes "\<And>n. P (of_nat n)"
26140
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    50
  shows "P k"
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    51
proof -
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    52
  from assms have "P (of_nat (nat_of k))" .
26140
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    53
  then show ?thesis by simp
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    54
qed
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    55
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    56
lemma nat_of_inject [simp]:
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    57
  "nat_of k = nat_of l \<longleftrightarrow> k = l"
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    58
  by (rule nat_of_inject)
26140
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    59
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    60
lemma of_nat_inject [simp]:
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    61
  "of_nat n = of_nat m \<longleftrightarrow> n = m"
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    62
  by (rule of_nat_inject) (rule UNIV_I)+
26140
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    63
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    64
instantiation code_numeral :: zero
26140
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    65
begin
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    66
28562
4e74209f113e `code func` now just `code`
haftmann
parents: 28351
diff changeset
    67
definition [simp, code del]:
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    68
  "0 = of_nat 0"
26140
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    69
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    70
instance ..
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    71
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    72
end
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    73
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    74
definition [simp]:
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    75
  "Suc_code_numeral k = of_nat (Suc (nat_of k))"
26140
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    76
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    77
rep_datatype "0 \<Colon> code_numeral" Suc_code_numeral
26140
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    78
proof -
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    79
  fix P :: "code_numeral \<Rightarrow> bool"
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    80
  fix k :: code_numeral
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    81
  assume "P 0" then have init: "P (of_nat 0)" by simp
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    82
  assume "\<And>k. P k \<Longrightarrow> P (Suc_code_numeral k)"
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    83
    then have "\<And>n. P (of_nat n) \<Longrightarrow> P (Suc_code_numeral (of_nat n))" .
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    84
    then have step: "\<And>n. P (of_nat n) \<Longrightarrow> P (of_nat (Suc n))" by simp
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    85
  from init step have "P (of_nat (nat_of k))"
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
    86
    by (induct "nat_of k") simp_all
26140
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    87
  then show "P k" by simp
27104
791607529f6d rep_datatype command now takes list of constructors as input arguments
haftmann
parents: 26304
diff changeset
    88
qed simp_all
26140
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    89
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    90
declare code_numeral_case [case_names nat, cases type: code_numeral]
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    91
declare code_numeral.induct [case_names nat, induct type: code_numeral]
26140
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    92
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    93
lemma code_numeral_decr [termination_simp]:
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    94
  "k \<noteq> of_nat 0 \<Longrightarrow> nat_of k - Suc 0 < nat_of k"
30245
e67f42ac1157 consequent rewrite of index_size, size [index] to nat_of; support pseudo-primrec sepcifications with fun
haftmann
parents: 29823
diff changeset
    95
  by (cases k) simp
e67f42ac1157 consequent rewrite of index_size, size [index] to nat_of; support pseudo-primrec sepcifications with fun
haftmann
parents: 29823
diff changeset
    96
e67f42ac1157 consequent rewrite of index_size, size [index] to nat_of; support pseudo-primrec sepcifications with fun
haftmann
parents: 29823
diff changeset
    97
lemma [simp, code]:
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
    98
  "code_numeral_size = nat_of"
26140
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
    99
proof (rule ext)
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
   100
  fix k
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   101
  have "code_numeral_size k = nat_size (nat_of k)"
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   102
    by (induct k rule: code_numeral.induct) (simp_all del: zero_code_numeral_def Suc_code_numeral_def, simp_all)
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   103
  also have "nat_size (nat_of k) = nat_of k" by (induct "nat_of k") simp_all
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   104
  finally show "code_numeral_size k = nat_of k" .
26140
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
   105
qed
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
   106
30245
e67f42ac1157 consequent rewrite of index_size, size [index] to nat_of; support pseudo-primrec sepcifications with fun
haftmann
parents: 29823
diff changeset
   107
lemma [simp, code]:
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   108
  "size = nat_of"
26140
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
   109
proof (rule ext)
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
   110
  fix k
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   111
  show "size k = nat_of k"
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   112
  by (induct k) (simp_all del: zero_code_numeral_def Suc_code_numeral_def, simp_all)
26140
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
   113
qed
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
   114
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   115
lemmas [code del] = code_numeral.recs code_numeral.cases
30245
e67f42ac1157 consequent rewrite of index_size, size [index] to nat_of; support pseudo-primrec sepcifications with fun
haftmann
parents: 29823
diff changeset
   116
28562
4e74209f113e `code func` now just `code`
haftmann
parents: 28351
diff changeset
   117
lemma [code]:
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   118
  "eq_class.eq k l \<longleftrightarrow> eq_class.eq (nat_of k) (nat_of l)"
28346
b8390cd56b8f discontinued special treatment of op = vs. eq_class.eq
haftmann
parents: 28228
diff changeset
   119
  by (cases k, cases l) (simp add: eq)
24999
haftmann
parents:
diff changeset
   120
28351
abfc66969d1f non left-linear equations for nbe
haftmann
parents: 28346
diff changeset
   121
lemma [code nbe]:
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   122
  "eq_class.eq (k::code_numeral) k \<longleftrightarrow> True"
28351
abfc66969d1f non left-linear equations for nbe
haftmann
parents: 28346
diff changeset
   123
  by (rule HOL.eq_refl)
abfc66969d1f non left-linear equations for nbe
haftmann
parents: 28346
diff changeset
   124
24999
haftmann
parents:
diff changeset
   125
25767
852bce03412a index now a copy of nat rather than int
haftmann
parents: 25691
diff changeset
   126
subsection {* Indices as datatype of ints *}
852bce03412a index now a copy of nat rather than int
haftmann
parents: 25691
diff changeset
   127
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   128
instantiation code_numeral :: number
25767
852bce03412a index now a copy of nat rather than int
haftmann
parents: 25691
diff changeset
   129
begin
24999
haftmann
parents:
diff changeset
   130
25767
852bce03412a index now a copy of nat rather than int
haftmann
parents: 25691
diff changeset
   131
definition
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   132
  "number_of = of_nat o nat"
25767
852bce03412a index now a copy of nat rather than int
haftmann
parents: 25691
diff changeset
   133
852bce03412a index now a copy of nat rather than int
haftmann
parents: 25691
diff changeset
   134
instance ..
852bce03412a index now a copy of nat rather than int
haftmann
parents: 25691
diff changeset
   135
852bce03412a index now a copy of nat rather than int
haftmann
parents: 25691
diff changeset
   136
end
24999
haftmann
parents:
diff changeset
   137
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   138
lemma nat_of_number [simp]:
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   139
  "nat_of (number_of k) = number_of k"
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   140
  by (simp add: number_of_code_numeral_def nat_number_of_def number_of_is_id)
26264
89e25cc8da7a yet another useful lemma
haftmann
parents: 26140
diff changeset
   141
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   142
code_datatype "number_of \<Colon> int \<Rightarrow> code_numeral"
24999
haftmann
parents:
diff changeset
   143
haftmann
parents:
diff changeset
   144
haftmann
parents:
diff changeset
   145
subsection {* Basic arithmetic *}
haftmann
parents:
diff changeset
   146
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   147
instantiation code_numeral :: "{minus, ordered_semidom, semiring_div, linorder}"
25767
852bce03412a index now a copy of nat rather than int
haftmann
parents: 25691
diff changeset
   148
begin
24999
haftmann
parents:
diff changeset
   149
28562
4e74209f113e `code func` now just `code`
haftmann
parents: 28351
diff changeset
   150
definition [simp, code del]:
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   151
  "(1\<Colon>code_numeral) = of_nat 1"
24999
haftmann
parents:
diff changeset
   152
28562
4e74209f113e `code func` now just `code`
haftmann
parents: 28351
diff changeset
   153
definition [simp, code del]:
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   154
  "n + m = of_nat (nat_of n + nat_of m)"
25767
852bce03412a index now a copy of nat rather than int
haftmann
parents: 25691
diff changeset
   155
28562
4e74209f113e `code func` now just `code`
haftmann
parents: 28351
diff changeset
   156
definition [simp, code del]:
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   157
  "n - m = of_nat (nat_of n - nat_of m)"
25767
852bce03412a index now a copy of nat rather than int
haftmann
parents: 25691
diff changeset
   158
28562
4e74209f113e `code func` now just `code`
haftmann
parents: 28351
diff changeset
   159
definition [simp, code del]:
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   160
  "n * m = of_nat (nat_of n * nat_of m)"
25767
852bce03412a index now a copy of nat rather than int
haftmann
parents: 25691
diff changeset
   161
28562
4e74209f113e `code func` now just `code`
haftmann
parents: 28351
diff changeset
   162
definition [simp, code del]:
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   163
  "n div m = of_nat (nat_of n div nat_of m)"
24999
haftmann
parents:
diff changeset
   164
28562
4e74209f113e `code func` now just `code`
haftmann
parents: 28351
diff changeset
   165
definition [simp, code del]:
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   166
  "n mod m = of_nat (nat_of n mod nat_of m)"
24999
haftmann
parents:
diff changeset
   167
28562
4e74209f113e `code func` now just `code`
haftmann
parents: 28351
diff changeset
   168
definition [simp, code del]:
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   169
  "n \<le> m \<longleftrightarrow> nat_of n \<le> nat_of m"
24999
haftmann
parents:
diff changeset
   170
28562
4e74209f113e `code func` now just `code`
haftmann
parents: 28351
diff changeset
   171
definition [simp, code del]:
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   172
  "n < m \<longleftrightarrow> nat_of n < nat_of m"
24999
haftmann
parents:
diff changeset
   173
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   174
instance proof
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   175
qed (auto simp add: code_numeral left_distrib div_mult_self1)
28708
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   176
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   177
end
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   178
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   179
lemma zero_code_numeral_code [code inline, code]:
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   180
  "(0\<Colon>code_numeral) = Numeral0"
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   181
  by (simp add: number_of_code_numeral_def Pls_def)
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   182
lemma [code post]: "Numeral0 = (0\<Colon>code_numeral)"
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   183
  using zero_code_numeral_code ..
28708
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   184
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   185
lemma one_code_numeral_code [code inline, code]:
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   186
  "(1\<Colon>code_numeral) = Numeral1"
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   187
  by (simp add: number_of_code_numeral_def Pls_def Bit1_def)
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   188
lemma [code post]: "Numeral1 = (1\<Colon>code_numeral)"
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   189
  using one_code_numeral_code ..
28708
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   190
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   191
lemma plus_code_numeral_code [code nbe]:
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   192
  "of_nat n + of_nat m = of_nat (n + m)"
28708
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   193
  by simp
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   194
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   195
definition subtract_code_numeral :: "code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral" where
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   196
  [simp, code del]: "subtract_code_numeral = op -"
28708
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   197
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   198
lemma subtract_code_numeral_code [code nbe]:
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   199
  "subtract_code_numeral (of_nat n) (of_nat m) = of_nat (n - m)"
28708
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   200
  by simp
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   201
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   202
lemma minus_code_numeral_code [code]:
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   203
  "n - m = subtract_code_numeral n m"
28708
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   204
  by simp
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   205
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   206
lemma times_code_numeral_code [code nbe]:
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   207
  "of_nat n * of_nat m = of_nat (n * m)"
28708
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   208
  by simp
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   209
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   210
lemma less_eq_code_numeral_code [code nbe]:
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   211
  "of_nat n \<le> of_nat m \<longleftrightarrow> n \<le> m"
25767
852bce03412a index now a copy of nat rather than int
haftmann
parents: 25691
diff changeset
   212
  by simp
24999
haftmann
parents:
diff changeset
   213
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   214
lemma less_code_numeral_code [code nbe]:
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   215
  "of_nat n < of_nat m \<longleftrightarrow> n < m"
25767
852bce03412a index now a copy of nat rather than int
haftmann
parents: 25691
diff changeset
   216
  by simp
24999
haftmann
parents:
diff changeset
   217
31266
55e70b6d812e added lemma about 0 - 1
haftmann
parents: 31205
diff changeset
   218
lemma code_numeral_zero_minus_one:
55e70b6d812e added lemma about 0 - 1
haftmann
parents: 31205
diff changeset
   219
  "(0::code_numeral) - 1 = 0"
55e70b6d812e added lemma about 0 - 1
haftmann
parents: 31205
diff changeset
   220
  by simp
55e70b6d812e added lemma about 0 - 1
haftmann
parents: 31205
diff changeset
   221
55e70b6d812e added lemma about 0 - 1
haftmann
parents: 31205
diff changeset
   222
lemma Suc_code_numeral_minus_one:
55e70b6d812e added lemma about 0 - 1
haftmann
parents: 31205
diff changeset
   223
  "Suc_code_numeral n - 1 = n"
55e70b6d812e added lemma about 0 - 1
haftmann
parents: 31205
diff changeset
   224
  by simp
26140
e45375135052 Zero/Suc recursion combinator for type index
haftmann
parents: 26086
diff changeset
   225
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   226
lemma of_nat_code [code]:
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   227
  "of_nat = Nat.of_nat"
25918
haftmann
parents: 25767
diff changeset
   228
proof
haftmann
parents: 25767
diff changeset
   229
  fix n :: nat
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   230
  have "Nat.of_nat n = of_nat n"
25918
haftmann
parents: 25767
diff changeset
   231
    by (induct n) simp_all
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   232
  then show "of_nat n = Nat.of_nat n"
25918
haftmann
parents: 25767
diff changeset
   233
    by (rule sym)
haftmann
parents: 25767
diff changeset
   234
qed
haftmann
parents: 25767
diff changeset
   235
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   236
lemma code_numeral_not_eq_zero: "i \<noteq> of_nat 0 \<longleftrightarrow> i \<ge> 1"
25928
042e877d9841 tuned code setup
haftmann
parents: 25918
diff changeset
   237
  by (cases i) auto
042e877d9841 tuned code setup
haftmann
parents: 25918
diff changeset
   238
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   239
definition nat_of_aux :: "code_numeral \<Rightarrow> nat \<Rightarrow> nat" where
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   240
  "nat_of_aux i n = nat_of i + n"
25928
042e877d9841 tuned code setup
haftmann
parents: 25918
diff changeset
   241
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   242
lemma nat_of_aux_code [code]:
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   243
  "nat_of_aux i n = (if i = 0 then n else nat_of_aux (i - 1) (Suc n))"
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   244
  by (auto simp add: nat_of_aux_def code_numeral_not_eq_zero)
25928
042e877d9841 tuned code setup
haftmann
parents: 25918
diff changeset
   245
29815
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   246
lemma nat_of_code [code]:
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   247
  "nat_of i = nat_of_aux i 0"
9e94b7078fa5 mandatory prefix for index conversion operations
haftmann
parents: 28708
diff changeset
   248
  by (simp add: nat_of_aux_def)
25918
haftmann
parents: 25767
diff changeset
   249
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   250
definition div_mod_code_numeral ::  "code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral \<times> code_numeral" where
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   251
  [code del]: "div_mod_code_numeral n m = (n div m, n mod m)"
26009
b6a64fe38634 treating division by zero properly
haftmann
parents: 25967
diff changeset
   252
28562
4e74209f113e `code func` now just `code`
haftmann
parents: 28351
diff changeset
   253
lemma [code]:
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   254
  "div_mod_code_numeral n m = (if m = 0 then (0, n) else (n div m, n mod m))"
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   255
  unfolding div_mod_code_numeral_def by auto
26009
b6a64fe38634 treating division by zero properly
haftmann
parents: 25967
diff changeset
   256
28562
4e74209f113e `code func` now just `code`
haftmann
parents: 28351
diff changeset
   257
lemma [code]:
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   258
  "n div m = fst (div_mod_code_numeral n m)"
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   259
  unfolding div_mod_code_numeral_def by simp
26009
b6a64fe38634 treating division by zero properly
haftmann
parents: 25967
diff changeset
   260
28562
4e74209f113e `code func` now just `code`
haftmann
parents: 28351
diff changeset
   261
lemma [code]:
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   262
  "n mod m = snd (div_mod_code_numeral n m)"
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   263
  unfolding div_mod_code_numeral_def by simp
26009
b6a64fe38634 treating division by zero properly
haftmann
parents: 25967
diff changeset
   264
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   265
definition int_of :: "code_numeral \<Rightarrow> int" where
31192
a324d214009c added Code_Index.int_of operation
haftmann
parents: 31186
diff changeset
   266
  "int_of = Nat.of_nat o nat_of"
28708
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   267
31192
a324d214009c added Code_Index.int_of operation
haftmann
parents: 31186
diff changeset
   268
lemma int_of_code [code]:
a324d214009c added Code_Index.int_of operation
haftmann
parents: 31186
diff changeset
   269
  "int_of k = (if k = 0 then 0
a324d214009c added Code_Index.int_of operation
haftmann
parents: 31186
diff changeset
   270
    else (if k mod 2 = 0 then 2 * int_of (k div 2) else 2 * int_of (k div 2) + 1))"
a324d214009c added Code_Index.int_of operation
haftmann
parents: 31186
diff changeset
   271
  by (auto simp add: int_of_def mod_div_equality')
28708
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   272
31192
a324d214009c added Code_Index.int_of operation
haftmann
parents: 31186
diff changeset
   273
hide (open) const of_nat nat_of int_of
28708
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   274
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   275
28228
7ebe8dc06cbb evaluation using code generator
haftmann
parents: 28042
diff changeset
   276
subsection {* Code generator setup *}
24999
haftmann
parents:
diff changeset
   277
25767
852bce03412a index now a copy of nat rather than int
haftmann
parents: 25691
diff changeset
   278
text {* Implementation of indices by bounded integers *}
852bce03412a index now a copy of nat rather than int
haftmann
parents: 25691
diff changeset
   279
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   280
code_type code_numeral
24999
haftmann
parents:
diff changeset
   281
  (SML "int")
haftmann
parents:
diff changeset
   282
  (OCaml "int")
25967
dd602eb20f3f fixed and tuned
haftmann
parents: 25945
diff changeset
   283
  (Haskell "Int")
24999
haftmann
parents:
diff changeset
   284
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   285
code_instance code_numeral :: eq
24999
haftmann
parents:
diff changeset
   286
  (Haskell -)
haftmann
parents:
diff changeset
   287
haftmann
parents:
diff changeset
   288
setup {*
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   289
  fold (Numeral.add_code @{const_name number_code_numeral_inst.number_of_code_numeral}
25928
042e877d9841 tuned code setup
haftmann
parents: 25918
diff changeset
   290
    false false) ["SML", "OCaml", "Haskell"]
24999
haftmann
parents:
diff changeset
   291
*}
haftmann
parents:
diff changeset
   292
25918
haftmann
parents: 25767
diff changeset
   293
code_reserved SML Int int
haftmann
parents: 25767
diff changeset
   294
code_reserved OCaml Pervasives int
24999
haftmann
parents:
diff changeset
   295
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   296
code_const "op + \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral"
25928
042e877d9841 tuned code setup
haftmann
parents: 25918
diff changeset
   297
  (SML "Int.+/ ((_),/ (_))")
25967
dd602eb20f3f fixed and tuned
haftmann
parents: 25945
diff changeset
   298
  (OCaml "Pervasives.( + )")
24999
haftmann
parents:
diff changeset
   299
  (Haskell infixl 6 "+")
haftmann
parents:
diff changeset
   300
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   301
code_const "subtract_code_numeral \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral"
25918
haftmann
parents: 25767
diff changeset
   302
  (SML "Int.max/ (_/ -/ _,/ 0 : int)")
haftmann
parents: 25767
diff changeset
   303
  (OCaml "Pervasives.max/ (_/ -/ _)/ (0 : int) ")
haftmann
parents: 25767
diff changeset
   304
  (Haskell "max/ (_/ -/ _)/ (0 :: Int)")
24999
haftmann
parents:
diff changeset
   305
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   306
code_const "op * \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral"
25928
042e877d9841 tuned code setup
haftmann
parents: 25918
diff changeset
   307
  (SML "Int.*/ ((_),/ (_))")
25967
dd602eb20f3f fixed and tuned
haftmann
parents: 25945
diff changeset
   308
  (OCaml "Pervasives.( * )")
24999
haftmann
parents:
diff changeset
   309
  (Haskell infixl 7 "*")
haftmann
parents:
diff changeset
   310
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   311
code_const div_mod_code_numeral
29823
0ab754d13ccd session Reflecion renamed to Decision_Procs, moved Dense_Linear_Order there
haftmann
parents: 29815
diff changeset
   312
  (SML "(fn n => fn m =>/ if m = 0/ then (0, n) else/ (n div m, n mod m))")
0ab754d13ccd session Reflecion renamed to Decision_Procs, moved Dense_Linear_Order there
haftmann
parents: 29815
diff changeset
   313
  (OCaml "(fun n -> fun m ->/ if m = 0/ then (0, n) else/ (n '/ m, n mod m))")
26009
b6a64fe38634 treating division by zero properly
haftmann
parents: 25967
diff changeset
   314
  (Haskell "divMod")
25928
042e877d9841 tuned code setup
haftmann
parents: 25918
diff changeset
   315
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   316
code_const "eq_class.eq \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> bool"
24999
haftmann
parents:
diff changeset
   317
  (SML "!((_ : Int.int) = _)")
25967
dd602eb20f3f fixed and tuned
haftmann
parents: 25945
diff changeset
   318
  (OCaml "!((_ : int) = _)")
24999
haftmann
parents:
diff changeset
   319
  (Haskell infixl 4 "==")
haftmann
parents:
diff changeset
   320
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   321
code_const "op \<le> \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> bool"
25928
042e877d9841 tuned code setup
haftmann
parents: 25918
diff changeset
   322
  (SML "Int.<=/ ((_),/ (_))")
25967
dd602eb20f3f fixed and tuned
haftmann
parents: 25945
diff changeset
   323
  (OCaml "!((_ : int) <= _)")
24999
haftmann
parents:
diff changeset
   324
  (Haskell infix 4 "<=")
haftmann
parents:
diff changeset
   325
31205
98370b26c2ce String.literal replaces message_string, code_numeral replaces (code_)index
haftmann
parents: 31203
diff changeset
   326
code_const "op < \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> bool"
25928
042e877d9841 tuned code setup
haftmann
parents: 25918
diff changeset
   327
  (SML "Int.</ ((_),/ (_))")
25967
dd602eb20f3f fixed and tuned
haftmann
parents: 25945
diff changeset
   328
  (OCaml "!((_ : int) < _)")
24999
haftmann
parents:
diff changeset
   329
  (Haskell infix 4 "<")
haftmann
parents:
diff changeset
   330
haftmann
parents:
diff changeset
   331
end