src/HOL/Power.thy
author haftmann
Wed Jan 21 23:40:23 2009 +0100 (2009-01-21)
changeset 29608 564ea783ace8
parent 28131 3130d7b3149d
child 29978 33df3c4eb629
child 30240 5b25fee0362c
permissions -rw-r--r--
no base sort in class import
paulson@3390
     1
(*  Title:      HOL/Power.thy
paulson@3390
     2
    ID:         $Id$
paulson@3390
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@3390
     4
    Copyright   1997  University of Cambridge
paulson@3390
     5
paulson@3390
     6
*)
paulson@3390
     7
nipkow@16733
     8
header{*Exponentiation*}
paulson@14348
     9
nipkow@15131
    10
theory Power
haftmann@21413
    11
imports Nat
nipkow@15131
    12
begin
paulson@14348
    13
haftmann@29608
    14
class power =
haftmann@25062
    15
  fixes power :: "'a \<Rightarrow> nat \<Rightarrow> 'a"            (infixr "^" 80)
haftmann@24996
    16
krauss@21199
    17
subsection{*Powers for Arbitrary Monoids*}
paulson@14348
    18
haftmann@22390
    19
class recpower = monoid_mult + power +
haftmann@25062
    20
  assumes power_0 [simp]: "a ^ 0       = 1"
haftmann@25062
    21
  assumes power_Suc:      "a ^ Suc n = a * (a ^ n)"
paulson@14348
    22
krauss@21199
    23
lemma power_0_Suc [simp]: "(0::'a::{recpower,semiring_0}) ^ (Suc n) = 0"
haftmann@23183
    24
  by (simp add: power_Suc)
paulson@14348
    25
paulson@14348
    26
text{*It looks plausible as a simprule, but its effect can be strange.*}
krauss@21199
    27
lemma power_0_left: "0^n = (if n=0 then 1 else (0::'a::{recpower,semiring_0}))"
haftmann@23183
    28
  by (induct n) simp_all
paulson@14348
    29
paulson@15004
    30
lemma power_one [simp]: "1^n = (1::'a::recpower)"
haftmann@23183
    31
  by (induct n) (simp_all add: power_Suc)
paulson@14348
    32
paulson@15004
    33
lemma power_one_right [simp]: "(a::'a::recpower) ^ 1 = a"
haftmann@23183
    34
  by (simp add: power_Suc)
paulson@14348
    35
krauss@21199
    36
lemma power_commutes: "(a::'a::recpower) ^ n * a = a * a ^ n"
haftmann@23183
    37
  by (induct n) (simp_all add: power_Suc mult_assoc)
krauss@21199
    38
huffman@28131
    39
lemma power_Suc2: "(a::'a::recpower) ^ Suc n = a ^ n * a"
huffman@28131
    40
  by (simp add: power_Suc power_commutes)
huffman@28131
    41
paulson@15004
    42
lemma power_add: "(a::'a::recpower) ^ (m+n) = (a^m) * (a^n)"
haftmann@23183
    43
  by (induct m) (simp_all add: power_Suc mult_ac)
paulson@14348
    44
paulson@15004
    45
lemma power_mult: "(a::'a::recpower) ^ (m*n) = (a^m) ^ n"
haftmann@23183
    46
  by (induct n) (simp_all add: power_Suc power_add)
paulson@14348
    47
krauss@21199
    48
lemma power_mult_distrib: "((a::'a::{recpower,comm_monoid_mult}) * b) ^ n = (a^n) * (b^n)"
haftmann@23183
    49
  by (induct n) (simp_all add: power_Suc mult_ac)
paulson@14348
    50
nipkow@25874
    51
lemma zero_less_power[simp]:
paulson@15004
    52
     "0 < (a::'a::{ordered_semidom,recpower}) ==> 0 < a^n"
paulson@15251
    53
apply (induct "n")
avigad@16775
    54
apply (simp_all add: power_Suc zero_less_one mult_pos_pos)
paulson@14348
    55
done
paulson@14348
    56
nipkow@25874
    57
lemma zero_le_power[simp]:
paulson@15004
    58
     "0 \<le> (a::'a::{ordered_semidom,recpower}) ==> 0 \<le> a^n"
paulson@14348
    59
apply (simp add: order_le_less)
wenzelm@14577
    60
apply (erule disjE)
nipkow@25874
    61
apply (simp_all add: zero_less_one power_0_left)
paulson@14348
    62
done
paulson@14348
    63
nipkow@25874
    64
lemma one_le_power[simp]:
paulson@15004
    65
     "1 \<le> (a::'a::{ordered_semidom,recpower}) ==> 1 \<le> a^n"
paulson@15251
    66
apply (induct "n")
paulson@14348
    67
apply (simp_all add: power_Suc)
wenzelm@14577
    68
apply (rule order_trans [OF _ mult_mono [of 1 _ 1]])
wenzelm@14577
    69
apply (simp_all add: zero_le_one order_trans [OF zero_le_one])
paulson@14348
    70
done
paulson@14348
    71
obua@14738
    72
lemma gt1_imp_ge0: "1 < a ==> 0 \<le> (a::'a::ordered_semidom)"
paulson@14348
    73
  by (simp add: order_trans [OF zero_le_one order_less_imp_le])
paulson@14348
    74
paulson@14348
    75
lemma power_gt1_lemma:
paulson@15004
    76
  assumes gt1: "1 < (a::'a::{ordered_semidom,recpower})"
wenzelm@14577
    77
  shows "1 < a * a^n"
paulson@14348
    78
proof -
wenzelm@14577
    79
  have "1*1 < a*1" using gt1 by simp
wenzelm@14577
    80
  also have "\<dots> \<le> a * a^n" using gt1
wenzelm@14577
    81
    by (simp only: mult_mono gt1_imp_ge0 one_le_power order_less_imp_le
wenzelm@14577
    82
        zero_le_one order_refl)
wenzelm@14577
    83
  finally show ?thesis by simp
paulson@14348
    84
qed
paulson@14348
    85
nipkow@25874
    86
lemma one_less_power[simp]:
huffman@24376
    87
  "\<lbrakk>1 < (a::'a::{ordered_semidom,recpower}); 0 < n\<rbrakk> \<Longrightarrow> 1 < a ^ n"
huffman@24376
    88
by (cases n, simp_all add: power_gt1_lemma power_Suc)
huffman@24376
    89
paulson@14348
    90
lemma power_gt1:
paulson@15004
    91
     "1 < (a::'a::{ordered_semidom,recpower}) ==> 1 < a ^ (Suc n)"
paulson@14348
    92
by (simp add: power_gt1_lemma power_Suc)
paulson@14348
    93
paulson@14348
    94
lemma power_le_imp_le_exp:
paulson@15004
    95
  assumes gt1: "(1::'a::{recpower,ordered_semidom}) < a"
wenzelm@14577
    96
  shows "!!n. a^m \<le> a^n ==> m \<le> n"
wenzelm@14577
    97
proof (induct m)
paulson@14348
    98
  case 0
wenzelm@14577
    99
  show ?case by simp
paulson@14348
   100
next
paulson@14348
   101
  case (Suc m)
wenzelm@14577
   102
  show ?case
wenzelm@14577
   103
  proof (cases n)
wenzelm@14577
   104
    case 0
wenzelm@14577
   105
    from prems have "a * a^m \<le> 1" by (simp add: power_Suc)
wenzelm@14577
   106
    with gt1 show ?thesis
wenzelm@14577
   107
      by (force simp only: power_gt1_lemma
wenzelm@14577
   108
          linorder_not_less [symmetric])
wenzelm@14577
   109
  next
wenzelm@14577
   110
    case (Suc n)
wenzelm@14577
   111
    from prems show ?thesis
wenzelm@14577
   112
      by (force dest: mult_left_le_imp_le
wenzelm@14577
   113
          simp add: power_Suc order_less_trans [OF zero_less_one gt1])
wenzelm@14577
   114
  qed
paulson@14348
   115
qed
paulson@14348
   116
wenzelm@14577
   117
text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*}
paulson@14348
   118
lemma power_inject_exp [simp]:
paulson@15004
   119
     "1 < (a::'a::{ordered_semidom,recpower}) ==> (a^m = a^n) = (m=n)"
wenzelm@14577
   120
  by (force simp add: order_antisym power_le_imp_le_exp)
paulson@14348
   121
paulson@14348
   122
text{*Can relax the first premise to @{term "0<a"} in the case of the
paulson@14348
   123
natural numbers.*}
paulson@14348
   124
lemma power_less_imp_less_exp:
paulson@15004
   125
     "[| (1::'a::{recpower,ordered_semidom}) < a; a^m < a^n |] ==> m < n"
wenzelm@14577
   126
by (simp add: order_less_le [of m n] order_less_le [of "a^m" "a^n"]
wenzelm@14577
   127
              power_le_imp_le_exp)
paulson@14348
   128
paulson@14348
   129
paulson@14348
   130
lemma power_mono:
paulson@15004
   131
     "[|a \<le> b; (0::'a::{recpower,ordered_semidom}) \<le> a|] ==> a^n \<le> b^n"
paulson@15251
   132
apply (induct "n")
paulson@14348
   133
apply (simp_all add: power_Suc)
nipkow@25874
   134
apply (auto intro: mult_mono order_trans [of 0 a b])
paulson@14348
   135
done
paulson@14348
   136
paulson@14348
   137
lemma power_strict_mono [rule_format]:
paulson@15004
   138
     "[|a < b; (0::'a::{recpower,ordered_semidom}) \<le> a|]
wenzelm@14577
   139
      ==> 0 < n --> a^n < b^n"
paulson@15251
   140
apply (induct "n")
nipkow@25874
   141
apply (auto simp add: mult_strict_mono power_Suc
paulson@14348
   142
                      order_le_less_trans [of 0 a b])
paulson@14348
   143
done
paulson@14348
   144
paulson@14348
   145
lemma power_eq_0_iff [simp]:
nipkow@25162
   146
  "(a^n = 0) = (a = (0::'a::{ring_1_no_zero_divisors,recpower}) & n>0)"
paulson@15251
   147
apply (induct "n")
paulson@14348
   148
apply (auto simp add: power_Suc zero_neq_one [THEN not_sym])
paulson@14348
   149
done
paulson@14348
   150
nipkow@25134
   151
lemma field_power_not_zero:
nipkow@25134
   152
  "a \<noteq> (0::'a::{ring_1_no_zero_divisors,recpower}) ==> a^n \<noteq> 0"
paulson@14348
   153
by force
paulson@14348
   154
paulson@14353
   155
lemma nonzero_power_inverse:
huffman@22991
   156
  fixes a :: "'a::{division_ring,recpower}"
huffman@22991
   157
  shows "a \<noteq> 0 ==> inverse (a ^ n) = (inverse a) ^ n"
paulson@15251
   158
apply (induct "n")
huffman@22988
   159
apply (auto simp add: power_Suc nonzero_inverse_mult_distrib power_commutes)
huffman@22991
   160
done (* TODO: reorient or rename to nonzero_inverse_power *)
paulson@14353
   161
paulson@14348
   162
text{*Perhaps these should be simprules.*}
paulson@14348
   163
lemma power_inverse:
huffman@22991
   164
  fixes a :: "'a::{division_ring,division_by_zero,recpower}"
huffman@22991
   165
  shows "inverse (a ^ n) = (inverse a) ^ n"
huffman@22991
   166
apply (cases "a = 0")
huffman@22991
   167
apply (simp add: power_0_left)
huffman@22991
   168
apply (simp add: nonzero_power_inverse)
huffman@22991
   169
done (* TODO: reorient or rename to inverse_power *)
paulson@14348
   170
avigad@16775
   171
lemma power_one_over: "1 / (a::'a::{field,division_by_zero,recpower})^n = 
avigad@16775
   172
    (1 / a)^n"
avigad@16775
   173
apply (simp add: divide_inverse)
avigad@16775
   174
apply (rule power_inverse)
avigad@16775
   175
done
avigad@16775
   176
wenzelm@14577
   177
lemma nonzero_power_divide:
paulson@15004
   178
    "b \<noteq> 0 ==> (a/b) ^ n = ((a::'a::{field,recpower}) ^ n) / (b ^ n)"
paulson@14353
   179
by (simp add: divide_inverse power_mult_distrib nonzero_power_inverse)
paulson@14353
   180
wenzelm@14577
   181
lemma power_divide:
paulson@15004
   182
    "(a/b) ^ n = ((a::'a::{field,division_by_zero,recpower}) ^ n / b ^ n)"
paulson@14353
   183
apply (case_tac "b=0", simp add: power_0_left)
wenzelm@14577
   184
apply (rule nonzero_power_divide)
wenzelm@14577
   185
apply assumption
paulson@14353
   186
done
paulson@14353
   187
paulson@15004
   188
lemma power_abs: "abs(a ^ n) = abs(a::'a::{ordered_idom,recpower}) ^ n"
paulson@15251
   189
apply (induct "n")
paulson@14348
   190
apply (auto simp add: power_Suc abs_mult)
paulson@14348
   191
done
paulson@14348
   192
paulson@24286
   193
lemma zero_less_power_abs_iff [simp,noatp]:
paulson@15004
   194
     "(0 < (abs a)^n) = (a \<noteq> (0::'a::{ordered_idom,recpower}) | n=0)"
paulson@14353
   195
proof (induct "n")
paulson@14353
   196
  case 0
paulson@14353
   197
    show ?case by (simp add: zero_less_one)
paulson@14353
   198
next
paulson@14353
   199
  case (Suc n)
haftmann@25231
   200
    show ?case by (auto simp add: prems power_Suc zero_less_mult_iff
haftmann@25231
   201
      abs_zero)
paulson@14353
   202
qed
paulson@14353
   203
paulson@14353
   204
lemma zero_le_power_abs [simp]:
paulson@15004
   205
     "(0::'a::{ordered_idom,recpower}) \<le> (abs a)^n"
huffman@22957
   206
by (rule zero_le_power [OF abs_ge_zero])
paulson@14353
   207
huffman@28131
   208
lemma power_minus: "(-a) ^ n = (- 1)^n * (a::'a::{ring_1,recpower}) ^ n"
huffman@28131
   209
proof (induct n)
huffman@28131
   210
  case 0 show ?case by simp
huffman@28131
   211
next
huffman@28131
   212
  case (Suc n) then show ?case
huffman@28131
   213
    by (simp add: power_Suc2 mult_assoc)
paulson@14348
   214
qed
paulson@14348
   215
paulson@14348
   216
text{*Lemma for @{text power_strict_decreasing}*}
paulson@14348
   217
lemma power_Suc_less:
paulson@15004
   218
     "[|(0::'a::{ordered_semidom,recpower}) < a; a < 1|]
paulson@14348
   219
      ==> a * a^n < a^n"
paulson@15251
   220
apply (induct n)
wenzelm@14577
   221
apply (auto simp add: power_Suc mult_strict_left_mono)
paulson@14348
   222
done
paulson@14348
   223
paulson@14348
   224
lemma power_strict_decreasing:
paulson@15004
   225
     "[|n < N; 0 < a; a < (1::'a::{ordered_semidom,recpower})|]
paulson@14348
   226
      ==> a^N < a^n"
wenzelm@14577
   227
apply (erule rev_mp)
paulson@15251
   228
apply (induct "N")
wenzelm@14577
   229
apply (auto simp add: power_Suc power_Suc_less less_Suc_eq)
wenzelm@14577
   230
apply (rename_tac m)
paulson@14348
   231
apply (subgoal_tac "a * a^m < 1 * a^n", simp)
wenzelm@14577
   232
apply (rule mult_strict_mono)
nipkow@25874
   233
apply (auto simp add: zero_less_one order_less_imp_le)
paulson@14348
   234
done
paulson@14348
   235
paulson@14348
   236
text{*Proof resembles that of @{text power_strict_decreasing}*}
paulson@14348
   237
lemma power_decreasing:
paulson@15004
   238
     "[|n \<le> N; 0 \<le> a; a \<le> (1::'a::{ordered_semidom,recpower})|]
paulson@14348
   239
      ==> a^N \<le> a^n"
wenzelm@14577
   240
apply (erule rev_mp)
paulson@15251
   241
apply (induct "N")
wenzelm@14577
   242
apply (auto simp add: power_Suc  le_Suc_eq)
wenzelm@14577
   243
apply (rename_tac m)
paulson@14348
   244
apply (subgoal_tac "a * a^m \<le> 1 * a^n", simp)
wenzelm@14577
   245
apply (rule mult_mono)
nipkow@25874
   246
apply (auto simp add: zero_le_one)
paulson@14348
   247
done
paulson@14348
   248
paulson@14348
   249
lemma power_Suc_less_one:
paulson@15004
   250
     "[| 0 < a; a < (1::'a::{ordered_semidom,recpower}) |] ==> a ^ Suc n < 1"
wenzelm@14577
   251
apply (insert power_strict_decreasing [of 0 "Suc n" a], simp)
paulson@14348
   252
done
paulson@14348
   253
paulson@14348
   254
text{*Proof again resembles that of @{text power_strict_decreasing}*}
paulson@14348
   255
lemma power_increasing:
paulson@15004
   256
     "[|n \<le> N; (1::'a::{ordered_semidom,recpower}) \<le> a|] ==> a^n \<le> a^N"
wenzelm@14577
   257
apply (erule rev_mp)
paulson@15251
   258
apply (induct "N")
wenzelm@14577
   259
apply (auto simp add: power_Suc le_Suc_eq)
paulson@14348
   260
apply (rename_tac m)
paulson@14348
   261
apply (subgoal_tac "1 * a^n \<le> a * a^m", simp)
wenzelm@14577
   262
apply (rule mult_mono)
nipkow@25874
   263
apply (auto simp add: order_trans [OF zero_le_one])
paulson@14348
   264
done
paulson@14348
   265
paulson@14348
   266
text{*Lemma for @{text power_strict_increasing}*}
paulson@14348
   267
lemma power_less_power_Suc:
paulson@15004
   268
     "(1::'a::{ordered_semidom,recpower}) < a ==> a^n < a * a^n"
paulson@15251
   269
apply (induct n)
wenzelm@14577
   270
apply (auto simp add: power_Suc mult_strict_left_mono order_less_trans [OF zero_less_one])
paulson@14348
   271
done
paulson@14348
   272
paulson@14348
   273
lemma power_strict_increasing:
paulson@15004
   274
     "[|n < N; (1::'a::{ordered_semidom,recpower}) < a|] ==> a^n < a^N"
wenzelm@14577
   275
apply (erule rev_mp)
paulson@15251
   276
apply (induct "N")
wenzelm@14577
   277
apply (auto simp add: power_less_power_Suc power_Suc less_Suc_eq)
paulson@14348
   278
apply (rename_tac m)
paulson@14348
   279
apply (subgoal_tac "1 * a^n < a * a^m", simp)
wenzelm@14577
   280
apply (rule mult_strict_mono)
nipkow@25874
   281
apply (auto simp add: order_less_trans [OF zero_less_one] order_less_imp_le)
paulson@14348
   282
done
paulson@14348
   283
nipkow@25134
   284
lemma power_increasing_iff [simp]:
nipkow@25134
   285
  "1 < (b::'a::{ordered_semidom,recpower}) ==> (b ^ x \<le> b ^ y) = (x \<le> y)"
nipkow@25134
   286
by (blast intro: power_le_imp_le_exp power_increasing order_less_imp_le) 
paulson@15066
   287
paulson@15066
   288
lemma power_strict_increasing_iff [simp]:
nipkow@25134
   289
  "1 < (b::'a::{ordered_semidom,recpower}) ==> (b ^ x < b ^ y) = (x < y)"
nipkow@25134
   290
by (blast intro: power_less_imp_less_exp power_strict_increasing) 
paulson@15066
   291
paulson@14348
   292
lemma power_le_imp_le_base:
nipkow@25134
   293
assumes le: "a ^ Suc n \<le> b ^ Suc n"
nipkow@25134
   294
    and ynonneg: "(0::'a::{ordered_semidom,recpower}) \<le> b"
nipkow@25134
   295
shows "a \<le> b"
nipkow@25134
   296
proof (rule ccontr)
nipkow@25134
   297
  assume "~ a \<le> b"
nipkow@25134
   298
  then have "b < a" by (simp only: linorder_not_le)
nipkow@25134
   299
  then have "b ^ Suc n < a ^ Suc n"
nipkow@25134
   300
    by (simp only: prems power_strict_mono)
nipkow@25134
   301
  from le and this show "False"
nipkow@25134
   302
    by (simp add: linorder_not_less [symmetric])
nipkow@25134
   303
qed
wenzelm@14577
   304
huffman@22853
   305
lemma power_less_imp_less_base:
huffman@22853
   306
  fixes a b :: "'a::{ordered_semidom,recpower}"
huffman@22853
   307
  assumes less: "a ^ n < b ^ n"
huffman@22853
   308
  assumes nonneg: "0 \<le> b"
huffman@22853
   309
  shows "a < b"
huffman@22853
   310
proof (rule contrapos_pp [OF less])
huffman@22853
   311
  assume "~ a < b"
huffman@22853
   312
  hence "b \<le> a" by (simp only: linorder_not_less)
huffman@22853
   313
  hence "b ^ n \<le> a ^ n" using nonneg by (rule power_mono)
huffman@22853
   314
  thus "~ a ^ n < b ^ n" by (simp only: linorder_not_less)
huffman@22853
   315
qed
huffman@22853
   316
paulson@14348
   317
lemma power_inject_base:
wenzelm@14577
   318
     "[| a ^ Suc n = b ^ Suc n; 0 \<le> a; 0 \<le> b |]
paulson@15004
   319
      ==> a = (b::'a::{ordered_semidom,recpower})"
paulson@14348
   320
by (blast intro: power_le_imp_le_base order_antisym order_eq_refl sym)
paulson@14348
   321
huffman@22955
   322
lemma power_eq_imp_eq_base:
huffman@22955
   323
  fixes a b :: "'a::{ordered_semidom,recpower}"
huffman@22955
   324
  shows "\<lbrakk>a ^ n = b ^ n; 0 \<le> a; 0 \<le> b; 0 < n\<rbrakk> \<Longrightarrow> a = b"
huffman@22955
   325
by (cases n, simp_all, rule power_inject_base)
huffman@22955
   326
paulson@14348
   327
paulson@14348
   328
subsection{*Exponentiation for the Natural Numbers*}
paulson@3390
   329
haftmann@25836
   330
instantiation nat :: recpower
haftmann@25836
   331
begin
haftmann@21456
   332
haftmann@25836
   333
primrec power_nat where
haftmann@25836
   334
  "p ^ 0 = (1\<Colon>nat)"
haftmann@25836
   335
  | "p ^ (Suc n) = (p\<Colon>nat) * (p ^ n)"
wenzelm@14577
   336
haftmann@25836
   337
instance proof
paulson@14438
   338
  fix z n :: nat
paulson@14348
   339
  show "z^0 = 1" by simp
paulson@14348
   340
  show "z^(Suc n) = z * (z^n)" by simp
paulson@14348
   341
qed
paulson@14348
   342
haftmann@25836
   343
end
haftmann@25836
   344
huffman@23305
   345
lemma of_nat_power:
huffman@23305
   346
  "of_nat (m ^ n) = (of_nat m::'a::{semiring_1,recpower}) ^ n"
huffman@23431
   347
by (induct n, simp_all add: power_Suc of_nat_mult)
huffman@23305
   348
paulson@14348
   349
lemma nat_one_le_power [simp]: "1 \<le> i ==> Suc 0 \<le> i^n"
paulson@14348
   350
by (insert one_le_power [of i n], simp)
paulson@14348
   351
nipkow@25162
   352
lemma nat_zero_less_power_iff [simp]: "(x^n > 0) = (x > (0::nat) | n=0)"
haftmann@21413
   353
by (induct "n", auto)
paulson@14348
   354
paulson@14348
   355
text{*Valid for the naturals, but what if @{text"0<i<1"}?
paulson@14348
   356
Premises cannot be weakened: consider the case where @{term "i=0"},
paulson@14348
   357
@{term "m=1"} and @{term "n=0"}.*}
haftmann@21413
   358
lemma nat_power_less_imp_less:
haftmann@21413
   359
  assumes nonneg: "0 < (i\<Colon>nat)"
haftmann@21413
   360
  assumes less: "i^m < i^n"
haftmann@21413
   361
  shows "m < n"
haftmann@21413
   362
proof (cases "i = 1")
haftmann@21413
   363
  case True with less power_one [where 'a = nat] show ?thesis by simp
haftmann@21413
   364
next
haftmann@21413
   365
  case False with nonneg have "1 < i" by auto
haftmann@21413
   366
  from power_strict_increasing_iff [OF this] less show ?thesis ..
haftmann@21413
   367
qed
paulson@14348
   368
ballarin@17149
   369
lemma power_diff:
ballarin@17149
   370
  assumes nz: "a ~= 0"
ballarin@17149
   371
  shows "n <= m ==> (a::'a::{recpower, field}) ^ (m-n) = (a^m) / (a^n)"
ballarin@17149
   372
  by (induct m n rule: diff_induct)
ballarin@17149
   373
    (simp_all add: power_Suc nonzero_mult_divide_cancel_left nz)
ballarin@17149
   374
ballarin@17149
   375
paulson@14348
   376
text{*ML bindings for the general exponentiation theorems*}
paulson@14348
   377
ML
paulson@14348
   378
{*
paulson@14348
   379
val power_0 = thm"power_0";
paulson@14348
   380
val power_Suc = thm"power_Suc";
paulson@14348
   381
val power_0_Suc = thm"power_0_Suc";
paulson@14348
   382
val power_0_left = thm"power_0_left";
paulson@14348
   383
val power_one = thm"power_one";
paulson@14348
   384
val power_one_right = thm"power_one_right";
paulson@14348
   385
val power_add = thm"power_add";
paulson@14348
   386
val power_mult = thm"power_mult";
paulson@14348
   387
val power_mult_distrib = thm"power_mult_distrib";
paulson@14348
   388
val zero_less_power = thm"zero_less_power";
paulson@14348
   389
val zero_le_power = thm"zero_le_power";
paulson@14348
   390
val one_le_power = thm"one_le_power";
paulson@14348
   391
val gt1_imp_ge0 = thm"gt1_imp_ge0";
paulson@14348
   392
val power_gt1_lemma = thm"power_gt1_lemma";
paulson@14348
   393
val power_gt1 = thm"power_gt1";
paulson@14348
   394
val power_le_imp_le_exp = thm"power_le_imp_le_exp";
paulson@14348
   395
val power_inject_exp = thm"power_inject_exp";
paulson@14348
   396
val power_less_imp_less_exp = thm"power_less_imp_less_exp";
paulson@14348
   397
val power_mono = thm"power_mono";
paulson@14348
   398
val power_strict_mono = thm"power_strict_mono";
paulson@14348
   399
val power_eq_0_iff = thm"power_eq_0_iff";
nipkow@25134
   400
val field_power_eq_0_iff = thm"power_eq_0_iff";
paulson@14348
   401
val field_power_not_zero = thm"field_power_not_zero";
paulson@14348
   402
val power_inverse = thm"power_inverse";
paulson@14353
   403
val nonzero_power_divide = thm"nonzero_power_divide";
paulson@14353
   404
val power_divide = thm"power_divide";
paulson@14348
   405
val power_abs = thm"power_abs";
paulson@14353
   406
val zero_less_power_abs_iff = thm"zero_less_power_abs_iff";
paulson@14353
   407
val zero_le_power_abs = thm "zero_le_power_abs";
paulson@14348
   408
val power_minus = thm"power_minus";
paulson@14348
   409
val power_Suc_less = thm"power_Suc_less";
paulson@14348
   410
val power_strict_decreasing = thm"power_strict_decreasing";
paulson@14348
   411
val power_decreasing = thm"power_decreasing";
paulson@14348
   412
val power_Suc_less_one = thm"power_Suc_less_one";
paulson@14348
   413
val power_increasing = thm"power_increasing";
paulson@14348
   414
val power_strict_increasing = thm"power_strict_increasing";
paulson@14348
   415
val power_le_imp_le_base = thm"power_le_imp_le_base";
paulson@14348
   416
val power_inject_base = thm"power_inject_base";
paulson@14348
   417
*}
wenzelm@14577
   418
paulson@14348
   419
text{*ML bindings for the remaining theorems*}
paulson@14348
   420
ML
paulson@14348
   421
{*
paulson@14348
   422
val nat_one_le_power = thm"nat_one_le_power";
paulson@14348
   423
val nat_power_less_imp_less = thm"nat_power_less_imp_less";
paulson@14348
   424
val nat_zero_less_power_iff = thm"nat_zero_less_power_iff";
paulson@14348
   425
*}
paulson@3390
   426
paulson@3390
   427
end
paulson@3390
   428