wenzelm@14770
|
1 |
(* Title: HOL/OrderedGroup.thy
|
wenzelm@29269
|
2 |
Author: Gertrud Bauer, Steven Obua, Lawrence C Paulson, Markus Wenzel, Jeremy Avigad
|
obua@14738
|
3 |
*)
|
obua@14738
|
4 |
|
obua@14738
|
5 |
header {* Ordered Groups *}
|
obua@14738
|
6 |
|
nipkow@15131
|
7 |
theory OrderedGroup
|
haftmann@22452
|
8 |
imports Lattices
|
wenzelm@19798
|
9 |
uses "~~/src/Provers/Arith/abel_cancel.ML"
|
nipkow@15131
|
10 |
begin
|
obua@14738
|
11 |
|
obua@14738
|
12 |
text {*
|
obua@14738
|
13 |
The theory of partially ordered groups is taken from the books:
|
obua@14738
|
14 |
\begin{itemize}
|
obua@14738
|
15 |
\item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979
|
obua@14738
|
16 |
\item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
|
obua@14738
|
17 |
\end{itemize}
|
obua@14738
|
18 |
Most of the used notions can also be looked up in
|
obua@14738
|
19 |
\begin{itemize}
|
wenzelm@14770
|
20 |
\item \url{http://www.mathworld.com} by Eric Weisstein et. al.
|
obua@14738
|
21 |
\item \emph{Algebra I} by van der Waerden, Springer.
|
obua@14738
|
22 |
\end{itemize}
|
obua@14738
|
23 |
*}
|
obua@14738
|
24 |
|
nipkow@29667
|
25 |
ML{*
|
nipkow@29667
|
26 |
structure AlgebraSimps =
|
nipkow@29667
|
27 |
NamedThmsFun(val name = "algebra_simps"
|
nipkow@29667
|
28 |
val description = "algebra simplification rules");
|
nipkow@29667
|
29 |
*}
|
nipkow@29667
|
30 |
|
nipkow@29667
|
31 |
setup AlgebraSimps.setup
|
nipkow@29667
|
32 |
|
nipkow@29667
|
33 |
text{* The rewrites accumulated in @{text algebra_simps} deal with the
|
nipkow@29667
|
34 |
classical algebraic structures of groups, rings and family. They simplify
|
nipkow@29667
|
35 |
terms by multiplying everything out (in case of a ring) and bringing sums and
|
nipkow@29667
|
36 |
products into a canonical form (by ordered rewriting). As a result it decides
|
nipkow@29667
|
37 |
group and ring equalities but also helps with inequalities.
|
nipkow@29667
|
38 |
|
nipkow@29667
|
39 |
Of course it also works for fields, but it knows nothing about multiplicative
|
nipkow@29667
|
40 |
inverses or division. This is catered for by @{text field_simps}. *}
|
nipkow@29667
|
41 |
|
nipkow@23085
|
42 |
subsection {* Semigroups and Monoids *}
|
obua@14738
|
43 |
|
haftmann@22390
|
44 |
class semigroup_add = plus +
|
nipkow@29667
|
45 |
assumes add_assoc[algebra_simps]: "(a + b) + c = a + (b + c)"
|
haftmann@22390
|
46 |
|
haftmann@22390
|
47 |
class ab_semigroup_add = semigroup_add +
|
nipkow@29667
|
48 |
assumes add_commute[algebra_simps]: "a + b = b + a"
|
haftmann@25062
|
49 |
begin
|
obua@14738
|
50 |
|
nipkow@29667
|
51 |
lemma add_left_commute[algebra_simps]: "a + (b + c) = b + (a + c)"
|
nipkow@29667
|
52 |
by (rule mk_left_commute [of "plus", OF add_assoc add_commute])
|
haftmann@25062
|
53 |
|
haftmann@25062
|
54 |
theorems add_ac = add_assoc add_commute add_left_commute
|
haftmann@25062
|
55 |
|
haftmann@25062
|
56 |
end
|
obua@14738
|
57 |
|
obua@14738
|
58 |
theorems add_ac = add_assoc add_commute add_left_commute
|
obua@14738
|
59 |
|
haftmann@22390
|
60 |
class semigroup_mult = times +
|
nipkow@29667
|
61 |
assumes mult_assoc[algebra_simps]: "(a * b) * c = a * (b * c)"
|
obua@14738
|
62 |
|
haftmann@22390
|
63 |
class ab_semigroup_mult = semigroup_mult +
|
nipkow@29667
|
64 |
assumes mult_commute[algebra_simps]: "a * b = b * a"
|
haftmann@23181
|
65 |
begin
|
obua@14738
|
66 |
|
nipkow@29667
|
67 |
lemma mult_left_commute[algebra_simps]: "a * (b * c) = b * (a * c)"
|
nipkow@29667
|
68 |
by (rule mk_left_commute [of "times", OF mult_assoc mult_commute])
|
haftmann@25062
|
69 |
|
haftmann@25062
|
70 |
theorems mult_ac = mult_assoc mult_commute mult_left_commute
|
haftmann@23181
|
71 |
|
haftmann@23181
|
72 |
end
|
obua@14738
|
73 |
|
obua@14738
|
74 |
theorems mult_ac = mult_assoc mult_commute mult_left_commute
|
obua@14738
|
75 |
|
haftmann@26015
|
76 |
class ab_semigroup_idem_mult = ab_semigroup_mult +
|
nipkow@29667
|
77 |
assumes mult_idem[simp]: "x * x = x"
|
haftmann@26015
|
78 |
begin
|
haftmann@26015
|
79 |
|
nipkow@29667
|
80 |
lemma mult_left_idem[simp]: "x * (x * y) = x * y"
|
haftmann@26015
|
81 |
unfolding mult_assoc [symmetric, of x] mult_idem ..
|
haftmann@26015
|
82 |
|
haftmann@26015
|
83 |
end
|
haftmann@26015
|
84 |
|
nipkow@23085
|
85 |
class monoid_add = zero + semigroup_add +
|
haftmann@25062
|
86 |
assumes add_0_left [simp]: "0 + a = a"
|
haftmann@25062
|
87 |
and add_0_right [simp]: "a + 0 = a"
|
nipkow@23085
|
88 |
|
haftmann@26071
|
89 |
lemma zero_reorient: "0 = x \<longleftrightarrow> x = 0"
|
nipkow@29667
|
90 |
by (rule eq_commute)
|
haftmann@26071
|
91 |
|
haftmann@22390
|
92 |
class comm_monoid_add = zero + ab_semigroup_add +
|
haftmann@25062
|
93 |
assumes add_0: "0 + a = a"
|
haftmann@25062
|
94 |
begin
|
nipkow@23085
|
95 |
|
haftmann@25062
|
96 |
subclass monoid_add
|
haftmann@28823
|
97 |
proof qed (insert add_0, simp_all add: add_commute)
|
haftmann@25062
|
98 |
|
haftmann@25062
|
99 |
end
|
obua@14738
|
100 |
|
haftmann@22390
|
101 |
class monoid_mult = one + semigroup_mult +
|
haftmann@25062
|
102 |
assumes mult_1_left [simp]: "1 * a = a"
|
haftmann@25062
|
103 |
assumes mult_1_right [simp]: "a * 1 = a"
|
obua@14738
|
104 |
|
haftmann@26071
|
105 |
lemma one_reorient: "1 = x \<longleftrightarrow> x = 1"
|
nipkow@29667
|
106 |
by (rule eq_commute)
|
haftmann@26071
|
107 |
|
haftmann@22390
|
108 |
class comm_monoid_mult = one + ab_semigroup_mult +
|
haftmann@25062
|
109 |
assumes mult_1: "1 * a = a"
|
haftmann@25062
|
110 |
begin
|
obua@14738
|
111 |
|
haftmann@25062
|
112 |
subclass monoid_mult
|
haftmann@28823
|
113 |
proof qed (insert mult_1, simp_all add: mult_commute)
|
haftmann@25062
|
114 |
|
haftmann@25062
|
115 |
end
|
obua@14738
|
116 |
|
haftmann@22390
|
117 |
class cancel_semigroup_add = semigroup_add +
|
haftmann@25062
|
118 |
assumes add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
|
haftmann@25062
|
119 |
assumes add_right_imp_eq: "b + a = c + a \<Longrightarrow> b = c"
|
huffman@27474
|
120 |
begin
|
huffman@27474
|
121 |
|
huffman@27474
|
122 |
lemma add_left_cancel [simp]:
|
huffman@27474
|
123 |
"a + b = a + c \<longleftrightarrow> b = c"
|
nipkow@29667
|
124 |
by (blast dest: add_left_imp_eq)
|
huffman@27474
|
125 |
|
huffman@27474
|
126 |
lemma add_right_cancel [simp]:
|
huffman@27474
|
127 |
"b + a = c + a \<longleftrightarrow> b = c"
|
nipkow@29667
|
128 |
by (blast dest: add_right_imp_eq)
|
huffman@27474
|
129 |
|
huffman@27474
|
130 |
end
|
obua@14738
|
131 |
|
haftmann@22390
|
132 |
class cancel_ab_semigroup_add = ab_semigroup_add +
|
haftmann@25062
|
133 |
assumes add_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
|
haftmann@25267
|
134 |
begin
|
obua@14738
|
135 |
|
haftmann@25267
|
136 |
subclass cancel_semigroup_add
|
haftmann@28823
|
137 |
proof
|
haftmann@22390
|
138 |
fix a b c :: 'a
|
haftmann@22390
|
139 |
assume "a + b = a + c"
|
haftmann@22390
|
140 |
then show "b = c" by (rule add_imp_eq)
|
haftmann@22390
|
141 |
next
|
obua@14738
|
142 |
fix a b c :: 'a
|
obua@14738
|
143 |
assume "b + a = c + a"
|
haftmann@22390
|
144 |
then have "a + b = a + c" by (simp only: add_commute)
|
haftmann@22390
|
145 |
then show "b = c" by (rule add_imp_eq)
|
obua@14738
|
146 |
qed
|
obua@14738
|
147 |
|
haftmann@25267
|
148 |
end
|
haftmann@25267
|
149 |
|
huffman@29904
|
150 |
class cancel_comm_monoid_add = cancel_ab_semigroup_add + comm_monoid_add
|
huffman@29904
|
151 |
|
huffman@29904
|
152 |
|
nipkow@23085
|
153 |
subsection {* Groups *}
|
nipkow@23085
|
154 |
|
haftmann@25762
|
155 |
class group_add = minus + uminus + monoid_add +
|
haftmann@25062
|
156 |
assumes left_minus [simp]: "- a + a = 0"
|
haftmann@25062
|
157 |
assumes diff_minus: "a - b = a + (- b)"
|
haftmann@25062
|
158 |
begin
|
nipkow@23085
|
159 |
|
haftmann@25062
|
160 |
lemma minus_add_cancel: "- a + (a + b) = b"
|
nipkow@29667
|
161 |
by (simp add: add_assoc[symmetric])
|
obua@14738
|
162 |
|
haftmann@25062
|
163 |
lemma minus_zero [simp]: "- 0 = 0"
|
obua@14738
|
164 |
proof -
|
haftmann@25062
|
165 |
have "- 0 = - 0 + (0 + 0)" by (simp only: add_0_right)
|
haftmann@25062
|
166 |
also have "\<dots> = 0" by (rule minus_add_cancel)
|
obua@14738
|
167 |
finally show ?thesis .
|
obua@14738
|
168 |
qed
|
obua@14738
|
169 |
|
haftmann@25062
|
170 |
lemma minus_minus [simp]: "- (- a) = a"
|
nipkow@23085
|
171 |
proof -
|
haftmann@25062
|
172 |
have "- (- a) = - (- a) + (- a + a)" by simp
|
haftmann@25062
|
173 |
also have "\<dots> = a" by (rule minus_add_cancel)
|
nipkow@23085
|
174 |
finally show ?thesis .
|
nipkow@23085
|
175 |
qed
|
obua@14738
|
176 |
|
haftmann@25062
|
177 |
lemma right_minus [simp]: "a + - a = 0"
|
obua@14738
|
178 |
proof -
|
haftmann@25062
|
179 |
have "a + - a = - (- a) + - a" by simp
|
haftmann@25062
|
180 |
also have "\<dots> = 0" by (rule left_minus)
|
obua@14738
|
181 |
finally show ?thesis .
|
obua@14738
|
182 |
qed
|
obua@14738
|
183 |
|
haftmann@25062
|
184 |
lemma right_minus_eq: "a - b = 0 \<longleftrightarrow> a = b"
|
obua@14738
|
185 |
proof
|
nipkow@23085
|
186 |
assume "a - b = 0"
|
nipkow@23085
|
187 |
have "a = (a - b) + b" by (simp add:diff_minus add_assoc)
|
nipkow@23085
|
188 |
also have "\<dots> = b" using `a - b = 0` by simp
|
nipkow@23085
|
189 |
finally show "a = b" .
|
obua@14738
|
190 |
next
|
nipkow@23085
|
191 |
assume "a = b" thus "a - b = 0" by (simp add: diff_minus)
|
obua@14738
|
192 |
qed
|
obua@14738
|
193 |
|
haftmann@25062
|
194 |
lemma equals_zero_I:
|
nipkow@29667
|
195 |
assumes "a + b = 0" shows "- a = b"
|
nipkow@23085
|
196 |
proof -
|
haftmann@25062
|
197 |
have "- a = - a + (a + b)" using assms by simp
|
haftmann@25062
|
198 |
also have "\<dots> = b" by (simp add: add_assoc[symmetric])
|
nipkow@23085
|
199 |
finally show ?thesis .
|
nipkow@23085
|
200 |
qed
|
obua@14738
|
201 |
|
haftmann@25062
|
202 |
lemma diff_self [simp]: "a - a = 0"
|
nipkow@29667
|
203 |
by (simp add: diff_minus)
|
obua@14738
|
204 |
|
haftmann@25062
|
205 |
lemma diff_0 [simp]: "0 - a = - a"
|
nipkow@29667
|
206 |
by (simp add: diff_minus)
|
obua@14738
|
207 |
|
haftmann@25062
|
208 |
lemma diff_0_right [simp]: "a - 0 = a"
|
nipkow@29667
|
209 |
by (simp add: diff_minus)
|
obua@14738
|
210 |
|
haftmann@25062
|
211 |
lemma diff_minus_eq_add [simp]: "a - - b = a + b"
|
nipkow@29667
|
212 |
by (simp add: diff_minus)
|
obua@14738
|
213 |
|
haftmann@25062
|
214 |
lemma neg_equal_iff_equal [simp]:
|
haftmann@25062
|
215 |
"- a = - b \<longleftrightarrow> a = b"
|
obua@14738
|
216 |
proof
|
obua@14738
|
217 |
assume "- a = - b"
|
nipkow@29667
|
218 |
hence "- (- a) = - (- b)" by simp
|
haftmann@25062
|
219 |
thus "a = b" by simp
|
obua@14738
|
220 |
next
|
haftmann@25062
|
221 |
assume "a = b"
|
haftmann@25062
|
222 |
thus "- a = - b" by simp
|
obua@14738
|
223 |
qed
|
obua@14738
|
224 |
|
haftmann@25062
|
225 |
lemma neg_equal_0_iff_equal [simp]:
|
haftmann@25062
|
226 |
"- a = 0 \<longleftrightarrow> a = 0"
|
nipkow@29667
|
227 |
by (subst neg_equal_iff_equal [symmetric], simp)
|
obua@14738
|
228 |
|
haftmann@25062
|
229 |
lemma neg_0_equal_iff_equal [simp]:
|
haftmann@25062
|
230 |
"0 = - a \<longleftrightarrow> 0 = a"
|
nipkow@29667
|
231 |
by (subst neg_equal_iff_equal [symmetric], simp)
|
obua@14738
|
232 |
|
obua@14738
|
233 |
text{*The next two equations can make the simplifier loop!*}
|
obua@14738
|
234 |
|
haftmann@25062
|
235 |
lemma equation_minus_iff:
|
haftmann@25062
|
236 |
"a = - b \<longleftrightarrow> b = - a"
|
obua@14738
|
237 |
proof -
|
haftmann@25062
|
238 |
have "- (- a) = - b \<longleftrightarrow> - a = b" by (rule neg_equal_iff_equal)
|
haftmann@25062
|
239 |
thus ?thesis by (simp add: eq_commute)
|
haftmann@25062
|
240 |
qed
|
haftmann@25062
|
241 |
|
haftmann@25062
|
242 |
lemma minus_equation_iff:
|
haftmann@25062
|
243 |
"- a = b \<longleftrightarrow> - b = a"
|
haftmann@25062
|
244 |
proof -
|
haftmann@25062
|
245 |
have "- a = - (- b) \<longleftrightarrow> a = -b" by (rule neg_equal_iff_equal)
|
obua@14738
|
246 |
thus ?thesis by (simp add: eq_commute)
|
obua@14738
|
247 |
qed
|
obua@14738
|
248 |
|
huffman@28130
|
249 |
lemma diff_add_cancel: "a - b + b = a"
|
nipkow@29667
|
250 |
by (simp add: diff_minus add_assoc)
|
huffman@28130
|
251 |
|
huffman@28130
|
252 |
lemma add_diff_cancel: "a + b - b = a"
|
nipkow@29667
|
253 |
by (simp add: diff_minus add_assoc)
|
nipkow@29667
|
254 |
|
nipkow@29667
|
255 |
declare diff_minus[symmetric, algebra_simps]
|
huffman@28130
|
256 |
|
huffman@29914
|
257 |
lemma eq_neg_iff_add_eq_0: "a = - b \<longleftrightarrow> a + b = 0"
|
huffman@29914
|
258 |
proof
|
huffman@29914
|
259 |
assume "a = - b" then show "a + b = 0" by simp
|
huffman@29914
|
260 |
next
|
huffman@29914
|
261 |
assume "a + b = 0"
|
huffman@29914
|
262 |
moreover have "a + (b + - b) = (a + b) + - b"
|
huffman@29914
|
263 |
by (simp only: add_assoc)
|
huffman@29914
|
264 |
ultimately show "a = - b" by simp
|
huffman@29914
|
265 |
qed
|
huffman@29914
|
266 |
|
haftmann@25062
|
267 |
end
|
haftmann@25062
|
268 |
|
haftmann@25762
|
269 |
class ab_group_add = minus + uminus + comm_monoid_add +
|
haftmann@25062
|
270 |
assumes ab_left_minus: "- a + a = 0"
|
haftmann@25062
|
271 |
assumes ab_diff_minus: "a - b = a + (- b)"
|
haftmann@25267
|
272 |
begin
|
haftmann@25062
|
273 |
|
haftmann@25267
|
274 |
subclass group_add
|
haftmann@28823
|
275 |
proof qed (simp_all add: ab_left_minus ab_diff_minus)
|
haftmann@25062
|
276 |
|
huffman@29904
|
277 |
subclass cancel_comm_monoid_add
|
haftmann@28823
|
278 |
proof
|
haftmann@25062
|
279 |
fix a b c :: 'a
|
haftmann@25062
|
280 |
assume "a + b = a + c"
|
haftmann@25062
|
281 |
then have "- a + a + b = - a + a + c"
|
haftmann@25062
|
282 |
unfolding add_assoc by simp
|
haftmann@25062
|
283 |
then show "b = c" by simp
|
haftmann@25062
|
284 |
qed
|
haftmann@25062
|
285 |
|
nipkow@29667
|
286 |
lemma uminus_add_conv_diff[algebra_simps]:
|
haftmann@25062
|
287 |
"- a + b = b - a"
|
nipkow@29667
|
288 |
by (simp add:diff_minus add_commute)
|
haftmann@25062
|
289 |
|
haftmann@25062
|
290 |
lemma minus_add_distrib [simp]:
|
haftmann@25062
|
291 |
"- (a + b) = - a + - b"
|
nipkow@29667
|
292 |
by (rule equals_zero_I) (simp add: add_ac)
|
haftmann@25062
|
293 |
|
haftmann@25062
|
294 |
lemma minus_diff_eq [simp]:
|
haftmann@25062
|
295 |
"- (a - b) = b - a"
|
nipkow@29667
|
296 |
by (simp add: diff_minus add_commute)
|
haftmann@25077
|
297 |
|
nipkow@29667
|
298 |
lemma add_diff_eq[algebra_simps]: "a + (b - c) = (a + b) - c"
|
nipkow@29667
|
299 |
by (simp add: diff_minus add_ac)
|
haftmann@25077
|
300 |
|
nipkow@29667
|
301 |
lemma diff_add_eq[algebra_simps]: "(a - b) + c = (a + c) - b"
|
nipkow@29667
|
302 |
by (simp add: diff_minus add_ac)
|
haftmann@25077
|
303 |
|
nipkow@29667
|
304 |
lemma diff_eq_eq[algebra_simps]: "a - b = c \<longleftrightarrow> a = c + b"
|
nipkow@29667
|
305 |
by (auto simp add: diff_minus add_assoc)
|
haftmann@25077
|
306 |
|
nipkow@29667
|
307 |
lemma eq_diff_eq[algebra_simps]: "a = c - b \<longleftrightarrow> a + b = c"
|
nipkow@29667
|
308 |
by (auto simp add: diff_minus add_assoc)
|
haftmann@25077
|
309 |
|
nipkow@29667
|
310 |
lemma diff_diff_eq[algebra_simps]: "(a - b) - c = a - (b + c)"
|
nipkow@29667
|
311 |
by (simp add: diff_minus add_ac)
|
haftmann@25077
|
312 |
|
nipkow@29667
|
313 |
lemma diff_diff_eq2[algebra_simps]: "a - (b - c) = (a + c) - b"
|
nipkow@29667
|
314 |
by (simp add: diff_minus add_ac)
|
haftmann@25077
|
315 |
|
haftmann@25077
|
316 |
lemma eq_iff_diff_eq_0: "a = b \<longleftrightarrow> a - b = 0"
|
nipkow@29667
|
317 |
by (simp add: algebra_simps)
|
haftmann@25077
|
318 |
|
huffman@30629
|
319 |
lemma diff_eq_0_iff_eq [simp, noatp]: "a - b = 0 \<longleftrightarrow> a = b"
|
huffman@30629
|
320 |
by (simp add: algebra_simps)
|
huffman@30629
|
321 |
|
haftmann@25062
|
322 |
end
|
obua@14738
|
323 |
|
obua@14738
|
324 |
subsection {* (Partially) Ordered Groups *}
|
obua@14738
|
325 |
|
haftmann@22390
|
326 |
class pordered_ab_semigroup_add = order + ab_semigroup_add +
|
haftmann@25062
|
327 |
assumes add_left_mono: "a \<le> b \<Longrightarrow> c + a \<le> c + b"
|
haftmann@25062
|
328 |
begin
|
haftmann@24380
|
329 |
|
haftmann@25062
|
330 |
lemma add_right_mono:
|
haftmann@25062
|
331 |
"a \<le> b \<Longrightarrow> a + c \<le> b + c"
|
nipkow@29667
|
332 |
by (simp add: add_commute [of _ c] add_left_mono)
|
obua@14738
|
333 |
|
obua@14738
|
334 |
text {* non-strict, in both arguments *}
|
obua@14738
|
335 |
lemma add_mono:
|
haftmann@25062
|
336 |
"a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c \<le> b + d"
|
obua@14738
|
337 |
apply (erule add_right_mono [THEN order_trans])
|
obua@14738
|
338 |
apply (simp add: add_commute add_left_mono)
|
obua@14738
|
339 |
done
|
obua@14738
|
340 |
|
haftmann@25062
|
341 |
end
|
haftmann@25062
|
342 |
|
haftmann@25062
|
343 |
class pordered_cancel_ab_semigroup_add =
|
haftmann@25062
|
344 |
pordered_ab_semigroup_add + cancel_ab_semigroup_add
|
haftmann@25062
|
345 |
begin
|
haftmann@25062
|
346 |
|
obua@14738
|
347 |
lemma add_strict_left_mono:
|
haftmann@25062
|
348 |
"a < b \<Longrightarrow> c + a < c + b"
|
nipkow@29667
|
349 |
by (auto simp add: less_le add_left_mono)
|
obua@14738
|
350 |
|
obua@14738
|
351 |
lemma add_strict_right_mono:
|
haftmann@25062
|
352 |
"a < b \<Longrightarrow> a + c < b + c"
|
nipkow@29667
|
353 |
by (simp add: add_commute [of _ c] add_strict_left_mono)
|
obua@14738
|
354 |
|
obua@14738
|
355 |
text{*Strict monotonicity in both arguments*}
|
haftmann@25062
|
356 |
lemma add_strict_mono:
|
haftmann@25062
|
357 |
"a < b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d"
|
haftmann@25062
|
358 |
apply (erule add_strict_right_mono [THEN less_trans])
|
obua@14738
|
359 |
apply (erule add_strict_left_mono)
|
obua@14738
|
360 |
done
|
obua@14738
|
361 |
|
obua@14738
|
362 |
lemma add_less_le_mono:
|
haftmann@25062
|
363 |
"a < b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c < b + d"
|
haftmann@25062
|
364 |
apply (erule add_strict_right_mono [THEN less_le_trans])
|
haftmann@25062
|
365 |
apply (erule add_left_mono)
|
obua@14738
|
366 |
done
|
obua@14738
|
367 |
|
obua@14738
|
368 |
lemma add_le_less_mono:
|
haftmann@25062
|
369 |
"a \<le> b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d"
|
haftmann@25062
|
370 |
apply (erule add_right_mono [THEN le_less_trans])
|
obua@14738
|
371 |
apply (erule add_strict_left_mono)
|
obua@14738
|
372 |
done
|
obua@14738
|
373 |
|
haftmann@25062
|
374 |
end
|
haftmann@25062
|
375 |
|
haftmann@25062
|
376 |
class pordered_ab_semigroup_add_imp_le =
|
haftmann@25062
|
377 |
pordered_cancel_ab_semigroup_add +
|
haftmann@25062
|
378 |
assumes add_le_imp_le_left: "c + a \<le> c + b \<Longrightarrow> a \<le> b"
|
haftmann@25062
|
379 |
begin
|
haftmann@25062
|
380 |
|
obua@14738
|
381 |
lemma add_less_imp_less_left:
|
nipkow@29667
|
382 |
assumes less: "c + a < c + b" shows "a < b"
|
obua@14738
|
383 |
proof -
|
obua@14738
|
384 |
from less have le: "c + a <= c + b" by (simp add: order_le_less)
|
obua@14738
|
385 |
have "a <= b"
|
obua@14738
|
386 |
apply (insert le)
|
obua@14738
|
387 |
apply (drule add_le_imp_le_left)
|
obua@14738
|
388 |
by (insert le, drule add_le_imp_le_left, assumption)
|
obua@14738
|
389 |
moreover have "a \<noteq> b"
|
obua@14738
|
390 |
proof (rule ccontr)
|
obua@14738
|
391 |
assume "~(a \<noteq> b)"
|
obua@14738
|
392 |
then have "a = b" by simp
|
obua@14738
|
393 |
then have "c + a = c + b" by simp
|
obua@14738
|
394 |
with less show "False"by simp
|
obua@14738
|
395 |
qed
|
obua@14738
|
396 |
ultimately show "a < b" by (simp add: order_le_less)
|
obua@14738
|
397 |
qed
|
obua@14738
|
398 |
|
obua@14738
|
399 |
lemma add_less_imp_less_right:
|
haftmann@25062
|
400 |
"a + c < b + c \<Longrightarrow> a < b"
|
obua@14738
|
401 |
apply (rule add_less_imp_less_left [of c])
|
obua@14738
|
402 |
apply (simp add: add_commute)
|
obua@14738
|
403 |
done
|
obua@14738
|
404 |
|
obua@14738
|
405 |
lemma add_less_cancel_left [simp]:
|
haftmann@25062
|
406 |
"c + a < c + b \<longleftrightarrow> a < b"
|
nipkow@29667
|
407 |
by (blast intro: add_less_imp_less_left add_strict_left_mono)
|
obua@14738
|
408 |
|
obua@14738
|
409 |
lemma add_less_cancel_right [simp]:
|
haftmann@25062
|
410 |
"a + c < b + c \<longleftrightarrow> a < b"
|
nipkow@29667
|
411 |
by (blast intro: add_less_imp_less_right add_strict_right_mono)
|
obua@14738
|
412 |
|
obua@14738
|
413 |
lemma add_le_cancel_left [simp]:
|
haftmann@25062
|
414 |
"c + a \<le> c + b \<longleftrightarrow> a \<le> b"
|
nipkow@29667
|
415 |
by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono)
|
obua@14738
|
416 |
|
obua@14738
|
417 |
lemma add_le_cancel_right [simp]:
|
haftmann@25062
|
418 |
"a + c \<le> b + c \<longleftrightarrow> a \<le> b"
|
nipkow@29667
|
419 |
by (simp add: add_commute [of a c] add_commute [of b c])
|
obua@14738
|
420 |
|
obua@14738
|
421 |
lemma add_le_imp_le_right:
|
haftmann@25062
|
422 |
"a + c \<le> b + c \<Longrightarrow> a \<le> b"
|
nipkow@29667
|
423 |
by simp
|
haftmann@25062
|
424 |
|
haftmann@25077
|
425 |
lemma max_add_distrib_left:
|
haftmann@25077
|
426 |
"max x y + z = max (x + z) (y + z)"
|
haftmann@25077
|
427 |
unfolding max_def by auto
|
haftmann@25077
|
428 |
|
haftmann@25077
|
429 |
lemma min_add_distrib_left:
|
haftmann@25077
|
430 |
"min x y + z = min (x + z) (y + z)"
|
haftmann@25077
|
431 |
unfolding min_def by auto
|
haftmann@25077
|
432 |
|
haftmann@25062
|
433 |
end
|
haftmann@25062
|
434 |
|
haftmann@25303
|
435 |
subsection {* Support for reasoning about signs *}
|
haftmann@25303
|
436 |
|
haftmann@25303
|
437 |
class pordered_comm_monoid_add =
|
haftmann@25303
|
438 |
pordered_cancel_ab_semigroup_add + comm_monoid_add
|
haftmann@25303
|
439 |
begin
|
haftmann@25303
|
440 |
|
haftmann@25303
|
441 |
lemma add_pos_nonneg:
|
nipkow@29667
|
442 |
assumes "0 < a" and "0 \<le> b" shows "0 < a + b"
|
haftmann@25303
|
443 |
proof -
|
haftmann@25303
|
444 |
have "0 + 0 < a + b"
|
haftmann@25303
|
445 |
using assms by (rule add_less_le_mono)
|
haftmann@25303
|
446 |
then show ?thesis by simp
|
haftmann@25303
|
447 |
qed
|
haftmann@25303
|
448 |
|
haftmann@25303
|
449 |
lemma add_pos_pos:
|
nipkow@29667
|
450 |
assumes "0 < a" and "0 < b" shows "0 < a + b"
|
nipkow@29667
|
451 |
by (rule add_pos_nonneg) (insert assms, auto)
|
haftmann@25303
|
452 |
|
haftmann@25303
|
453 |
lemma add_nonneg_pos:
|
nipkow@29667
|
454 |
assumes "0 \<le> a" and "0 < b" shows "0 < a + b"
|
haftmann@25303
|
455 |
proof -
|
haftmann@25303
|
456 |
have "0 + 0 < a + b"
|
haftmann@25303
|
457 |
using assms by (rule add_le_less_mono)
|
haftmann@25303
|
458 |
then show ?thesis by simp
|
haftmann@25303
|
459 |
qed
|
haftmann@25303
|
460 |
|
haftmann@25303
|
461 |
lemma add_nonneg_nonneg:
|
nipkow@29667
|
462 |
assumes "0 \<le> a" and "0 \<le> b" shows "0 \<le> a + b"
|
haftmann@25303
|
463 |
proof -
|
haftmann@25303
|
464 |
have "0 + 0 \<le> a + b"
|
haftmann@25303
|
465 |
using assms by (rule add_mono)
|
haftmann@25303
|
466 |
then show ?thesis by simp
|
haftmann@25303
|
467 |
qed
|
haftmann@25303
|
468 |
|
huffman@30691
|
469 |
lemma add_neg_nonpos:
|
nipkow@29667
|
470 |
assumes "a < 0" and "b \<le> 0" shows "a + b < 0"
|
haftmann@25303
|
471 |
proof -
|
haftmann@25303
|
472 |
have "a + b < 0 + 0"
|
haftmann@25303
|
473 |
using assms by (rule add_less_le_mono)
|
haftmann@25303
|
474 |
then show ?thesis by simp
|
haftmann@25303
|
475 |
qed
|
haftmann@25303
|
476 |
|
haftmann@25303
|
477 |
lemma add_neg_neg:
|
nipkow@29667
|
478 |
assumes "a < 0" and "b < 0" shows "a + b < 0"
|
nipkow@29667
|
479 |
by (rule add_neg_nonpos) (insert assms, auto)
|
haftmann@25303
|
480 |
|
haftmann@25303
|
481 |
lemma add_nonpos_neg:
|
nipkow@29667
|
482 |
assumes "a \<le> 0" and "b < 0" shows "a + b < 0"
|
haftmann@25303
|
483 |
proof -
|
haftmann@25303
|
484 |
have "a + b < 0 + 0"
|
haftmann@25303
|
485 |
using assms by (rule add_le_less_mono)
|
haftmann@25303
|
486 |
then show ?thesis by simp
|
haftmann@25303
|
487 |
qed
|
haftmann@25303
|
488 |
|
haftmann@25303
|
489 |
lemma add_nonpos_nonpos:
|
nipkow@29667
|
490 |
assumes "a \<le> 0" and "b \<le> 0" shows "a + b \<le> 0"
|
haftmann@25303
|
491 |
proof -
|
haftmann@25303
|
492 |
have "a + b \<le> 0 + 0"
|
haftmann@25303
|
493 |
using assms by (rule add_mono)
|
haftmann@25303
|
494 |
then show ?thesis by simp
|
haftmann@25303
|
495 |
qed
|
haftmann@25303
|
496 |
|
huffman@30691
|
497 |
lemmas add_sign_intros =
|
huffman@30691
|
498 |
add_pos_nonneg add_pos_pos add_nonneg_pos add_nonneg_nonneg
|
huffman@30691
|
499 |
add_neg_nonpos add_neg_neg add_nonpos_neg add_nonpos_nonpos
|
huffman@30691
|
500 |
|
huffman@29886
|
501 |
lemma add_nonneg_eq_0_iff:
|
huffman@29886
|
502 |
assumes x: "0 \<le> x" and y: "0 \<le> y"
|
huffman@29886
|
503 |
shows "x + y = 0 \<longleftrightarrow> x = 0 \<and> y = 0"
|
huffman@29886
|
504 |
proof (intro iffI conjI)
|
huffman@29886
|
505 |
have "x = x + 0" by simp
|
huffman@29886
|
506 |
also have "x + 0 \<le> x + y" using y by (rule add_left_mono)
|
huffman@29886
|
507 |
also assume "x + y = 0"
|
huffman@29886
|
508 |
also have "0 \<le> x" using x .
|
huffman@29886
|
509 |
finally show "x = 0" .
|
huffman@29886
|
510 |
next
|
huffman@29886
|
511 |
have "y = 0 + y" by simp
|
huffman@29886
|
512 |
also have "0 + y \<le> x + y" using x by (rule add_right_mono)
|
huffman@29886
|
513 |
also assume "x + y = 0"
|
huffman@29886
|
514 |
also have "0 \<le> y" using y .
|
huffman@29886
|
515 |
finally show "y = 0" .
|
huffman@29886
|
516 |
next
|
huffman@29886
|
517 |
assume "x = 0 \<and> y = 0"
|
huffman@29886
|
518 |
then show "x + y = 0" by simp
|
huffman@29886
|
519 |
qed
|
huffman@29886
|
520 |
|
haftmann@25303
|
521 |
end
|
haftmann@25303
|
522 |
|
haftmann@25062
|
523 |
class pordered_ab_group_add =
|
haftmann@25062
|
524 |
ab_group_add + pordered_ab_semigroup_add
|
haftmann@25062
|
525 |
begin
|
haftmann@25062
|
526 |
|
huffman@27516
|
527 |
subclass pordered_cancel_ab_semigroup_add ..
|
haftmann@25062
|
528 |
|
haftmann@25062
|
529 |
subclass pordered_ab_semigroup_add_imp_le
|
haftmann@28823
|
530 |
proof
|
haftmann@25062
|
531 |
fix a b c :: 'a
|
haftmann@25062
|
532 |
assume "c + a \<le> c + b"
|
haftmann@25062
|
533 |
hence "(-c) + (c + a) \<le> (-c) + (c + b)" by (rule add_left_mono)
|
haftmann@25062
|
534 |
hence "((-c) + c) + a \<le> ((-c) + c) + b" by (simp only: add_assoc)
|
haftmann@25062
|
535 |
thus "a \<le> b" by simp
|
haftmann@25062
|
536 |
qed
|
haftmann@25062
|
537 |
|
huffman@27516
|
538 |
subclass pordered_comm_monoid_add ..
|
haftmann@25303
|
539 |
|
haftmann@25077
|
540 |
lemma max_diff_distrib_left:
|
haftmann@25077
|
541 |
shows "max x y - z = max (x - z) (y - z)"
|
nipkow@29667
|
542 |
by (simp add: diff_minus, rule max_add_distrib_left)
|
haftmann@25077
|
543 |
|
haftmann@25077
|
544 |
lemma min_diff_distrib_left:
|
haftmann@25077
|
545 |
shows "min x y - z = min (x - z) (y - z)"
|
nipkow@29667
|
546 |
by (simp add: diff_minus, rule min_add_distrib_left)
|
haftmann@25077
|
547 |
|
haftmann@25077
|
548 |
lemma le_imp_neg_le:
|
nipkow@29667
|
549 |
assumes "a \<le> b" shows "-b \<le> -a"
|
haftmann@25077
|
550 |
proof -
|
nipkow@29667
|
551 |
have "-a+a \<le> -a+b" using `a \<le> b` by (rule add_left_mono)
|
nipkow@29667
|
552 |
hence "0 \<le> -a+b" by simp
|
nipkow@29667
|
553 |
hence "0 + (-b) \<le> (-a + b) + (-b)" by (rule add_right_mono)
|
nipkow@29667
|
554 |
thus ?thesis by (simp add: add_assoc)
|
haftmann@25077
|
555 |
qed
|
haftmann@25077
|
556 |
|
haftmann@25077
|
557 |
lemma neg_le_iff_le [simp]: "- b \<le> - a \<longleftrightarrow> a \<le> b"
|
haftmann@25077
|
558 |
proof
|
haftmann@25077
|
559 |
assume "- b \<le> - a"
|
nipkow@29667
|
560 |
hence "- (- a) \<le> - (- b)" by (rule le_imp_neg_le)
|
haftmann@25077
|
561 |
thus "a\<le>b" by simp
|
haftmann@25077
|
562 |
next
|
haftmann@25077
|
563 |
assume "a\<le>b"
|
haftmann@25077
|
564 |
thus "-b \<le> -a" by (rule le_imp_neg_le)
|
haftmann@25077
|
565 |
qed
|
haftmann@25077
|
566 |
|
haftmann@25077
|
567 |
lemma neg_le_0_iff_le [simp]: "- a \<le> 0 \<longleftrightarrow> 0 \<le> a"
|
nipkow@29667
|
568 |
by (subst neg_le_iff_le [symmetric], simp)
|
haftmann@25077
|
569 |
|
haftmann@25077
|
570 |
lemma neg_0_le_iff_le [simp]: "0 \<le> - a \<longleftrightarrow> a \<le> 0"
|
nipkow@29667
|
571 |
by (subst neg_le_iff_le [symmetric], simp)
|
haftmann@25077
|
572 |
|
haftmann@25077
|
573 |
lemma neg_less_iff_less [simp]: "- b < - a \<longleftrightarrow> a < b"
|
nipkow@29667
|
574 |
by (force simp add: less_le)
|
haftmann@25077
|
575 |
|
haftmann@25077
|
576 |
lemma neg_less_0_iff_less [simp]: "- a < 0 \<longleftrightarrow> 0 < a"
|
nipkow@29667
|
577 |
by (subst neg_less_iff_less [symmetric], simp)
|
haftmann@25077
|
578 |
|
haftmann@25077
|
579 |
lemma neg_0_less_iff_less [simp]: "0 < - a \<longleftrightarrow> a < 0"
|
nipkow@29667
|
580 |
by (subst neg_less_iff_less [symmetric], simp)
|
haftmann@25077
|
581 |
|
haftmann@25077
|
582 |
text{*The next several equations can make the simplifier loop!*}
|
haftmann@25077
|
583 |
|
haftmann@25077
|
584 |
lemma less_minus_iff: "a < - b \<longleftrightarrow> b < - a"
|
haftmann@25077
|
585 |
proof -
|
haftmann@25077
|
586 |
have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less)
|
haftmann@25077
|
587 |
thus ?thesis by simp
|
haftmann@25077
|
588 |
qed
|
haftmann@25077
|
589 |
|
haftmann@25077
|
590 |
lemma minus_less_iff: "- a < b \<longleftrightarrow> - b < a"
|
haftmann@25077
|
591 |
proof -
|
haftmann@25077
|
592 |
have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less)
|
haftmann@25077
|
593 |
thus ?thesis by simp
|
haftmann@25077
|
594 |
qed
|
haftmann@25077
|
595 |
|
haftmann@25077
|
596 |
lemma le_minus_iff: "a \<le> - b \<longleftrightarrow> b \<le> - a"
|
haftmann@25077
|
597 |
proof -
|
haftmann@25077
|
598 |
have mm: "!! a (b::'a). (-(-a)) < -b \<Longrightarrow> -(-b) < -a" by (simp only: minus_less_iff)
|
haftmann@25077
|
599 |
have "(- (- a) <= -b) = (b <= - a)"
|
haftmann@25077
|
600 |
apply (auto simp only: le_less)
|
haftmann@25077
|
601 |
apply (drule mm)
|
haftmann@25077
|
602 |
apply (simp_all)
|
haftmann@25077
|
603 |
apply (drule mm[simplified], assumption)
|
haftmann@25077
|
604 |
done
|
haftmann@25077
|
605 |
then show ?thesis by simp
|
haftmann@25077
|
606 |
qed
|
haftmann@25077
|
607 |
|
haftmann@25077
|
608 |
lemma minus_le_iff: "- a \<le> b \<longleftrightarrow> - b \<le> a"
|
nipkow@29667
|
609 |
by (auto simp add: le_less minus_less_iff)
|
haftmann@25077
|
610 |
|
haftmann@25077
|
611 |
lemma less_iff_diff_less_0: "a < b \<longleftrightarrow> a - b < 0"
|
haftmann@25077
|
612 |
proof -
|
haftmann@25077
|
613 |
have "(a < b) = (a + (- b) < b + (-b))"
|
haftmann@25077
|
614 |
by (simp only: add_less_cancel_right)
|
haftmann@25077
|
615 |
also have "... = (a - b < 0)" by (simp add: diff_minus)
|
haftmann@25077
|
616 |
finally show ?thesis .
|
haftmann@25077
|
617 |
qed
|
haftmann@25077
|
618 |
|
nipkow@29667
|
619 |
lemma diff_less_eq[algebra_simps]: "a - b < c \<longleftrightarrow> a < c + b"
|
haftmann@25077
|
620 |
apply (subst less_iff_diff_less_0 [of a])
|
haftmann@25077
|
621 |
apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst])
|
haftmann@25077
|
622 |
apply (simp add: diff_minus add_ac)
|
haftmann@25077
|
623 |
done
|
haftmann@25077
|
624 |
|
nipkow@29667
|
625 |
lemma less_diff_eq[algebra_simps]: "a < c - b \<longleftrightarrow> a + b < c"
|
haftmann@25077
|
626 |
apply (subst less_iff_diff_less_0 [of "plus a b"])
|
haftmann@25077
|
627 |
apply (subst less_iff_diff_less_0 [of a])
|
haftmann@25077
|
628 |
apply (simp add: diff_minus add_ac)
|
haftmann@25077
|
629 |
done
|
haftmann@25077
|
630 |
|
nipkow@29667
|
631 |
lemma diff_le_eq[algebra_simps]: "a - b \<le> c \<longleftrightarrow> a \<le> c + b"
|
nipkow@29667
|
632 |
by (auto simp add: le_less diff_less_eq diff_add_cancel add_diff_cancel)
|
haftmann@25077
|
633 |
|
nipkow@29667
|
634 |
lemma le_diff_eq[algebra_simps]: "a \<le> c - b \<longleftrightarrow> a + b \<le> c"
|
nipkow@29667
|
635 |
by (auto simp add: le_less less_diff_eq diff_add_cancel add_diff_cancel)
|
haftmann@25077
|
636 |
|
haftmann@25077
|
637 |
lemma le_iff_diff_le_0: "a \<le> b \<longleftrightarrow> a - b \<le> 0"
|
nipkow@29667
|
638 |
by (simp add: algebra_simps)
|
haftmann@25077
|
639 |
|
nipkow@29667
|
640 |
text{*Legacy - use @{text algebra_simps} *}
|
nipkow@29833
|
641 |
lemmas group_simps[noatp] = algebra_simps
|
haftmann@25230
|
642 |
|
haftmann@25077
|
643 |
end
|
haftmann@25077
|
644 |
|
nipkow@29667
|
645 |
text{*Legacy - use @{text algebra_simps} *}
|
nipkow@29833
|
646 |
lemmas group_simps[noatp] = algebra_simps
|
haftmann@25230
|
647 |
|
haftmann@25062
|
648 |
class ordered_ab_semigroup_add =
|
haftmann@25062
|
649 |
linorder + pordered_ab_semigroup_add
|
haftmann@25062
|
650 |
|
haftmann@25062
|
651 |
class ordered_cancel_ab_semigroup_add =
|
haftmann@25062
|
652 |
linorder + pordered_cancel_ab_semigroup_add
|
haftmann@25267
|
653 |
begin
|
haftmann@25062
|
654 |
|
huffman@27516
|
655 |
subclass ordered_ab_semigroup_add ..
|
haftmann@25062
|
656 |
|
haftmann@25267
|
657 |
subclass pordered_ab_semigroup_add_imp_le
|
haftmann@28823
|
658 |
proof
|
haftmann@25062
|
659 |
fix a b c :: 'a
|
haftmann@25062
|
660 |
assume le: "c + a <= c + b"
|
haftmann@25062
|
661 |
show "a <= b"
|
haftmann@25062
|
662 |
proof (rule ccontr)
|
haftmann@25062
|
663 |
assume w: "~ a \<le> b"
|
haftmann@25062
|
664 |
hence "b <= a" by (simp add: linorder_not_le)
|
haftmann@25062
|
665 |
hence le2: "c + b <= c + a" by (rule add_left_mono)
|
haftmann@25062
|
666 |
have "a = b"
|
haftmann@25062
|
667 |
apply (insert le)
|
haftmann@25062
|
668 |
apply (insert le2)
|
haftmann@25062
|
669 |
apply (drule antisym, simp_all)
|
haftmann@25062
|
670 |
done
|
haftmann@25062
|
671 |
with w show False
|
haftmann@25062
|
672 |
by (simp add: linorder_not_le [symmetric])
|
haftmann@25062
|
673 |
qed
|
haftmann@25062
|
674 |
qed
|
haftmann@25062
|
675 |
|
haftmann@25267
|
676 |
end
|
haftmann@25267
|
677 |
|
haftmann@25230
|
678 |
class ordered_ab_group_add =
|
haftmann@25230
|
679 |
linorder + pordered_ab_group_add
|
haftmann@25267
|
680 |
begin
|
haftmann@25230
|
681 |
|
huffman@27516
|
682 |
subclass ordered_cancel_ab_semigroup_add ..
|
haftmann@25230
|
683 |
|
haftmann@25303
|
684 |
lemma neg_less_eq_nonneg:
|
haftmann@25303
|
685 |
"- a \<le> a \<longleftrightarrow> 0 \<le> a"
|
haftmann@25303
|
686 |
proof
|
haftmann@25303
|
687 |
assume A: "- a \<le> a" show "0 \<le> a"
|
haftmann@25303
|
688 |
proof (rule classical)
|
haftmann@25303
|
689 |
assume "\<not> 0 \<le> a"
|
haftmann@25303
|
690 |
then have "a < 0" by auto
|
haftmann@25303
|
691 |
with A have "- a < 0" by (rule le_less_trans)
|
haftmann@25303
|
692 |
then show ?thesis by auto
|
haftmann@25303
|
693 |
qed
|
haftmann@25303
|
694 |
next
|
haftmann@25303
|
695 |
assume A: "0 \<le> a" show "- a \<le> a"
|
haftmann@25303
|
696 |
proof (rule order_trans)
|
haftmann@25303
|
697 |
show "- a \<le> 0" using A by (simp add: minus_le_iff)
|
haftmann@25303
|
698 |
next
|
haftmann@25303
|
699 |
show "0 \<le> a" using A .
|
haftmann@25303
|
700 |
qed
|
haftmann@25303
|
701 |
qed
|
haftmann@25303
|
702 |
|
haftmann@25303
|
703 |
lemma less_eq_neg_nonpos:
|
haftmann@25303
|
704 |
"a \<le> - a \<longleftrightarrow> a \<le> 0"
|
haftmann@25303
|
705 |
proof
|
haftmann@25303
|
706 |
assume A: "a \<le> - a" show "a \<le> 0"
|
haftmann@25303
|
707 |
proof (rule classical)
|
haftmann@25303
|
708 |
assume "\<not> a \<le> 0"
|
haftmann@25303
|
709 |
then have "0 < a" by auto
|
haftmann@25303
|
710 |
then have "0 < - a" using A by (rule less_le_trans)
|
haftmann@25303
|
711 |
then show ?thesis by auto
|
haftmann@25303
|
712 |
qed
|
haftmann@25303
|
713 |
next
|
haftmann@25303
|
714 |
assume A: "a \<le> 0" show "a \<le> - a"
|
haftmann@25303
|
715 |
proof (rule order_trans)
|
haftmann@25303
|
716 |
show "0 \<le> - a" using A by (simp add: minus_le_iff)
|
haftmann@25303
|
717 |
next
|
haftmann@25303
|
718 |
show "a \<le> 0" using A .
|
haftmann@25303
|
719 |
qed
|
haftmann@25303
|
720 |
qed
|
haftmann@25303
|
721 |
|
haftmann@25303
|
722 |
lemma equal_neg_zero:
|
haftmann@25303
|
723 |
"a = - a \<longleftrightarrow> a = 0"
|
haftmann@25303
|
724 |
proof
|
haftmann@25303
|
725 |
assume "a = 0" then show "a = - a" by simp
|
haftmann@25303
|
726 |
next
|
haftmann@25303
|
727 |
assume A: "a = - a" show "a = 0"
|
haftmann@25303
|
728 |
proof (cases "0 \<le> a")
|
haftmann@25303
|
729 |
case True with A have "0 \<le> - a" by auto
|
haftmann@25303
|
730 |
with le_minus_iff have "a \<le> 0" by simp
|
haftmann@25303
|
731 |
with True show ?thesis by (auto intro: order_trans)
|
haftmann@25303
|
732 |
next
|
haftmann@25303
|
733 |
case False then have B: "a \<le> 0" by auto
|
haftmann@25303
|
734 |
with A have "- a \<le> 0" by auto
|
haftmann@25303
|
735 |
with B show ?thesis by (auto intro: order_trans)
|
haftmann@25303
|
736 |
qed
|
haftmann@25303
|
737 |
qed
|
haftmann@25303
|
738 |
|
haftmann@25303
|
739 |
lemma neg_equal_zero:
|
haftmann@25303
|
740 |
"- a = a \<longleftrightarrow> a = 0"
|
haftmann@25303
|
741 |
unfolding equal_neg_zero [symmetric] by auto
|
haftmann@25303
|
742 |
|
haftmann@25267
|
743 |
end
|
haftmann@25267
|
744 |
|
haftmann@25077
|
745 |
-- {* FIXME localize the following *}
|
obua@14738
|
746 |
|
paulson@15234
|
747 |
lemma add_increasing:
|
paulson@15234
|
748 |
fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
|
paulson@15234
|
749 |
shows "[|0\<le>a; b\<le>c|] ==> b \<le> a + c"
|
obua@14738
|
750 |
by (insert add_mono [of 0 a b c], simp)
|
obua@14738
|
751 |
|
nipkow@15539
|
752 |
lemma add_increasing2:
|
nipkow@15539
|
753 |
fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
|
nipkow@15539
|
754 |
shows "[|0\<le>c; b\<le>a|] ==> b \<le> a + c"
|
nipkow@15539
|
755 |
by (simp add:add_increasing add_commute[of a])
|
nipkow@15539
|
756 |
|
paulson@15234
|
757 |
lemma add_strict_increasing:
|
paulson@15234
|
758 |
fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
|
paulson@15234
|
759 |
shows "[|0<a; b\<le>c|] ==> b < a + c"
|
paulson@15234
|
760 |
by (insert add_less_le_mono [of 0 a b c], simp)
|
paulson@15234
|
761 |
|
paulson@15234
|
762 |
lemma add_strict_increasing2:
|
paulson@15234
|
763 |
fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
|
paulson@15234
|
764 |
shows "[|0\<le>a; b<c|] ==> b < a + c"
|
paulson@15234
|
765 |
by (insert add_le_less_mono [of 0 a b c], simp)
|
paulson@15234
|
766 |
|
obua@14738
|
767 |
|
haftmann@25303
|
768 |
class pordered_ab_group_add_abs = pordered_ab_group_add + abs +
|
haftmann@25303
|
769 |
assumes abs_ge_zero [simp]: "\<bar>a\<bar> \<ge> 0"
|
haftmann@25303
|
770 |
and abs_ge_self: "a \<le> \<bar>a\<bar>"
|
haftmann@25303
|
771 |
and abs_leI: "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b"
|
haftmann@25303
|
772 |
and abs_minus_cancel [simp]: "\<bar>-a\<bar> = \<bar>a\<bar>"
|
haftmann@25303
|
773 |
and abs_triangle_ineq: "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
|
haftmann@25303
|
774 |
begin
|
haftmann@25303
|
775 |
|
haftmann@25307
|
776 |
lemma abs_minus_le_zero: "- \<bar>a\<bar> \<le> 0"
|
haftmann@25307
|
777 |
unfolding neg_le_0_iff_le by simp
|
haftmann@25307
|
778 |
|
haftmann@25307
|
779 |
lemma abs_of_nonneg [simp]:
|
nipkow@29667
|
780 |
assumes nonneg: "0 \<le> a" shows "\<bar>a\<bar> = a"
|
haftmann@25307
|
781 |
proof (rule antisym)
|
haftmann@25307
|
782 |
from nonneg le_imp_neg_le have "- a \<le> 0" by simp
|
haftmann@25307
|
783 |
from this nonneg have "- a \<le> a" by (rule order_trans)
|
haftmann@25307
|
784 |
then show "\<bar>a\<bar> \<le> a" by (auto intro: abs_leI)
|
haftmann@25307
|
785 |
qed (rule abs_ge_self)
|
haftmann@25307
|
786 |
|
haftmann@25307
|
787 |
lemma abs_idempotent [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>"
|
nipkow@29667
|
788 |
by (rule antisym)
|
nipkow@29667
|
789 |
(auto intro!: abs_ge_self abs_leI order_trans [of "uminus (abs a)" zero "abs a"])
|
haftmann@25307
|
790 |
|
haftmann@25307
|
791 |
lemma abs_eq_0 [simp]: "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0"
|
haftmann@25307
|
792 |
proof -
|
haftmann@25307
|
793 |
have "\<bar>a\<bar> = 0 \<Longrightarrow> a = 0"
|
haftmann@25307
|
794 |
proof (rule antisym)
|
haftmann@25307
|
795 |
assume zero: "\<bar>a\<bar> = 0"
|
haftmann@25307
|
796 |
with abs_ge_self show "a \<le> 0" by auto
|
haftmann@25307
|
797 |
from zero have "\<bar>-a\<bar> = 0" by simp
|
haftmann@25307
|
798 |
with abs_ge_self [of "uminus a"] have "- a \<le> 0" by auto
|
haftmann@25307
|
799 |
with neg_le_0_iff_le show "0 \<le> a" by auto
|
haftmann@25307
|
800 |
qed
|
haftmann@25307
|
801 |
then show ?thesis by auto
|
haftmann@25307
|
802 |
qed
|
haftmann@25307
|
803 |
|
haftmann@25303
|
804 |
lemma abs_zero [simp]: "\<bar>0\<bar> = 0"
|
nipkow@29667
|
805 |
by simp
|
avigad@16775
|
806 |
|
haftmann@25303
|
807 |
lemma abs_0_eq [simp, noatp]: "0 = \<bar>a\<bar> \<longleftrightarrow> a = 0"
|
haftmann@25303
|
808 |
proof -
|
haftmann@25303
|
809 |
have "0 = \<bar>a\<bar> \<longleftrightarrow> \<bar>a\<bar> = 0" by (simp only: eq_ac)
|
haftmann@25303
|
810 |
thus ?thesis by simp
|
haftmann@25303
|
811 |
qed
|
haftmann@25303
|
812 |
|
haftmann@25303
|
813 |
lemma abs_le_zero_iff [simp]: "\<bar>a\<bar> \<le> 0 \<longleftrightarrow> a = 0"
|
haftmann@25303
|
814 |
proof
|
haftmann@25303
|
815 |
assume "\<bar>a\<bar> \<le> 0"
|
haftmann@25303
|
816 |
then have "\<bar>a\<bar> = 0" by (rule antisym) simp
|
haftmann@25303
|
817 |
thus "a = 0" by simp
|
haftmann@25303
|
818 |
next
|
haftmann@25303
|
819 |
assume "a = 0"
|
haftmann@25303
|
820 |
thus "\<bar>a\<bar> \<le> 0" by simp
|
haftmann@25303
|
821 |
qed
|
haftmann@25303
|
822 |
|
haftmann@25303
|
823 |
lemma zero_less_abs_iff [simp]: "0 < \<bar>a\<bar> \<longleftrightarrow> a \<noteq> 0"
|
nipkow@29667
|
824 |
by (simp add: less_le)
|
haftmann@25303
|
825 |
|
haftmann@25303
|
826 |
lemma abs_not_less_zero [simp]: "\<not> \<bar>a\<bar> < 0"
|
haftmann@25303
|
827 |
proof -
|
haftmann@25303
|
828 |
have a: "\<And>x y. x \<le> y \<Longrightarrow> \<not> y < x" by auto
|
haftmann@25303
|
829 |
show ?thesis by (simp add: a)
|
haftmann@25303
|
830 |
qed
|
avigad@16775
|
831 |
|
haftmann@25303
|
832 |
lemma abs_ge_minus_self: "- a \<le> \<bar>a\<bar>"
|
haftmann@25303
|
833 |
proof -
|
haftmann@25303
|
834 |
have "- a \<le> \<bar>-a\<bar>" by (rule abs_ge_self)
|
haftmann@25303
|
835 |
then show ?thesis by simp
|
haftmann@25303
|
836 |
qed
|
haftmann@25303
|
837 |
|
haftmann@25303
|
838 |
lemma abs_minus_commute:
|
haftmann@25303
|
839 |
"\<bar>a - b\<bar> = \<bar>b - a\<bar>"
|
haftmann@25303
|
840 |
proof -
|
haftmann@25303
|
841 |
have "\<bar>a - b\<bar> = \<bar>- (a - b)\<bar>" by (simp only: abs_minus_cancel)
|
haftmann@25303
|
842 |
also have "... = \<bar>b - a\<bar>" by simp
|
haftmann@25303
|
843 |
finally show ?thesis .
|
haftmann@25303
|
844 |
qed
|
haftmann@25303
|
845 |
|
haftmann@25303
|
846 |
lemma abs_of_pos: "0 < a \<Longrightarrow> \<bar>a\<bar> = a"
|
nipkow@29667
|
847 |
by (rule abs_of_nonneg, rule less_imp_le)
|
avigad@16775
|
848 |
|
haftmann@25303
|
849 |
lemma abs_of_nonpos [simp]:
|
nipkow@29667
|
850 |
assumes "a \<le> 0" shows "\<bar>a\<bar> = - a"
|
haftmann@25303
|
851 |
proof -
|
haftmann@25303
|
852 |
let ?b = "- a"
|
haftmann@25303
|
853 |
have "- ?b \<le> 0 \<Longrightarrow> \<bar>- ?b\<bar> = - (- ?b)"
|
haftmann@25303
|
854 |
unfolding abs_minus_cancel [of "?b"]
|
haftmann@25303
|
855 |
unfolding neg_le_0_iff_le [of "?b"]
|
haftmann@25303
|
856 |
unfolding minus_minus by (erule abs_of_nonneg)
|
haftmann@25303
|
857 |
then show ?thesis using assms by auto
|
haftmann@25303
|
858 |
qed
|
haftmann@25303
|
859 |
|
haftmann@25303
|
860 |
lemma abs_of_neg: "a < 0 \<Longrightarrow> \<bar>a\<bar> = - a"
|
nipkow@29667
|
861 |
by (rule abs_of_nonpos, rule less_imp_le)
|
haftmann@25303
|
862 |
|
haftmann@25303
|
863 |
lemma abs_le_D1: "\<bar>a\<bar> \<le> b \<Longrightarrow> a \<le> b"
|
nipkow@29667
|
864 |
by (insert abs_ge_self, blast intro: order_trans)
|
haftmann@25303
|
865 |
|
haftmann@25303
|
866 |
lemma abs_le_D2: "\<bar>a\<bar> \<le> b \<Longrightarrow> - a \<le> b"
|
nipkow@29667
|
867 |
by (insert abs_le_D1 [of "uminus a"], simp)
|
haftmann@25303
|
868 |
|
haftmann@25303
|
869 |
lemma abs_le_iff: "\<bar>a\<bar> \<le> b \<longleftrightarrow> a \<le> b \<and> - a \<le> b"
|
nipkow@29667
|
870 |
by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)
|
haftmann@25303
|
871 |
|
haftmann@25303
|
872 |
lemma abs_triangle_ineq2: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>a - b\<bar>"
|
nipkow@29667
|
873 |
apply (simp add: algebra_simps)
|
nipkow@29667
|
874 |
apply (subgoal_tac "abs a = abs (plus b (minus a b))")
|
haftmann@25303
|
875 |
apply (erule ssubst)
|
haftmann@25303
|
876 |
apply (rule abs_triangle_ineq)
|
nipkow@29667
|
877 |
apply (rule arg_cong[of _ _ abs])
|
nipkow@29667
|
878 |
apply (simp add: algebra_simps)
|
avigad@16775
|
879 |
done
|
avigad@16775
|
880 |
|
haftmann@25303
|
881 |
lemma abs_triangle_ineq3: "\<bar>\<bar>a\<bar> - \<bar>b\<bar>\<bar> \<le> \<bar>a - b\<bar>"
|
haftmann@25303
|
882 |
apply (subst abs_le_iff)
|
haftmann@25303
|
883 |
apply auto
|
haftmann@25303
|
884 |
apply (rule abs_triangle_ineq2)
|
haftmann@25303
|
885 |
apply (subst abs_minus_commute)
|
haftmann@25303
|
886 |
apply (rule abs_triangle_ineq2)
|
avigad@16775
|
887 |
done
|
avigad@16775
|
888 |
|
haftmann@25303
|
889 |
lemma abs_triangle_ineq4: "\<bar>a - b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
|
haftmann@25303
|
890 |
proof -
|
nipkow@29667
|
891 |
have "abs(a - b) = abs(a + - b)" by (subst diff_minus, rule refl)
|
nipkow@29667
|
892 |
also have "... <= abs a + abs (- b)" by (rule abs_triangle_ineq)
|
nipkow@29667
|
893 |
finally show ?thesis by simp
|
haftmann@25303
|
894 |
qed
|
avigad@16775
|
895 |
|
haftmann@25303
|
896 |
lemma abs_diff_triangle_ineq: "\<bar>a + b - (c + d)\<bar> \<le> \<bar>a - c\<bar> + \<bar>b - d\<bar>"
|
haftmann@25303
|
897 |
proof -
|
haftmann@25303
|
898 |
have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac)
|
haftmann@25303
|
899 |
also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq)
|
haftmann@25303
|
900 |
finally show ?thesis .
|
haftmann@25303
|
901 |
qed
|
avigad@16775
|
902 |
|
haftmann@25303
|
903 |
lemma abs_add_abs [simp]:
|
haftmann@25303
|
904 |
"\<bar>\<bar>a\<bar> + \<bar>b\<bar>\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" (is "?L = ?R")
|
haftmann@25303
|
905 |
proof (rule antisym)
|
haftmann@25303
|
906 |
show "?L \<ge> ?R" by(rule abs_ge_self)
|
haftmann@25303
|
907 |
next
|
haftmann@25303
|
908 |
have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by(rule abs_triangle_ineq)
|
haftmann@25303
|
909 |
also have "\<dots> = ?R" by simp
|
haftmann@25303
|
910 |
finally show "?L \<le> ?R" .
|
haftmann@25303
|
911 |
qed
|
haftmann@25303
|
912 |
|
haftmann@25303
|
913 |
end
|
obua@14738
|
914 |
|
haftmann@22452
|
915 |
|
obua@14738
|
916 |
subsection {* Lattice Ordered (Abelian) Groups *}
|
obua@14738
|
917 |
|
haftmann@25303
|
918 |
class lordered_ab_group_add_meet = pordered_ab_group_add + lower_semilattice
|
haftmann@25090
|
919 |
begin
|
obua@14738
|
920 |
|
haftmann@25090
|
921 |
lemma add_inf_distrib_left:
|
haftmann@25090
|
922 |
"a + inf b c = inf (a + b) (a + c)"
|
haftmann@25090
|
923 |
apply (rule antisym)
|
haftmann@22422
|
924 |
apply (simp_all add: le_infI)
|
haftmann@25090
|
925 |
apply (rule add_le_imp_le_left [of "uminus a"])
|
haftmann@25090
|
926 |
apply (simp only: add_assoc [symmetric], simp)
|
nipkow@21312
|
927 |
apply rule
|
nipkow@21312
|
928 |
apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp)+
|
obua@14738
|
929 |
done
|
obua@14738
|
930 |
|
haftmann@25090
|
931 |
lemma add_inf_distrib_right:
|
haftmann@25090
|
932 |
"inf a b + c = inf (a + c) (b + c)"
|
haftmann@25090
|
933 |
proof -
|
haftmann@25090
|
934 |
have "c + inf a b = inf (c+a) (c+b)" by (simp add: add_inf_distrib_left)
|
haftmann@25090
|
935 |
thus ?thesis by (simp add: add_commute)
|
haftmann@25090
|
936 |
qed
|
haftmann@25090
|
937 |
|
haftmann@25090
|
938 |
end
|
haftmann@25090
|
939 |
|
haftmann@25303
|
940 |
class lordered_ab_group_add_join = pordered_ab_group_add + upper_semilattice
|
haftmann@25090
|
941 |
begin
|
haftmann@25090
|
942 |
|
haftmann@25090
|
943 |
lemma add_sup_distrib_left:
|
haftmann@25090
|
944 |
"a + sup b c = sup (a + b) (a + c)"
|
haftmann@25090
|
945 |
apply (rule antisym)
|
haftmann@25090
|
946 |
apply (rule add_le_imp_le_left [of "uminus a"])
|
obua@14738
|
947 |
apply (simp only: add_assoc[symmetric], simp)
|
nipkow@21312
|
948 |
apply rule
|
nipkow@21312
|
949 |
apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp)+
|
haftmann@22422
|
950 |
apply (rule le_supI)
|
nipkow@21312
|
951 |
apply (simp_all)
|
obua@14738
|
952 |
done
|
obua@14738
|
953 |
|
haftmann@25090
|
954 |
lemma add_sup_distrib_right:
|
haftmann@25090
|
955 |
"sup a b + c = sup (a+c) (b+c)"
|
obua@14738
|
956 |
proof -
|
haftmann@22452
|
957 |
have "c + sup a b = sup (c+a) (c+b)" by (simp add: add_sup_distrib_left)
|
obua@14738
|
958 |
thus ?thesis by (simp add: add_commute)
|
obua@14738
|
959 |
qed
|
obua@14738
|
960 |
|
haftmann@25090
|
961 |
end
|
haftmann@25090
|
962 |
|
haftmann@25303
|
963 |
class lordered_ab_group_add = pordered_ab_group_add + lattice
|
haftmann@25090
|
964 |
begin
|
haftmann@25090
|
965 |
|
huffman@27516
|
966 |
subclass lordered_ab_group_add_meet ..
|
huffman@27516
|
967 |
subclass lordered_ab_group_add_join ..
|
haftmann@25090
|
968 |
|
haftmann@22422
|
969 |
lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left
|
obua@14738
|
970 |
|
haftmann@25090
|
971 |
lemma inf_eq_neg_sup: "inf a b = - sup (-a) (-b)"
|
haftmann@22452
|
972 |
proof (rule inf_unique)
|
haftmann@22452
|
973 |
fix a b :: 'a
|
haftmann@25090
|
974 |
show "- sup (-a) (-b) \<le> a"
|
haftmann@25090
|
975 |
by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"])
|
haftmann@25090
|
976 |
(simp, simp add: add_sup_distrib_left)
|
haftmann@22452
|
977 |
next
|
haftmann@22452
|
978 |
fix a b :: 'a
|
haftmann@25090
|
979 |
show "- sup (-a) (-b) \<le> b"
|
haftmann@25090
|
980 |
by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"])
|
haftmann@25090
|
981 |
(simp, simp add: add_sup_distrib_left)
|
haftmann@22452
|
982 |
next
|
haftmann@22452
|
983 |
fix a b c :: 'a
|
haftmann@22452
|
984 |
assume "a \<le> b" "a \<le> c"
|
haftmann@22452
|
985 |
then show "a \<le> - sup (-b) (-c)" by (subst neg_le_iff_le [symmetric])
|
haftmann@22452
|
986 |
(simp add: le_supI)
|
haftmann@22452
|
987 |
qed
|
haftmann@22452
|
988 |
|
haftmann@25090
|
989 |
lemma sup_eq_neg_inf: "sup a b = - inf (-a) (-b)"
|
haftmann@22452
|
990 |
proof (rule sup_unique)
|
haftmann@22452
|
991 |
fix a b :: 'a
|
haftmann@25090
|
992 |
show "a \<le> - inf (-a) (-b)"
|
haftmann@25090
|
993 |
by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"])
|
haftmann@25090
|
994 |
(simp, simp add: add_inf_distrib_left)
|
haftmann@22452
|
995 |
next
|
haftmann@22452
|
996 |
fix a b :: 'a
|
haftmann@25090
|
997 |
show "b \<le> - inf (-a) (-b)"
|
haftmann@25090
|
998 |
by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"])
|
haftmann@25090
|
999 |
(simp, simp add: add_inf_distrib_left)
|
haftmann@22452
|
1000 |
next
|
haftmann@22452
|
1001 |
fix a b c :: 'a
|
haftmann@22452
|
1002 |
assume "a \<le> c" "b \<le> c"
|
haftmann@22452
|
1003 |
then show "- inf (-a) (-b) \<le> c" by (subst neg_le_iff_le [symmetric])
|
haftmann@22452
|
1004 |
(simp add: le_infI)
|
haftmann@22452
|
1005 |
qed
|
obua@14738
|
1006 |
|
haftmann@25230
|
1007 |
lemma neg_inf_eq_sup: "- inf a b = sup (-a) (-b)"
|
nipkow@29667
|
1008 |
by (simp add: inf_eq_neg_sup)
|
haftmann@25230
|
1009 |
|
haftmann@25230
|
1010 |
lemma neg_sup_eq_inf: "- sup a b = inf (-a) (-b)"
|
nipkow@29667
|
1011 |
by (simp add: sup_eq_neg_inf)
|
haftmann@25230
|
1012 |
|
haftmann@25090
|
1013 |
lemma add_eq_inf_sup: "a + b = sup a b + inf a b"
|
obua@14738
|
1014 |
proof -
|
haftmann@22422
|
1015 |
have "0 = - inf 0 (a-b) + inf (a-b) 0" by (simp add: inf_commute)
|
haftmann@22422
|
1016 |
hence "0 = sup 0 (b-a) + inf (a-b) 0" by (simp add: inf_eq_neg_sup)
|
haftmann@22422
|
1017 |
hence "0 = (-a + sup a b) + (inf a b + (-b))"
|
nipkow@29667
|
1018 |
by (simp add: add_sup_distrib_left add_inf_distrib_right)
|
nipkow@29667
|
1019 |
(simp add: algebra_simps)
|
nipkow@29667
|
1020 |
thus ?thesis by (simp add: algebra_simps)
|
obua@14738
|
1021 |
qed
|
obua@14738
|
1022 |
|
obua@14738
|
1023 |
subsection {* Positive Part, Negative Part, Absolute Value *}
|
obua@14738
|
1024 |
|
haftmann@22422
|
1025 |
definition
|
haftmann@25090
|
1026 |
nprt :: "'a \<Rightarrow> 'a" where
|
haftmann@22422
|
1027 |
"nprt x = inf x 0"
|
haftmann@22422
|
1028 |
|
haftmann@22422
|
1029 |
definition
|
haftmann@25090
|
1030 |
pprt :: "'a \<Rightarrow> 'a" where
|
haftmann@22422
|
1031 |
"pprt x = sup x 0"
|
obua@14738
|
1032 |
|
haftmann@25230
|
1033 |
lemma pprt_neg: "pprt (- x) = - nprt x"
|
haftmann@25230
|
1034 |
proof -
|
haftmann@25230
|
1035 |
have "sup (- x) 0 = sup (- x) (- 0)" unfolding minus_zero ..
|
haftmann@25230
|
1036 |
also have "\<dots> = - inf x 0" unfolding neg_inf_eq_sup ..
|
haftmann@25230
|
1037 |
finally have "sup (- x) 0 = - inf x 0" .
|
haftmann@25230
|
1038 |
then show ?thesis unfolding pprt_def nprt_def .
|
haftmann@25230
|
1039 |
qed
|
haftmann@25230
|
1040 |
|
haftmann@25230
|
1041 |
lemma nprt_neg: "nprt (- x) = - pprt x"
|
haftmann@25230
|
1042 |
proof -
|
haftmann@25230
|
1043 |
from pprt_neg have "pprt (- (- x)) = - nprt (- x)" .
|
haftmann@25230
|
1044 |
then have "pprt x = - nprt (- x)" by simp
|
haftmann@25230
|
1045 |
then show ?thesis by simp
|
haftmann@25230
|
1046 |
qed
|
haftmann@25230
|
1047 |
|
obua@14738
|
1048 |
lemma prts: "a = pprt a + nprt a"
|
nipkow@29667
|
1049 |
by (simp add: pprt_def nprt_def add_eq_inf_sup[symmetric])
|
obua@14738
|
1050 |
|
obua@14738
|
1051 |
lemma zero_le_pprt[simp]: "0 \<le> pprt a"
|
nipkow@29667
|
1052 |
by (simp add: pprt_def)
|
obua@14738
|
1053 |
|
obua@14738
|
1054 |
lemma nprt_le_zero[simp]: "nprt a \<le> 0"
|
nipkow@29667
|
1055 |
by (simp add: nprt_def)
|
obua@14738
|
1056 |
|
haftmann@25090
|
1057 |
lemma le_eq_neg: "a \<le> - b \<longleftrightarrow> a + b \<le> 0" (is "?l = ?r")
|
obua@14738
|
1058 |
proof -
|
obua@14738
|
1059 |
have a: "?l \<longrightarrow> ?r"
|
obua@14738
|
1060 |
apply (auto)
|
haftmann@25090
|
1061 |
apply (rule add_le_imp_le_right[of _ "uminus b" _])
|
obua@14738
|
1062 |
apply (simp add: add_assoc)
|
obua@14738
|
1063 |
done
|
obua@14738
|
1064 |
have b: "?r \<longrightarrow> ?l"
|
obua@14738
|
1065 |
apply (auto)
|
obua@14738
|
1066 |
apply (rule add_le_imp_le_right[of _ "b" _])
|
obua@14738
|
1067 |
apply (simp)
|
obua@14738
|
1068 |
done
|
obua@14738
|
1069 |
from a b show ?thesis by blast
|
obua@14738
|
1070 |
qed
|
obua@14738
|
1071 |
|
obua@15580
|
1072 |
lemma pprt_0[simp]: "pprt 0 = 0" by (simp add: pprt_def)
|
obua@15580
|
1073 |
lemma nprt_0[simp]: "nprt 0 = 0" by (simp add: nprt_def)
|
obua@15580
|
1074 |
|
haftmann@25090
|
1075 |
lemma pprt_eq_id [simp, noatp]: "0 \<le> x \<Longrightarrow> pprt x = x"
|
nipkow@29667
|
1076 |
by (simp add: pprt_def le_iff_sup sup_ACI)
|
obua@15580
|
1077 |
|
haftmann@25090
|
1078 |
lemma nprt_eq_id [simp, noatp]: "x \<le> 0 \<Longrightarrow> nprt x = x"
|
nipkow@29667
|
1079 |
by (simp add: nprt_def le_iff_inf inf_ACI)
|
obua@15580
|
1080 |
|
haftmann@25090
|
1081 |
lemma pprt_eq_0 [simp, noatp]: "x \<le> 0 \<Longrightarrow> pprt x = 0"
|
nipkow@29667
|
1082 |
by (simp add: pprt_def le_iff_sup sup_ACI)
|
obua@15580
|
1083 |
|
haftmann@25090
|
1084 |
lemma nprt_eq_0 [simp, noatp]: "0 \<le> x \<Longrightarrow> nprt x = 0"
|
nipkow@29667
|
1085 |
by (simp add: nprt_def le_iff_inf inf_ACI)
|
obua@15580
|
1086 |
|
haftmann@25090
|
1087 |
lemma sup_0_imp_0: "sup a (- a) = 0 \<Longrightarrow> a = 0"
|
obua@14738
|
1088 |
proof -
|
obua@14738
|
1089 |
{
|
obua@14738
|
1090 |
fix a::'a
|
haftmann@22422
|
1091 |
assume hyp: "sup a (-a) = 0"
|
haftmann@22422
|
1092 |
hence "sup a (-a) + a = a" by (simp)
|
haftmann@22422
|
1093 |
hence "sup (a+a) 0 = a" by (simp add: add_sup_distrib_right)
|
haftmann@22422
|
1094 |
hence "sup (a+a) 0 <= a" by (simp)
|
haftmann@22422
|
1095 |
hence "0 <= a" by (blast intro: order_trans inf_sup_ord)
|
obua@14738
|
1096 |
}
|
obua@14738
|
1097 |
note p = this
|
haftmann@22422
|
1098 |
assume hyp:"sup a (-a) = 0"
|
haftmann@22422
|
1099 |
hence hyp2:"sup (-a) (-(-a)) = 0" by (simp add: sup_commute)
|
obua@14738
|
1100 |
from p[OF hyp] p[OF hyp2] show "a = 0" by simp
|
obua@14738
|
1101 |
qed
|
obua@14738
|
1102 |
|
haftmann@25090
|
1103 |
lemma inf_0_imp_0: "inf a (-a) = 0 \<Longrightarrow> a = 0"
|
haftmann@22422
|
1104 |
apply (simp add: inf_eq_neg_sup)
|
haftmann@22422
|
1105 |
apply (simp add: sup_commute)
|
haftmann@22422
|
1106 |
apply (erule sup_0_imp_0)
|
paulson@15481
|
1107 |
done
|
obua@14738
|
1108 |
|
haftmann@25090
|
1109 |
lemma inf_0_eq_0 [simp, noatp]: "inf a (- a) = 0 \<longleftrightarrow> a = 0"
|
nipkow@29667
|
1110 |
by (rule, erule inf_0_imp_0) simp
|
obua@14738
|
1111 |
|
haftmann@25090
|
1112 |
lemma sup_0_eq_0 [simp, noatp]: "sup a (- a) = 0 \<longleftrightarrow> a = 0"
|
nipkow@29667
|
1113 |
by (rule, erule sup_0_imp_0) simp
|
obua@14738
|
1114 |
|
haftmann@25090
|
1115 |
lemma zero_le_double_add_iff_zero_le_single_add [simp]:
|
haftmann@25090
|
1116 |
"0 \<le> a + a \<longleftrightarrow> 0 \<le> a"
|
obua@14738
|
1117 |
proof
|
obua@14738
|
1118 |
assume "0 <= a + a"
|
haftmann@22422
|
1119 |
hence a:"inf (a+a) 0 = 0" by (simp add: le_iff_inf inf_commute)
|
haftmann@25090
|
1120 |
have "(inf a 0)+(inf a 0) = inf (inf (a+a) 0) a" (is "?l=_")
|
haftmann@25090
|
1121 |
by (simp add: add_sup_inf_distribs inf_ACI)
|
haftmann@22422
|
1122 |
hence "?l = 0 + inf a 0" by (simp add: a, simp add: inf_commute)
|
haftmann@22422
|
1123 |
hence "inf a 0 = 0" by (simp only: add_right_cancel)
|
haftmann@22422
|
1124 |
then show "0 <= a" by (simp add: le_iff_inf inf_commute)
|
obua@14738
|
1125 |
next
|
obua@14738
|
1126 |
assume a: "0 <= a"
|
obua@14738
|
1127 |
show "0 <= a + a" by (simp add: add_mono[OF a a, simplified])
|
obua@14738
|
1128 |
qed
|
obua@14738
|
1129 |
|
haftmann@25090
|
1130 |
lemma double_zero: "a + a = 0 \<longleftrightarrow> a = 0"
|
haftmann@25090
|
1131 |
proof
|
haftmann@25090
|
1132 |
assume assm: "a + a = 0"
|
haftmann@25090
|
1133 |
then have "a + a + - a = - a" by simp
|
haftmann@25090
|
1134 |
then have "a + (a + - a) = - a" by (simp only: add_assoc)
|
haftmann@25090
|
1135 |
then have a: "- a = a" by simp (*FIXME tune proof*)
|
haftmann@25102
|
1136 |
show "a = 0" apply (rule antisym)
|
haftmann@25090
|
1137 |
apply (unfold neg_le_iff_le [symmetric, of a])
|
haftmann@25090
|
1138 |
unfolding a apply simp
|
haftmann@25090
|
1139 |
unfolding zero_le_double_add_iff_zero_le_single_add [symmetric, of a]
|
haftmann@25090
|
1140 |
unfolding assm unfolding le_less apply simp_all done
|
haftmann@25090
|
1141 |
next
|
haftmann@25090
|
1142 |
assume "a = 0" then show "a + a = 0" by simp
|
haftmann@25090
|
1143 |
qed
|
haftmann@25090
|
1144 |
|
haftmann@25090
|
1145 |
lemma zero_less_double_add_iff_zero_less_single_add:
|
haftmann@25090
|
1146 |
"0 < a + a \<longleftrightarrow> 0 < a"
|
haftmann@25090
|
1147 |
proof (cases "a = 0")
|
haftmann@25090
|
1148 |
case True then show ?thesis by auto
|
haftmann@25090
|
1149 |
next
|
haftmann@25090
|
1150 |
case False then show ?thesis (*FIXME tune proof*)
|
haftmann@25090
|
1151 |
unfolding less_le apply simp apply rule
|
haftmann@25090
|
1152 |
apply clarify
|
haftmann@25090
|
1153 |
apply rule
|
haftmann@25090
|
1154 |
apply assumption
|
haftmann@25090
|
1155 |
apply (rule notI)
|
haftmann@25090
|
1156 |
unfolding double_zero [symmetric, of a] apply simp
|
haftmann@25090
|
1157 |
done
|
haftmann@25090
|
1158 |
qed
|
haftmann@25090
|
1159 |
|
haftmann@25090
|
1160 |
lemma double_add_le_zero_iff_single_add_le_zero [simp]:
|
haftmann@25090
|
1161 |
"a + a \<le> 0 \<longleftrightarrow> a \<le> 0"
|
obua@14738
|
1162 |
proof -
|
haftmann@25090
|
1163 |
have "a + a \<le> 0 \<longleftrightarrow> 0 \<le> - (a + a)" by (subst le_minus_iff, simp)
|
haftmann@25090
|
1164 |
moreover have "\<dots> \<longleftrightarrow> a \<le> 0" by (simp add: zero_le_double_add_iff_zero_le_single_add)
|
obua@14738
|
1165 |
ultimately show ?thesis by blast
|
obua@14738
|
1166 |
qed
|
obua@14738
|
1167 |
|
haftmann@25090
|
1168 |
lemma double_add_less_zero_iff_single_less_zero [simp]:
|
haftmann@25090
|
1169 |
"a + a < 0 \<longleftrightarrow> a < 0"
|
haftmann@25090
|
1170 |
proof -
|
haftmann@25090
|
1171 |
have "a + a < 0 \<longleftrightarrow> 0 < - (a + a)" by (subst less_minus_iff, simp)
|
haftmann@25090
|
1172 |
moreover have "\<dots> \<longleftrightarrow> a < 0" by (simp add: zero_less_double_add_iff_zero_less_single_add)
|
haftmann@25090
|
1173 |
ultimately show ?thesis by blast
|
obua@14738
|
1174 |
qed
|
obua@14738
|
1175 |
|
haftmann@25230
|
1176 |
declare neg_inf_eq_sup [simp] neg_sup_eq_inf [simp]
|
haftmann@25230
|
1177 |
|
haftmann@25230
|
1178 |
lemma le_minus_self_iff: "a \<le> - a \<longleftrightarrow> a \<le> 0"
|
haftmann@25230
|
1179 |
proof -
|
haftmann@25230
|
1180 |
from add_le_cancel_left [of "uminus a" "plus a a" zero]
|
haftmann@25230
|
1181 |
have "(a <= -a) = (a+a <= 0)"
|
haftmann@25230
|
1182 |
by (simp add: add_assoc[symmetric])
|
haftmann@25230
|
1183 |
thus ?thesis by simp
|
haftmann@25230
|
1184 |
qed
|
haftmann@25230
|
1185 |
|
haftmann@25230
|
1186 |
lemma minus_le_self_iff: "- a \<le> a \<longleftrightarrow> 0 \<le> a"
|
haftmann@25230
|
1187 |
proof -
|
haftmann@25230
|
1188 |
from add_le_cancel_left [of "uminus a" zero "plus a a"]
|
haftmann@25230
|
1189 |
have "(-a <= a) = (0 <= a+a)"
|
haftmann@25230
|
1190 |
by (simp add: add_assoc[symmetric])
|
haftmann@25230
|
1191 |
thus ?thesis by simp
|
haftmann@25230
|
1192 |
qed
|
haftmann@25230
|
1193 |
|
haftmann@25230
|
1194 |
lemma zero_le_iff_zero_nprt: "0 \<le> a \<longleftrightarrow> nprt a = 0"
|
nipkow@29667
|
1195 |
by (simp add: le_iff_inf nprt_def inf_commute)
|
haftmann@25230
|
1196 |
|
haftmann@25230
|
1197 |
lemma le_zero_iff_zero_pprt: "a \<le> 0 \<longleftrightarrow> pprt a = 0"
|
nipkow@29667
|
1198 |
by (simp add: le_iff_sup pprt_def sup_commute)
|
haftmann@25230
|
1199 |
|
haftmann@25230
|
1200 |
lemma le_zero_iff_pprt_id: "0 \<le> a \<longleftrightarrow> pprt a = a"
|
nipkow@29667
|
1201 |
by (simp add: le_iff_sup pprt_def sup_commute)
|
haftmann@25230
|
1202 |
|
haftmann@25230
|
1203 |
lemma zero_le_iff_nprt_id: "a \<le> 0 \<longleftrightarrow> nprt a = a"
|
nipkow@29667
|
1204 |
by (simp add: le_iff_inf nprt_def inf_commute)
|
haftmann@25230
|
1205 |
|
haftmann@25230
|
1206 |
lemma pprt_mono [simp, noatp]: "a \<le> b \<Longrightarrow> pprt a \<le> pprt b"
|
nipkow@29667
|
1207 |
by (simp add: le_iff_sup pprt_def sup_ACI sup_assoc [symmetric, of a])
|
haftmann@25230
|
1208 |
|
haftmann@25230
|
1209 |
lemma nprt_mono [simp, noatp]: "a \<le> b \<Longrightarrow> nprt a \<le> nprt b"
|
nipkow@29667
|
1210 |
by (simp add: le_iff_inf nprt_def inf_ACI inf_assoc [symmetric, of a])
|
haftmann@25230
|
1211 |
|
haftmann@25090
|
1212 |
end
|
haftmann@25090
|
1213 |
|
haftmann@25090
|
1214 |
lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left
|
haftmann@25090
|
1215 |
|
haftmann@25230
|
1216 |
|
haftmann@25303
|
1217 |
class lordered_ab_group_add_abs = lordered_ab_group_add + abs +
|
haftmann@25230
|
1218 |
assumes abs_lattice: "\<bar>a\<bar> = sup a (- a)"
|
haftmann@25230
|
1219 |
begin
|
haftmann@25230
|
1220 |
|
haftmann@25230
|
1221 |
lemma abs_prts: "\<bar>a\<bar> = pprt a - nprt a"
|
haftmann@25230
|
1222 |
proof -
|
haftmann@25230
|
1223 |
have "0 \<le> \<bar>a\<bar>"
|
haftmann@25230
|
1224 |
proof -
|
haftmann@25230
|
1225 |
have a: "a \<le> \<bar>a\<bar>" and b: "- a \<le> \<bar>a\<bar>" by (auto simp add: abs_lattice)
|
haftmann@25230
|
1226 |
show ?thesis by (rule add_mono [OF a b, simplified])
|
haftmann@25230
|
1227 |
qed
|
haftmann@25230
|
1228 |
then have "0 \<le> sup a (- a)" unfolding abs_lattice .
|
haftmann@25230
|
1229 |
then have "sup (sup a (- a)) 0 = sup a (- a)" by (rule sup_absorb1)
|
haftmann@25230
|
1230 |
then show ?thesis
|
haftmann@25230
|
1231 |
by (simp add: add_sup_inf_distribs sup_ACI
|
haftmann@25230
|
1232 |
pprt_def nprt_def diff_minus abs_lattice)
|
haftmann@25230
|
1233 |
qed
|
haftmann@25230
|
1234 |
|
haftmann@25230
|
1235 |
subclass pordered_ab_group_add_abs
|
haftmann@29557
|
1236 |
proof
|
haftmann@25230
|
1237 |
have abs_ge_zero [simp]: "\<And>a. 0 \<le> \<bar>a\<bar>"
|
haftmann@25230
|
1238 |
proof -
|
haftmann@25230
|
1239 |
fix a b
|
haftmann@25230
|
1240 |
have a: "a \<le> \<bar>a\<bar>" and b: "- a \<le> \<bar>a\<bar>" by (auto simp add: abs_lattice)
|
haftmann@25230
|
1241 |
show "0 \<le> \<bar>a\<bar>" by (rule add_mono [OF a b, simplified])
|
haftmann@25230
|
1242 |
qed
|
haftmann@25230
|
1243 |
have abs_leI: "\<And>a b. a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b"
|
haftmann@25230
|
1244 |
by (simp add: abs_lattice le_supI)
|
haftmann@29557
|
1245 |
fix a b
|
haftmann@29557
|
1246 |
show "0 \<le> \<bar>a\<bar>" by simp
|
haftmann@29557
|
1247 |
show "a \<le> \<bar>a\<bar>"
|
haftmann@29557
|
1248 |
by (auto simp add: abs_lattice)
|
haftmann@29557
|
1249 |
show "\<bar>-a\<bar> = \<bar>a\<bar>"
|
haftmann@29557
|
1250 |
by (simp add: abs_lattice sup_commute)
|
haftmann@29557
|
1251 |
show "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b" by (fact abs_leI)
|
haftmann@29557
|
1252 |
show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
|
haftmann@29557
|
1253 |
proof -
|
haftmann@29557
|
1254 |
have g:"abs a + abs b = sup (a+b) (sup (-a-b) (sup (-a+b) (a + (-b))))" (is "_=sup ?m ?n")
|
haftmann@29557
|
1255 |
by (simp add: abs_lattice add_sup_inf_distribs sup_ACI diff_minus)
|
haftmann@29557
|
1256 |
have a:"a+b <= sup ?m ?n" by (simp)
|
haftmann@29557
|
1257 |
have b:"-a-b <= ?n" by (simp)
|
haftmann@29557
|
1258 |
have c:"?n <= sup ?m ?n" by (simp)
|
haftmann@29557
|
1259 |
from b c have d: "-a-b <= sup ?m ?n" by(rule order_trans)
|
haftmann@29557
|
1260 |
have e:"-a-b = -(a+b)" by (simp add: diff_minus)
|
haftmann@29557
|
1261 |
from a d e have "abs(a+b) <= sup ?m ?n"
|
haftmann@29557
|
1262 |
by (drule_tac abs_leI, auto)
|
haftmann@29557
|
1263 |
with g[symmetric] show ?thesis by simp
|
haftmann@29557
|
1264 |
qed
|
haftmann@25230
|
1265 |
qed
|
haftmann@25230
|
1266 |
|
haftmann@25230
|
1267 |
end
|
haftmann@25230
|
1268 |
|
haftmann@25090
|
1269 |
lemma sup_eq_if:
|
haftmann@25303
|
1270 |
fixes a :: "'a\<Colon>{lordered_ab_group_add, linorder}"
|
haftmann@25090
|
1271 |
shows "sup a (- a) = (if a < 0 then - a else a)"
|
haftmann@25090
|
1272 |
proof -
|
haftmann@25090
|
1273 |
note add_le_cancel_right [of a a "- a", symmetric, simplified]
|
haftmann@25090
|
1274 |
moreover note add_le_cancel_right [of "-a" a a, symmetric, simplified]
|
haftmann@25090
|
1275 |
then show ?thesis by (auto simp: sup_max max_def)
|
haftmann@25090
|
1276 |
qed
|
haftmann@25090
|
1277 |
|
haftmann@25090
|
1278 |
lemma abs_if_lattice:
|
haftmann@25303
|
1279 |
fixes a :: "'a\<Colon>{lordered_ab_group_add_abs, linorder}"
|
haftmann@25090
|
1280 |
shows "\<bar>a\<bar> = (if a < 0 then - a else a)"
|
nipkow@29667
|
1281 |
by auto
|
haftmann@25090
|
1282 |
|
haftmann@25090
|
1283 |
|
obua@14754
|
1284 |
text {* Needed for abelian cancellation simprocs: *}
|
obua@14754
|
1285 |
|
obua@14754
|
1286 |
lemma add_cancel_21: "((x::'a::ab_group_add) + (y + z) = y + u) = (x + z = u)"
|
obua@14754
|
1287 |
apply (subst add_left_commute)
|
obua@14754
|
1288 |
apply (subst add_left_cancel)
|
obua@14754
|
1289 |
apply simp
|
obua@14754
|
1290 |
done
|
obua@14754
|
1291 |
|
obua@14754
|
1292 |
lemma add_cancel_end: "(x + (y + z) = y) = (x = - (z::'a::ab_group_add))"
|
obua@14754
|
1293 |
apply (subst add_cancel_21[of _ _ _ 0, simplified])
|
obua@14754
|
1294 |
apply (simp add: add_right_cancel[symmetric, of "x" "-z" "z", simplified])
|
obua@14754
|
1295 |
done
|
obua@14754
|
1296 |
|
obua@14754
|
1297 |
lemma less_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (x < y) = (x' < y')"
|
obua@14754
|
1298 |
by (simp add: less_iff_diff_less_0[of x y] less_iff_diff_less_0[of x' y'])
|
obua@14754
|
1299 |
|
obua@14754
|
1300 |
lemma le_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (y <= x) = (y' <= x')"
|
obua@14754
|
1301 |
apply (simp add: le_iff_diff_le_0[of y x] le_iff_diff_le_0[of y' x'])
|
obua@14754
|
1302 |
apply (simp add: neg_le_iff_le[symmetric, of "y-x" 0] neg_le_iff_le[symmetric, of "y'-x'" 0])
|
obua@14754
|
1303 |
done
|
obua@14754
|
1304 |
|
obua@14754
|
1305 |
lemma eq_eqI: "(x::'a::ab_group_add) - y = x' - y' \<Longrightarrow> (x = y) = (x' = y')"
|
huffman@30629
|
1306 |
by (simp only: eq_iff_diff_eq_0[of x y] eq_iff_diff_eq_0[of x' y'])
|
obua@14754
|
1307 |
|
obua@14754
|
1308 |
lemma diff_def: "(x::'a::ab_group_add) - y == x + (-y)"
|
obua@14754
|
1309 |
by (simp add: diff_minus)
|
obua@14754
|
1310 |
|
obua@14754
|
1311 |
lemma add_minus_cancel: "(a::'a::ab_group_add) + (-a + b) = b"
|
obua@14754
|
1312 |
by (simp add: add_assoc[symmetric])
|
obua@14754
|
1313 |
|
haftmann@25090
|
1314 |
lemma le_add_right_mono:
|
obua@15178
|
1315 |
assumes
|
obua@15178
|
1316 |
"a <= b + (c::'a::pordered_ab_group_add)"
|
obua@15178
|
1317 |
"c <= d"
|
obua@15178
|
1318 |
shows "a <= b + d"
|
obua@15178
|
1319 |
apply (rule_tac order_trans[where y = "b+c"])
|
obua@15178
|
1320 |
apply (simp_all add: prems)
|
obua@15178
|
1321 |
done
|
obua@15178
|
1322 |
|
obua@15178
|
1323 |
lemma estimate_by_abs:
|
haftmann@25303
|
1324 |
"a + b <= (c::'a::lordered_ab_group_add_abs) \<Longrightarrow> a <= c + abs b"
|
obua@15178
|
1325 |
proof -
|
nipkow@23477
|
1326 |
assume "a+b <= c"
|
nipkow@29667
|
1327 |
hence 2: "a <= c+(-b)" by (simp add: algebra_simps)
|
obua@15178
|
1328 |
have 3: "(-b) <= abs b" by (rule abs_ge_minus_self)
|
obua@15178
|
1329 |
show ?thesis by (rule le_add_right_mono[OF 2 3])
|
obua@15178
|
1330 |
qed
|
obua@15178
|
1331 |
|
haftmann@25090
|
1332 |
subsection {* Tools setup *}
|
haftmann@25090
|
1333 |
|
haftmann@25077
|
1334 |
lemma add_mono_thms_ordered_semiring [noatp]:
|
haftmann@25077
|
1335 |
fixes i j k :: "'a\<Colon>pordered_ab_semigroup_add"
|
haftmann@25077
|
1336 |
shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
|
haftmann@25077
|
1337 |
and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
|
haftmann@25077
|
1338 |
and "i \<le> j \<and> k = l \<Longrightarrow> i + k \<le> j + l"
|
haftmann@25077
|
1339 |
and "i = j \<and> k = l \<Longrightarrow> i + k = j + l"
|
haftmann@25077
|
1340 |
by (rule add_mono, clarify+)+
|
haftmann@25077
|
1341 |
|
haftmann@25077
|
1342 |
lemma add_mono_thms_ordered_field [noatp]:
|
haftmann@25077
|
1343 |
fixes i j k :: "'a\<Colon>pordered_cancel_ab_semigroup_add"
|
haftmann@25077
|
1344 |
shows "i < j \<and> k = l \<Longrightarrow> i + k < j + l"
|
haftmann@25077
|
1345 |
and "i = j \<and> k < l \<Longrightarrow> i + k < j + l"
|
haftmann@25077
|
1346 |
and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l"
|
haftmann@25077
|
1347 |
and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l"
|
haftmann@25077
|
1348 |
and "i < j \<and> k < l \<Longrightarrow> i + k < j + l"
|
haftmann@25077
|
1349 |
by (auto intro: add_strict_right_mono add_strict_left_mono
|
haftmann@25077
|
1350 |
add_less_le_mono add_le_less_mono add_strict_mono)
|
haftmann@25077
|
1351 |
|
paulson@17085
|
1352 |
text{*Simplification of @{term "x-y < 0"}, etc.*}
|
nipkow@29833
|
1353 |
lemmas diff_less_0_iff_less [simp, noatp] = less_iff_diff_less_0 [symmetric]
|
nipkow@29833
|
1354 |
lemmas diff_le_0_iff_le [simp, noatp] = le_iff_diff_le_0 [symmetric]
|
paulson@17085
|
1355 |
|
haftmann@22482
|
1356 |
ML {*
|
wenzelm@27250
|
1357 |
structure ab_group_add_cancel = Abel_Cancel
|
wenzelm@27250
|
1358 |
(
|
haftmann@22482
|
1359 |
|
haftmann@22482
|
1360 |
(* term order for abelian groups *)
|
haftmann@22482
|
1361 |
|
haftmann@22482
|
1362 |
fun agrp_ord (Const (a, _)) = find_index (fn a' => a = a')
|
haftmann@22997
|
1363 |
[@{const_name HOL.zero}, @{const_name HOL.plus},
|
haftmann@22997
|
1364 |
@{const_name HOL.uminus}, @{const_name HOL.minus}]
|
haftmann@22482
|
1365 |
| agrp_ord _ = ~1;
|
haftmann@22482
|
1366 |
|
wenzelm@29269
|
1367 |
fun termless_agrp (a, b) = (TermOrd.term_lpo agrp_ord (a, b) = LESS);
|
haftmann@22482
|
1368 |
|
haftmann@22482
|
1369 |
local
|
haftmann@22482
|
1370 |
val ac1 = mk_meta_eq @{thm add_assoc};
|
haftmann@22482
|
1371 |
val ac2 = mk_meta_eq @{thm add_commute};
|
haftmann@22482
|
1372 |
val ac3 = mk_meta_eq @{thm add_left_commute};
|
haftmann@22997
|
1373 |
fun solve_add_ac thy _ (_ $ (Const (@{const_name HOL.plus},_) $ _ $ _) $ _) =
|
haftmann@22482
|
1374 |
SOME ac1
|
haftmann@22997
|
1375 |
| solve_add_ac thy _ (_ $ x $ (Const (@{const_name HOL.plus},_) $ y $ z)) =
|
haftmann@22482
|
1376 |
if termless_agrp (y, x) then SOME ac3 else NONE
|
haftmann@22482
|
1377 |
| solve_add_ac thy _ (_ $ x $ y) =
|
haftmann@22482
|
1378 |
if termless_agrp (y, x) then SOME ac2 else NONE
|
haftmann@22482
|
1379 |
| solve_add_ac thy _ _ = NONE
|
haftmann@22482
|
1380 |
in
|
wenzelm@28262
|
1381 |
val add_ac_proc = Simplifier.simproc (the_context ())
|
haftmann@22482
|
1382 |
"add_ac_proc" ["x + y::'a::ab_semigroup_add"] solve_add_ac;
|
haftmann@22482
|
1383 |
end;
|
haftmann@22482
|
1384 |
|
wenzelm@27250
|
1385 |
val eq_reflection = @{thm eq_reflection};
|
wenzelm@27250
|
1386 |
|
wenzelm@27250
|
1387 |
val T = @{typ "'a::ab_group_add"};
|
wenzelm@27250
|
1388 |
|
haftmann@22482
|
1389 |
val cancel_ss = HOL_basic_ss settermless termless_agrp
|
haftmann@22482
|
1390 |
addsimprocs [add_ac_proc] addsimps
|
nipkow@23085
|
1391 |
[@{thm add_0_left}, @{thm add_0_right}, @{thm diff_def},
|
haftmann@22482
|
1392 |
@{thm minus_add_distrib}, @{thm minus_minus}, @{thm minus_zero},
|
haftmann@22482
|
1393 |
@{thm right_minus}, @{thm left_minus}, @{thm add_minus_cancel},
|
haftmann@22482
|
1394 |
@{thm minus_add_cancel}];
|
wenzelm@27250
|
1395 |
|
wenzelm@27250
|
1396 |
val sum_pats = [@{cterm "x + y::'a::ab_group_add"}, @{cterm "x - y::'a::ab_group_add"}];
|
haftmann@22482
|
1397 |
|
haftmann@22548
|
1398 |
val eqI_rules = [@{thm less_eqI}, @{thm le_eqI}, @{thm eq_eqI}];
|
haftmann@22482
|
1399 |
|
haftmann@22482
|
1400 |
val dest_eqI =
|
haftmann@22482
|
1401 |
fst o HOLogic.dest_bin "op =" HOLogic.boolT o HOLogic.dest_Trueprop o concl_of;
|
haftmann@22482
|
1402 |
|
wenzelm@27250
|
1403 |
);
|
haftmann@22482
|
1404 |
*}
|
haftmann@22482
|
1405 |
|
wenzelm@26480
|
1406 |
ML {*
|
haftmann@22482
|
1407 |
Addsimprocs [ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv];
|
haftmann@22482
|
1408 |
*}
|
paulson@17085
|
1409 |
|
obua@14738
|
1410 |
end
|