src/HOL/Hyperreal/NthRoot.thy
author paulson
Thu Jul 29 16:14:42 2004 +0200 (2004-07-29)
changeset 15085 5693a977a767
parent 14767 d2b071e65e4c
child 15131 c69542757a4d
permissions -rw-r--r--
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson@12196
     1
(*  Title       : NthRoot.thy
paulson@12196
     2
    Author      : Jacques D. Fleuriot
paulson@12196
     3
    Copyright   : 1998  University of Cambridge
paulson@14477
     4
    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
paulson@12196
     5
*)
paulson@12196
     6
paulson@14324
     7
header{*Existence of Nth Root*}
paulson@14324
     8
paulson@14324
     9
theory NthRoot = SEQ + HSeries:
paulson@14324
    10
wenzelm@14767
    11
text {*
wenzelm@14767
    12
  Various lemmas needed for this result. We follow the proof given by
wenzelm@14767
    13
  John Lindsay Orr (\texttt{jorr@math.unl.edu}) in his Analysis
wenzelm@14767
    14
  Webnotes available at \url{http://www.math.unl.edu/~webnotes}.
wenzelm@14767
    15
wenzelm@14767
    16
  Lemmas about sequences of reals are used to reach the result.
wenzelm@14767
    17
*}
paulson@14324
    18
paulson@14324
    19
lemma lemma_nth_realpow_non_empty:
paulson@14324
    20
     "[| (0::real) < a; 0 < n |] ==> \<exists>s. s : {x. x ^ n <= a & 0 < x}"
paulson@14324
    21
apply (case_tac "1 <= a")
paulson@14477
    22
apply (rule_tac x = 1 in exI)
paulson@14334
    23
apply (drule_tac [2] linorder_not_le [THEN iffD1])
paulson@14477
    24
apply (drule_tac [2] less_not_refl2 [THEN not0_implies_Suc], simp) 
paulson@14348
    25
apply (force intro!: realpow_Suc_le_self simp del: realpow_Suc)
paulson@14324
    26
done
paulson@14324
    27
paulson@14348
    28
text{*Used only just below*}
paulson@14348
    29
lemma realpow_ge_self2: "[| (1::real) \<le> r; 0 < n |] ==> r \<le> r ^ n"
paulson@14348
    30
by (insert power_increasing [of 1 n r], simp)
paulson@14348
    31
paulson@14324
    32
lemma lemma_nth_realpow_isUb_ex:
paulson@14324
    33
     "[| (0::real) < a; 0 < n |]  
paulson@14324
    34
      ==> \<exists>u. isUb (UNIV::real set) {x. x ^ n <= a & 0 < x} u"
paulson@14324
    35
apply (case_tac "1 <= a")
paulson@14477
    36
apply (rule_tac x = a in exI)
paulson@14334
    37
apply (drule_tac [2] linorder_not_le [THEN iffD1])
paulson@14477
    38
apply (rule_tac [2] x = 1 in exI)
paulson@14477
    39
apply (rule_tac [!] setleI [THEN isUbI], safe)
paulson@14324
    40
apply (simp_all (no_asm))
paulson@14324
    41
apply (rule_tac [!] ccontr)
paulson@14334
    42
apply (drule_tac [!] linorder_not_le [THEN iffD1])
paulson@14477
    43
apply (drule realpow_ge_self2, assumption)
paulson@14477
    44
apply (drule_tac n = n in realpow_less)
paulson@14324
    45
apply (assumption+)
paulson@14477
    46
apply (drule real_le_trans, assumption)
paulson@14477
    47
apply (drule_tac y = "y ^ n" in order_less_le_trans, assumption, simp) 
paulson@14477
    48
apply (drule_tac n = n in zero_less_one [THEN realpow_less], auto)
paulson@14324
    49
done
paulson@14324
    50
paulson@14324
    51
lemma nth_realpow_isLub_ex:
paulson@14324
    52
     "[| (0::real) < a; 0 < n |]  
paulson@14324
    53
      ==> \<exists>u. isLub (UNIV::real set) {x. x ^ n <= a & 0 < x} u"
paulson@14365
    54
by (blast intro: lemma_nth_realpow_isUb_ex lemma_nth_realpow_non_empty reals_complete)
paulson@14365
    55
paulson@14324
    56
 
paulson@14324
    57
subsection{*First Half -- Lemmas First*}
paulson@14324
    58
paulson@14324
    59
lemma lemma_nth_realpow_seq:
paulson@14324
    60
     "isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u  
paulson@14324
    61
           ==> u + inverse(real (Suc k)) ~: {x. x ^ n <= a & 0 < x}"
paulson@14477
    62
apply (safe, drule isLubD2, blast)
paulson@14365
    63
apply (simp add: linorder_not_less [symmetric])
paulson@14324
    64
done
paulson@14324
    65
paulson@14324
    66
lemma lemma_nth_realpow_isLub_gt_zero:
paulson@14324
    67
     "[| isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u;  
paulson@14324
    68
         0 < a; 0 < n |] ==> 0 < u"
paulson@14477
    69
apply (drule lemma_nth_realpow_non_empty, auto)
paulson@14477
    70
apply (drule_tac y = s in isLub_isUb [THEN isUbD])
paulson@14324
    71
apply (auto intro: order_less_le_trans)
paulson@14324
    72
done
paulson@14324
    73
paulson@14324
    74
lemma lemma_nth_realpow_isLub_ge:
paulson@14324
    75
     "[| isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u;  
paulson@14324
    76
         0 < a; 0 < n |] ==> ALL k. a <= (u + inverse(real (Suc k))) ^ n"
paulson@14477
    77
apply safe
paulson@14477
    78
apply (frule lemma_nth_realpow_seq, safe)
paulson@15085
    79
apply (auto elim: order_less_asym simp add: linorder_not_less [symmetric]
paulson@15085
    80
            iff: real_0_less_add_iff) --{*legacy iff rule!*}
paulson@14365
    81
apply (simp add: linorder_not_less)
paulson@14324
    82
apply (rule order_less_trans [of _ 0])
paulson@14325
    83
apply (auto intro: lemma_nth_realpow_isLub_gt_zero)
paulson@14324
    84
done
paulson@14324
    85
paulson@14324
    86
text{*First result we want*}
paulson@14324
    87
lemma realpow_nth_ge:
paulson@14324
    88
     "[| (0::real) < a; 0 < n;  
paulson@14324
    89
     isLub (UNIV::real set)  
paulson@14324
    90
     {x. x ^ n <= a & 0 < x} u |] ==> a <= u ^ n"
paulson@14477
    91
apply (frule lemma_nth_realpow_isLub_ge, safe)
paulson@14324
    92
apply (rule LIMSEQ_inverse_real_of_nat_add [THEN LIMSEQ_pow, THEN LIMSEQ_le_const])
paulson@14334
    93
apply (auto simp add: real_of_nat_def)
paulson@14324
    94
done
paulson@14324
    95
paulson@14324
    96
subsection{*Second Half*}
paulson@14324
    97
paulson@14324
    98
lemma less_isLub_not_isUb:
paulson@14324
    99
     "[| isLub (UNIV::real set) S u; x < u |]  
paulson@14324
   100
           ==> ~ isUb (UNIV::real set) S x"
paulson@14477
   101
apply safe
paulson@14477
   102
apply (drule isLub_le_isUb, assumption)
paulson@14477
   103
apply (drule order_less_le_trans, auto)
paulson@14324
   104
done
paulson@14324
   105
paulson@14324
   106
lemma not_isUb_less_ex:
paulson@14324
   107
     "~ isUb (UNIV::real set) S u ==> \<exists>x \<in> S. u < x"
paulson@14477
   108
apply (rule ccontr, erule swap)
paulson@14324
   109
apply (rule setleI [THEN isUbI])
paulson@14365
   110
apply (auto simp add: linorder_not_less [symmetric])
paulson@14324
   111
done
paulson@14324
   112
paulson@14325
   113
lemma real_mult_less_self: "0 < r ==> r * (1 + -inverse(real (Suc n))) < r"
paulson@14334
   114
apply (simp (no_asm) add: right_distrib)
paulson@14334
   115
apply (rule add_less_cancel_left [of "-r", THEN iffD1])
paulson@14334
   116
apply (auto intro: mult_pos
paulson@14334
   117
            simp add: add_assoc [symmetric] neg_less_0_iff_less)
paulson@14325
   118
done
paulson@14325
   119
paulson@14325
   120
lemma real_mult_add_one_minus_ge_zero:
paulson@14325
   121
     "0 < r ==>  0 <= r*(1 + -inverse(real (Suc n)))"
paulson@15085
   122
by (simp add: zero_le_mult_iff real_of_nat_inverse_le_iff real_0_le_add_iff)
paulson@14325
   123
paulson@14324
   124
lemma lemma_nth_realpow_isLub_le:
paulson@14324
   125
     "[| isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u;  
paulson@14325
   126
       0 < a; 0 < n |] ==> ALL k. (u*(1 + -inverse(real (Suc k)))) ^ n <= a"
paulson@14477
   127
apply safe
paulson@14324
   128
apply (frule less_isLub_not_isUb [THEN not_isUb_less_ex])
paulson@14477
   129
apply (rule_tac n = k in real_mult_less_self)
paulson@14477
   130
apply (blast intro: lemma_nth_realpow_isLub_gt_zero, safe)
paulson@14477
   131
apply (drule_tac n = k in
paulson@14477
   132
        lemma_nth_realpow_isLub_gt_zero [THEN real_mult_add_one_minus_ge_zero], assumption+)
paulson@14348
   133
apply (blast intro: order_trans order_less_imp_le power_mono) 
paulson@14324
   134
done
paulson@14324
   135
paulson@14324
   136
text{*Second result we want*}
paulson@14324
   137
lemma realpow_nth_le:
paulson@14324
   138
     "[| (0::real) < a; 0 < n;  
paulson@14324
   139
     isLub (UNIV::real set)  
paulson@14324
   140
     {x. x ^ n <= a & 0 < x} u |] ==> u ^ n <= a"
paulson@14477
   141
apply (frule lemma_nth_realpow_isLub_le, safe)
paulson@14348
   142
apply (rule LIMSEQ_inverse_real_of_nat_add_minus_mult
paulson@14348
   143
                [THEN LIMSEQ_pow, THEN LIMSEQ_le_const2])
paulson@14334
   144
apply (auto simp add: real_of_nat_def)
paulson@14324
   145
done
paulson@14324
   146
paulson@14348
   147
text{*The theorem at last!*}
paulson@14324
   148
lemma realpow_nth: "[| (0::real) < a; 0 < n |] ==> \<exists>r. r ^ n = a"
paulson@14477
   149
apply (frule nth_realpow_isLub_ex, auto)
paulson@14477
   150
apply (auto intro: realpow_nth_le realpow_nth_ge order_antisym)
paulson@14324
   151
done
paulson@14324
   152
paulson@14324
   153
(* positive only *)
paulson@14324
   154
lemma realpow_pos_nth: "[| (0::real) < a; 0 < n |] ==> \<exists>r. 0 < r & r ^ n = a"
paulson@14477
   155
apply (frule nth_realpow_isLub_ex, auto)
paulson@14477
   156
apply (auto intro: realpow_nth_le realpow_nth_ge order_antisym lemma_nth_realpow_isLub_gt_zero)
paulson@14324
   157
done
paulson@14324
   158
paulson@14324
   159
lemma realpow_pos_nth2: "(0::real) < a  ==> \<exists>r. 0 < r & r ^ Suc n = a"
paulson@14477
   160
by (blast intro: realpow_pos_nth)
paulson@14324
   161
paulson@14324
   162
(* uniqueness of nth positive root *)
paulson@14324
   163
lemma realpow_pos_nth_unique:
paulson@14324
   164
     "[| (0::real) < a; 0 < n |] ==> EX! r. 0 < r & r ^ n = a"
paulson@14324
   165
apply (auto intro!: realpow_pos_nth)
paulson@14477
   166
apply (cut_tac x = r and y = y in linorder_less_linear, auto)
paulson@14477
   167
apply (drule_tac x = r in realpow_less)
paulson@14477
   168
apply (drule_tac [4] x = y in realpow_less, auto)
paulson@14324
   169
done
paulson@14324
   170
paulson@14324
   171
ML
paulson@14324
   172
{*
paulson@14324
   173
val nth_realpow_isLub_ex = thm"nth_realpow_isLub_ex";
paulson@14324
   174
val realpow_nth_ge = thm"realpow_nth_ge";
paulson@14324
   175
val less_isLub_not_isUb = thm"less_isLub_not_isUb";
paulson@14324
   176
val not_isUb_less_ex = thm"not_isUb_less_ex";
paulson@14324
   177
val realpow_nth_le = thm"realpow_nth_le";
paulson@14324
   178
val realpow_nth = thm"realpow_nth";
paulson@14324
   179
val realpow_pos_nth = thm"realpow_pos_nth";
paulson@14324
   180
val realpow_pos_nth2 = thm"realpow_pos_nth2";
paulson@14324
   181
val realpow_pos_nth_unique = thm"realpow_pos_nth_unique";
paulson@14324
   182
*}
paulson@14324
   183
paulson@14324
   184
end