src/Pure/term.ML
author wenzelm
Tue Nov 27 19:22:36 2012 +0100 (2012-11-27)
changeset 50242 56b9c792a98b
parent 49674 dbadb4d03cbc
child 52161 51eca565b153
permissions -rw-r--r--
support for sub-structured identifier syntax (inactive);
wenzelm@9536
     1
(*  Title:      Pure/term.ML
wenzelm@9536
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
wenzelm@29280
     3
    Author:     Makarius
clasohm@1364
     4
wenzelm@4444
     5
Simply typed lambda-calculus: types, terms, and basic operations.
clasohm@0
     6
*)
clasohm@0
     7
wenzelm@29257
     8
infix 9 $;
clasohm@1364
     9
infixr 5 -->;
wenzelm@4444
    10
infixr --->;
wenzelm@4444
    11
infix aconv;
clasohm@1364
    12
wenzelm@4444
    13
signature BASIC_TERM =
wenzelm@4444
    14
sig
wenzelm@34922
    15
  type indexname = string * int
wenzelm@34922
    16
  type class = string
wenzelm@34922
    17
  type sort = class list
wenzelm@34922
    18
  type arity = string * sort list * sort
wenzelm@4444
    19
  datatype typ =
wenzelm@4444
    20
    Type  of string * typ list |
wenzelm@4444
    21
    TFree of string * sort |
wenzelm@4444
    22
    TVar  of indexname * sort
wenzelm@16537
    23
  datatype term =
wenzelm@16537
    24
    Const of string * typ |
wenzelm@16537
    25
    Free of string * typ |
wenzelm@16537
    26
    Var of indexname * typ |
wenzelm@16537
    27
    Bound of int |
wenzelm@16537
    28
    Abs of string * typ * term |
wenzelm@17756
    29
    $ of term * term
wenzelm@16537
    30
  exception TYPE of string * typ list * term list
wenzelm@16537
    31
  exception TERM of string * term list
wenzelm@21353
    32
  val dummyS: sort
wenzelm@16710
    33
  val dummyT: typ
wenzelm@16710
    34
  val no_dummyT: typ -> typ
wenzelm@4444
    35
  val --> : typ * typ -> typ
wenzelm@4444
    36
  val ---> : typ list * typ -> typ
wenzelm@16710
    37
  val dest_Type: typ -> string * typ list
wenzelm@16710
    38
  val dest_TVar: typ -> indexname * sort
wenzelm@16710
    39
  val dest_TFree: typ -> string * sort
wenzelm@16710
    40
  val is_Bound: term -> bool
wenzelm@16710
    41
  val is_Const: term -> bool
wenzelm@16710
    42
  val is_Free: term -> bool
wenzelm@16710
    43
  val is_Var: term -> bool
wenzelm@4444
    44
  val is_TVar: typ -> bool
wenzelm@16710
    45
  val dest_Const: term -> string * typ
wenzelm@16710
    46
  val dest_Free: term -> string * typ
wenzelm@16710
    47
  val dest_Var: term -> indexname * typ
haftmann@35227
    48
  val dest_comb: term -> term * term
wenzelm@4444
    49
  val domain_type: typ -> typ
wenzelm@4480
    50
  val range_type: typ -> typ
wenzelm@40840
    51
  val dest_funT: typ -> typ * typ
wenzelm@4444
    52
  val binder_types: typ -> typ list
wenzelm@4444
    53
  val body_type: typ -> typ
wenzelm@4444
    54
  val strip_type: typ -> typ list * typ
wenzelm@16710
    55
  val type_of1: typ list * term -> typ
wenzelm@4444
    56
  val type_of: term -> typ
wenzelm@16710
    57
  val fastype_of1: typ list * term -> typ
wenzelm@4444
    58
  val fastype_of: term -> typ
haftmann@18927
    59
  val strip_abs: term -> (string * typ) list * term
wenzelm@4444
    60
  val strip_abs_body: term -> term
wenzelm@4444
    61
  val strip_abs_vars: term -> (string * typ) list
wenzelm@4444
    62
  val strip_qnt_body: string -> term -> term
wenzelm@4444
    63
  val strip_qnt_vars: string -> term -> (string * typ) list
wenzelm@4444
    64
  val list_comb: term * term list -> term
wenzelm@4444
    65
  val strip_comb: term -> term * term list
wenzelm@4444
    66
  val head_of: term -> term
wenzelm@4444
    67
  val size_of_term: term -> int
kleing@29882
    68
  val size_of_typ: typ -> int
haftmann@18847
    69
  val map_atyps: (typ -> typ) -> typ -> typ
haftmann@18847
    70
  val map_aterms: (term -> term) -> term -> term
wenzelm@4444
    71
  val map_type_tvar: (indexname * sort -> typ) -> typ -> typ
wenzelm@4444
    72
  val map_type_tfree: (string * sort -> typ) -> typ -> typ
wenzelm@20548
    73
  val map_types: (typ -> typ) -> term -> term
wenzelm@16943
    74
  val fold_atyps: (typ -> 'a -> 'a) -> typ -> 'a -> 'a
wenzelm@35986
    75
  val fold_atyps_sorts: (typ * sort -> 'a -> 'a) -> typ -> 'a -> 'a
wenzelm@16943
    76
  val fold_aterms: (term -> 'a -> 'a) -> term -> 'a -> 'a
wenzelm@16943
    77
  val fold_term_types: (term -> typ -> 'a -> 'a) -> term -> 'a -> 'a
wenzelm@16943
    78
  val fold_types: (typ -> 'a -> 'a) -> term -> 'a -> 'a
wenzelm@24483
    79
  val burrow_types: (typ list -> typ list) -> term list -> term list
wenzelm@16710
    80
  val aconv: term * term -> bool
wenzelm@4444
    81
  val propT: typ
wenzelm@4444
    82
  val strip_all_body: term -> term
wenzelm@4444
    83
  val strip_all_vars: term -> (string * typ) list
wenzelm@4444
    84
  val incr_bv: int * int * term -> term
wenzelm@4444
    85
  val incr_boundvars: int -> term -> term
wenzelm@4444
    86
  val add_loose_bnos: term * int * int list -> int list
wenzelm@4444
    87
  val loose_bnos: term -> int list
wenzelm@4444
    88
  val loose_bvar: term * int -> bool
wenzelm@4444
    89
  val loose_bvar1: term * int -> bool
wenzelm@4444
    90
  val subst_bounds: term list * term -> term
wenzelm@4444
    91
  val subst_bound: term * term -> term
wenzelm@4444
    92
  val betapply: term * term -> term
wenzelm@18183
    93
  val betapplys: term * term list -> term
wenzelm@4444
    94
  val subst_free: (term * term) list -> term -> term
wenzelm@4444
    95
  val abstract_over: term * term -> term
wenzelm@11922
    96
  val lambda: term -> term -> term
wenzelm@44241
    97
  val absfree: string * typ -> term -> term
wenzelm@44241
    98
  val absdummy: typ -> term -> term
wenzelm@16710
    99
  val subst_atomic: (term * term) list -> term -> term
wenzelm@16710
   100
  val typ_subst_atomic: (typ * typ) list -> typ -> typ
wenzelm@16710
   101
  val subst_atomic_types: (typ * typ) list -> term -> term
wenzelm@16710
   102
  val typ_subst_TVars: (indexname * typ) list -> typ -> typ
wenzelm@16710
   103
  val subst_TVars: (indexname * typ) list -> term -> term
wenzelm@16710
   104
  val subst_Vars: (indexname * term) list -> term -> term
wenzelm@16710
   105
  val subst_vars: (indexname * typ) list * (indexname * term) list -> term -> term
wenzelm@16710
   106
  val is_first_order: string list -> term -> bool
wenzelm@4444
   107
  val maxidx_of_typ: typ -> int
wenzelm@4444
   108
  val maxidx_of_typs: typ list -> int
wenzelm@4444
   109
  val maxidx_of_term: term -> int
wenzelm@19909
   110
  val exists_subtype: (typ -> bool) -> typ -> bool
wenzelm@20531
   111
  val exists_type: (typ -> bool) -> term -> bool
wenzelm@16943
   112
  val exists_subterm: (term -> bool) -> term -> bool
wenzelm@16710
   113
  val exists_Const: (string * typ -> bool) -> term -> bool
wenzelm@4444
   114
end;
clasohm@0
   115
wenzelm@4444
   116
signature TERM =
wenzelm@4444
   117
sig
wenzelm@4444
   118
  include BASIC_TERM
wenzelm@19394
   119
  val aT: sort -> typ
wenzelm@19394
   120
  val itselfT: typ -> typ
wenzelm@19394
   121
  val a_itselfT: typ
wenzelm@22908
   122
  val argument_type_of: term -> int -> typ
wenzelm@46219
   123
  val abs: string * typ -> term -> term
wenzelm@29257
   124
  val add_tvar_namesT: typ -> indexname list -> indexname list
wenzelm@29257
   125
  val add_tvar_names: term -> indexname list -> indexname list
wenzelm@16943
   126
  val add_tvarsT: typ -> (indexname * sort) list -> (indexname * sort) list
wenzelm@16943
   127
  val add_tvars: term -> (indexname * sort) list -> (indexname * sort) list
wenzelm@29257
   128
  val add_var_names: term -> indexname list -> indexname list
wenzelm@16943
   129
  val add_vars: term -> (indexname * typ) list -> (indexname * typ) list
wenzelm@29257
   130
  val add_tfree_namesT: typ -> string list -> string list
wenzelm@29257
   131
  val add_tfree_names: term -> string list -> string list
wenzelm@16943
   132
  val add_tfreesT: typ -> (string * sort) list -> (string * sort) list
wenzelm@16943
   133
  val add_tfrees: term -> (string * sort) list -> (string * sort) list
wenzelm@29257
   134
  val add_free_names: term -> string list -> string list
wenzelm@16943
   135
  val add_frees: term -> (string * typ) list -> (string * typ) list
wenzelm@29286
   136
  val add_const_names: term -> string list -> string list
wenzelm@29286
   137
  val add_consts: term -> (string * typ) list -> (string * typ) list
wenzelm@25050
   138
  val hidden_polymorphism: term -> (indexname * sort) list
wenzelm@29278
   139
  val declare_typ_names: typ -> Name.context -> Name.context
wenzelm@29278
   140
  val declare_term_names: term -> Name.context -> Name.context
wenzelm@29278
   141
  val declare_term_frees: term -> Name.context -> Name.context
wenzelm@29278
   142
  val variant_frees: term -> (string * 'a) list -> (string * 'a) list
wenzelm@29278
   143
  val rename_wrt_term: term -> (string * 'a) list -> (string * 'a) list
wenzelm@29269
   144
  val eq_ix: indexname * indexname -> bool
wenzelm@29269
   145
  val eq_tvar: (indexname * sort) * (indexname * sort) -> bool
wenzelm@29269
   146
  val eq_var: (indexname * typ) * (indexname * typ) -> bool
wenzelm@33537
   147
  val aconv_untyped: term * term -> bool
wenzelm@29269
   148
  val could_unify: term * term -> bool
haftmann@20109
   149
  val strip_abs_eta: int -> term -> (string * typ) list * term
wenzelm@48263
   150
  val match_bvars: (term * term) -> (string * string) list -> (string * string) list
haftmann@22031
   151
  val map_abs_vars: (string -> string) -> term -> term
wenzelm@12981
   152
  val rename_abs: term -> term -> term -> term option
wenzelm@42083
   153
  val is_open: term -> bool
wenzelm@42083
   154
  val is_dependent: term -> bool
wenzelm@32198
   155
  val lambda_name: string * term -> term -> term
wenzelm@25050
   156
  val close_schematic_term: term -> term
wenzelm@16710
   157
  val maxidx_typ: typ -> int -> int
wenzelm@16710
   158
  val maxidx_typs: typ list -> int -> int
wenzelm@16710
   159
  val maxidx_term: term -> int -> int
wenzelm@24671
   160
  val has_abs: term -> bool
wenzelm@20239
   161
  val dest_abs: string * typ * term -> string * term
wenzelm@9536
   162
  val dummy_patternN: string
wenzelm@18253
   163
  val dummy_pattern: typ -> term
wenzelm@45156
   164
  val dummy: term
wenzelm@45156
   165
  val dummy_prop: term
wenzelm@22723
   166
  val is_dummy_pattern: term -> bool
wenzelm@24733
   167
  val free_dummy_patterns: term -> Name.context -> term * Name.context
wenzelm@9536
   168
  val no_dummy_patterns: term -> term
wenzelm@24762
   169
  val replace_dummy_patterns: term -> int -> term * int
wenzelm@10552
   170
  val is_replaced_dummy_pattern: indexname -> bool
wenzelm@16035
   171
  val show_dummy_patterns: term -> term
wenzelm@14786
   172
  val string_of_vname: indexname -> string
wenzelm@14786
   173
  val string_of_vname': indexname -> string
wenzelm@4444
   174
end;
wenzelm@4444
   175
wenzelm@4444
   176
structure Term: TERM =
clasohm@1364
   177
struct
clasohm@0
   178
clasohm@0
   179
(*Indexnames can be quickly renamed by adding an offset to the integer part,
clasohm@0
   180
  for resolution.*)
wenzelm@16537
   181
type indexname = string * int;
clasohm@0
   182
wenzelm@4626
   183
(* Types are classified by sorts. *)
clasohm@0
   184
type class = string;
clasohm@0
   185
type sort  = class list;
wenzelm@14829
   186
type arity = string * sort list * sort;
clasohm@0
   187
clasohm@0
   188
(* The sorts attached to TFrees and TVars specify the sort of that variable *)
clasohm@0
   189
datatype typ = Type  of string * typ list
clasohm@0
   190
             | TFree of string * sort
wenzelm@9536
   191
             | TVar  of indexname * sort;
clasohm@0
   192
paulson@6033
   193
(*Terms.  Bound variables are indicated by depth number.
clasohm@0
   194
  Free variables, (scheme) variables and constants have names.
wenzelm@4626
   195
  An term is "closed" if every bound variable of level "lev"
wenzelm@13000
   196
  is enclosed by at least "lev" abstractions.
clasohm@0
   197
clasohm@0
   198
  It is possible to create meaningless terms containing loose bound vars
clasohm@0
   199
  or type mismatches.  But such terms are not allowed in rules. *)
clasohm@0
   200
wenzelm@13000
   201
datatype term =
clasohm@0
   202
    Const of string * typ
wenzelm@13000
   203
  | Free  of string * typ
clasohm@0
   204
  | Var   of indexname * typ
clasohm@0
   205
  | Bound of int
clasohm@0
   206
  | Abs   of string*typ*term
wenzelm@3965
   207
  | op $  of term*term;
clasohm@0
   208
wenzelm@16537
   209
(*Errors involving type mismatches*)
clasohm@0
   210
exception TYPE of string * typ list * term list;
clasohm@0
   211
wenzelm@16537
   212
(*Errors errors involving terms*)
clasohm@0
   213
exception TERM of string * term list;
clasohm@0
   214
clasohm@0
   215
(*Note variable naming conventions!
clasohm@0
   216
    a,b,c: string
clasohm@0
   217
    f,g,h: functions (including terms of function type)
clasohm@0
   218
    i,j,m,n: int
clasohm@0
   219
    t,u: term
clasohm@0
   220
    v,w: indexnames
clasohm@0
   221
    x,y: any
clasohm@0
   222
    A,B,C: term (denoting formulae)
clasohm@0
   223
    T,U: typ
clasohm@0
   224
*)
clasohm@0
   225
clasohm@0
   226
paulson@6033
   227
(** Types **)
paulson@6033
   228
wenzelm@21353
   229
(*dummies for type-inference etc.*)
wenzelm@21353
   230
val dummyS = [""];
wenzelm@16537
   231
val dummyT = Type ("dummy", []);
wenzelm@16537
   232
wenzelm@16537
   233
fun no_dummyT typ =
wenzelm@16537
   234
  let
wenzelm@16537
   235
    fun check (T as Type ("dummy", _)) =
wenzelm@16537
   236
          raise TYPE ("Illegal occurrence of '_' dummy type", [T], [])
wenzelm@16537
   237
      | check (Type (_, Ts)) = List.app check Ts
wenzelm@16537
   238
      | check _ = ();
wenzelm@16537
   239
  in check typ; typ end;
wenzelm@16537
   240
paulson@6033
   241
fun S --> T = Type("fun",[S,T]);
paulson@6033
   242
paulson@6033
   243
(*handy for multiple args: [T1,...,Tn]--->T  gives  T1-->(T2--> ... -->T)*)
skalberg@15570
   244
val op ---> = Library.foldr (op -->);
paulson@6033
   245
paulson@6033
   246
fun dest_Type (Type x) = x
paulson@6033
   247
  | dest_Type T = raise TYPE ("dest_Type", [T], []);
dixon@15914
   248
fun dest_TVar (TVar x) = x
dixon@15914
   249
  | dest_TVar T = raise TYPE ("dest_TVar", [T], []);
dixon@15914
   250
fun dest_TFree (TFree x) = x
dixon@15914
   251
  | dest_TFree T = raise TYPE ("dest_TFree", [T], []);
paulson@6033
   252
wenzelm@16537
   253
clasohm@0
   254
(** Discriminators **)
clasohm@0
   255
nipkow@7318
   256
fun is_Bound (Bound _) = true
nipkow@7318
   257
  | is_Bound _         = false;
nipkow@7318
   258
clasohm@0
   259
fun is_Const (Const _) = true
clasohm@0
   260
  | is_Const _ = false;
clasohm@0
   261
clasohm@0
   262
fun is_Free (Free _) = true
clasohm@0
   263
  | is_Free _ = false;
clasohm@0
   264
clasohm@0
   265
fun is_Var (Var _) = true
clasohm@0
   266
  | is_Var _ = false;
clasohm@0
   267
clasohm@0
   268
fun is_TVar (TVar _) = true
clasohm@0
   269
  | is_TVar _ = false;
clasohm@0
   270
wenzelm@16537
   271
clasohm@0
   272
(** Destructors **)
clasohm@0
   273
clasohm@0
   274
fun dest_Const (Const x) =  x
clasohm@0
   275
  | dest_Const t = raise TERM("dest_Const", [t]);
clasohm@0
   276
clasohm@0
   277
fun dest_Free (Free x) =  x
clasohm@0
   278
  | dest_Free t = raise TERM("dest_Free", [t]);
clasohm@0
   279
clasohm@0
   280
fun dest_Var (Var x) =  x
clasohm@0
   281
  | dest_Var t = raise TERM("dest_Var", [t]);
clasohm@0
   282
haftmann@35227
   283
fun dest_comb (t1 $ t2) = (t1, t2)
haftmann@35227
   284
  | dest_comb t = raise TERM("dest_comb", [t]);
haftmann@35227
   285
clasohm@0
   286
wenzelm@40841
   287
fun domain_type (Type ("fun", [T, _])) = T;
wenzelm@40841
   288
wenzelm@40841
   289
fun range_type (Type ("fun", [_, U])) = U;
paulson@4064
   290
wenzelm@40840
   291
fun dest_funT (Type ("fun", [T, U])) = (T, U)
wenzelm@40840
   292
  | dest_funT T = raise TYPE ("dest_funT", [T], []);
wenzelm@40840
   293
wenzelm@40840
   294
clasohm@0
   295
(* maps  [T1,...,Tn]--->T  to the list  [T1,T2,...,Tn]*)
wenzelm@40841
   296
fun binder_types (Type ("fun", [T, U])) = T :: binder_types U
wenzelm@40841
   297
  | binder_types _ = [];
clasohm@0
   298
clasohm@0
   299
(* maps  [T1,...,Tn]--->T  to T*)
wenzelm@40841
   300
fun body_type (Type ("fun", [_, U])) = body_type U
wenzelm@40841
   301
  | body_type T = T;
clasohm@0
   302
clasohm@0
   303
(* maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T)  *)
wenzelm@40841
   304
fun strip_type T = (binder_types T, body_type T);
clasohm@0
   305
clasohm@0
   306
clasohm@0
   307
(*Compute the type of the term, checking that combinations are well-typed
clasohm@0
   308
  Ts = [T0,T1,...] holds types of bound variables 0, 1, ...*)
clasohm@0
   309
fun type_of1 (Ts, Const (_,T)) = T
clasohm@0
   310
  | type_of1 (Ts, Free  (_,T)) = T
wenzelm@30146
   311
  | type_of1 (Ts, Bound i) = (nth Ts i
wenzelm@43278
   312
        handle General.Subscript => raise TYPE("type_of: bound variable", [], [Bound i]))
clasohm@0
   313
  | type_of1 (Ts, Var (_,T)) = T
clasohm@0
   314
  | type_of1 (Ts, Abs (_,T,body)) = T --> type_of1(T::Ts, body)
wenzelm@13000
   315
  | type_of1 (Ts, f$u) =
clasohm@0
   316
      let val U = type_of1(Ts,u)
clasohm@0
   317
          and T = type_of1(Ts,f)
clasohm@0
   318
      in case T of
wenzelm@9536
   319
            Type("fun",[T1,T2]) =>
wenzelm@9536
   320
              if T1=U then T2  else raise TYPE
wenzelm@9536
   321
                    ("type_of: type mismatch in application", [T1,U], [f$u])
wenzelm@13000
   322
          | _ => raise TYPE
wenzelm@9536
   323
                    ("type_of: function type is expected in application",
wenzelm@9536
   324
                     [T,U], [f$u])
clasohm@0
   325
      end;
clasohm@0
   326
clasohm@0
   327
fun type_of t : typ = type_of1 ([],t);
clasohm@0
   328
clasohm@0
   329
(*Determines the type of a term, with minimal checking*)
wenzelm@13000
   330
fun fastype_of1 (Ts, f$u) =
lcp@61
   331
    (case fastype_of1 (Ts,f) of
wenzelm@9536
   332
        Type("fun",[_,T]) => T
wenzelm@9536
   333
        | _ => raise TERM("fastype_of: expected function type", [f$u]))
lcp@61
   334
  | fastype_of1 (_, Const (_,T)) = T
lcp@61
   335
  | fastype_of1 (_, Free (_,T)) = T
wenzelm@30146
   336
  | fastype_of1 (Ts, Bound i) = (nth Ts i
wenzelm@43278
   337
         handle General.Subscript => raise TERM("fastype_of: Bound", [Bound i]))
wenzelm@13000
   338
  | fastype_of1 (_, Var (_,T)) = T
lcp@61
   339
  | fastype_of1 (Ts, Abs (_,T,u)) = T --> fastype_of1 (T::Ts, u);
lcp@61
   340
lcp@61
   341
fun fastype_of t : typ = fastype_of1 ([],t);
clasohm@0
   342
wenzelm@16678
   343
(*Determine the argument type of a function*)
wenzelm@22908
   344
fun argument_type_of tm k =
wenzelm@16678
   345
  let
wenzelm@16678
   346
    fun argT i (Type ("fun", [T, U])) = if i = 0 then T else argT (i - 1) U
wenzelm@16678
   347
      | argT _ T = raise TYPE ("argument_type_of", [T], []);
wenzelm@16678
   348
wenzelm@16678
   349
    fun arg 0 _ (Abs (_, T, _)) = T
wenzelm@16678
   350
      | arg i Ts (Abs (_, T, t)) = arg (i - 1) (T :: Ts) t
wenzelm@16678
   351
      | arg i Ts (t $ _) = arg (i + 1) Ts t
wenzelm@16678
   352
      | arg i Ts a = argT i (fastype_of1 (Ts, a));
wenzelm@22908
   353
  in arg k [] tm end;
wenzelm@16678
   354
clasohm@0
   355
wenzelm@46219
   356
fun abs (x, T) t = Abs (x, T, t);
wenzelm@10806
   357
haftmann@18927
   358
fun strip_abs (Abs (a, T, t)) =
haftmann@18927
   359
      let val (a', t') = strip_abs t
haftmann@18927
   360
      in ((a, T) :: a', t') end
haftmann@18927
   361
  | strip_abs t = ([], t);
haftmann@18927
   362
clasohm@0
   363
(* maps  (x1,...,xn)t   to   t  *)
wenzelm@13000
   364
fun strip_abs_body (Abs(_,_,t))  =  strip_abs_body t
clasohm@0
   365
  | strip_abs_body u  =  u;
clasohm@0
   366
clasohm@0
   367
(* maps  (x1,...,xn)t   to   [x1, ..., xn]  *)
wenzelm@13000
   368
fun strip_abs_vars (Abs(a,T,t))  =  (a,T) :: strip_abs_vars t
clasohm@0
   369
  | strip_abs_vars u  =  [] : (string*typ) list;
clasohm@0
   370
clasohm@0
   371
clasohm@0
   372
fun strip_qnt_body qnt =
clasohm@0
   373
let fun strip(tm as Const(c,_)$Abs(_,_,t)) = if c=qnt then strip t else tm
clasohm@0
   374
      | strip t = t
clasohm@0
   375
in strip end;
clasohm@0
   376
clasohm@0
   377
fun strip_qnt_vars qnt =
clasohm@0
   378
let fun strip(Const(c,_)$Abs(a,T,t)) = if c=qnt then (a,T)::strip t else []
clasohm@0
   379
      | strip t  =  [] : (string*typ) list
clasohm@0
   380
in strip end;
clasohm@0
   381
clasohm@0
   382
clasohm@0
   383
(* maps   (f, [t1,...,tn])  to  f(t1,...,tn) *)
skalberg@15570
   384
val list_comb : term * term list -> term = Library.foldl (op $);
clasohm@0
   385
clasohm@0
   386
clasohm@0
   387
(* maps   f(t1,...,tn)  to  (f, [t1,...,tn]) ; naturally tail-recursive*)
wenzelm@13000
   388
fun strip_comb u : term * term list =
clasohm@0
   389
    let fun stripc (f$t, ts) = stripc (f, t::ts)
wenzelm@13000
   390
        |   stripc  x =  x
clasohm@0
   391
    in  stripc(u,[])  end;
clasohm@0
   392
clasohm@0
   393
clasohm@0
   394
(* maps   f(t1,...,tn)  to  f , which is never a combination *)
clasohm@0
   395
fun head_of (f$t) = head_of f
clasohm@0
   396
  | head_of u = u;
clasohm@0
   397
wenzelm@16599
   398
(*number of atoms and abstractions in a term*)
wenzelm@16599
   399
fun size_of_term tm =
wenzelm@16599
   400
  let
wenzelm@30144
   401
    fun add_size (t $ u) n = add_size t (add_size u n)
wenzelm@30144
   402
      | add_size (Abs (_ ,_, t)) n = add_size t (n + 1)
wenzelm@30144
   403
      | add_size _ n = n + 1;
wenzelm@30144
   404
  in add_size tm 0 end;
clasohm@0
   405
wenzelm@30144
   406
(*number of atoms and constructors in a type*)
kleing@29882
   407
fun size_of_typ ty =
kleing@29882
   408
  let
wenzelm@30144
   409
    fun add_size (Type (_, tys)) n = fold add_size tys (n + 1)
wenzelm@30144
   410
      | add_size _ n = n + 1;
wenzelm@30144
   411
  in add_size ty 0 end;
kleing@29882
   412
haftmann@18847
   413
fun map_atyps f (Type (a, Ts)) = Type (a, map (map_atyps f) Ts)
haftmann@18976
   414
  | map_atyps f T = f T;
haftmann@18847
   415
haftmann@18847
   416
fun map_aterms f (t $ u) = map_aterms f t $ map_aterms f u
haftmann@18847
   417
  | map_aterms f (Abs (a, T, t)) = Abs (a, T, map_aterms f t)
haftmann@18847
   418
  | map_aterms f t = f t;
haftmann@18847
   419
wenzelm@18981
   420
fun map_type_tvar f = map_atyps (fn TVar x => f x | T => T);
wenzelm@18981
   421
fun map_type_tfree f = map_atyps (fn TFree x => f x | T => T);
nipkow@949
   422
wenzelm@20548
   423
fun map_types f =
wenzelm@16678
   424
  let
wenzelm@16678
   425
    fun map_aux (Const (a, T)) = Const (a, f T)
wenzelm@16678
   426
      | map_aux (Free (a, T)) = Free (a, f T)
wenzelm@16678
   427
      | map_aux (Var (v, T)) = Var (v, f T)
wenzelm@39293
   428
      | map_aux (Bound i) = Bound i
wenzelm@16678
   429
      | map_aux (Abs (a, T, t)) = Abs (a, f T, map_aux t)
wenzelm@16678
   430
      | map_aux (t $ u) = map_aux t $ map_aux u;
wenzelm@16678
   431
  in map_aux end;
clasohm@0
   432
clasohm@0
   433
wenzelm@16943
   434
(* fold types and terms *)
wenzelm@16943
   435
wenzelm@16943
   436
fun fold_atyps f (Type (_, Ts)) = fold (fold_atyps f) Ts
wenzelm@16943
   437
  | fold_atyps f T = f T;
wenzelm@16943
   438
wenzelm@35986
   439
fun fold_atyps_sorts f =
wenzelm@35986
   440
  fold_atyps (fn T as TFree (_, S) => f (T, S) | T as TVar (_, S) => f (T, S));
wenzelm@35986
   441
wenzelm@16943
   442
fun fold_aterms f (t $ u) = fold_aterms f t #> fold_aterms f u
wenzelm@16943
   443
  | fold_aterms f (Abs (_, _, t)) = fold_aterms f t
wenzelm@16943
   444
  | fold_aterms f a = f a;
wenzelm@16943
   445
wenzelm@16943
   446
fun fold_term_types f (t as Const (_, T)) = f t T
wenzelm@16943
   447
  | fold_term_types f (t as Free (_, T)) = f t T
wenzelm@16943
   448
  | fold_term_types f (t as Var (_, T)) = f t T
wenzelm@16943
   449
  | fold_term_types f (Bound _) = I
wenzelm@16943
   450
  | fold_term_types f (t as Abs (_, T, b)) = f t T #> fold_term_types f b
wenzelm@16943
   451
  | fold_term_types f (t $ u) = fold_term_types f t #> fold_term_types f u;
wenzelm@16943
   452
wenzelm@16943
   453
fun fold_types f = fold_term_types (K f);
wenzelm@16943
   454
wenzelm@24483
   455
fun replace_types (Const (c, _)) (T :: Ts) = (Const (c, T), Ts)
wenzelm@24483
   456
  | replace_types (Free (x, _)) (T :: Ts) = (Free (x, T), Ts)
wenzelm@24483
   457
  | replace_types (Var (xi, _)) (T :: Ts) = (Var (xi, T), Ts)
wenzelm@24483
   458
  | replace_types (Bound i) Ts = (Bound i, Ts)
wenzelm@24483
   459
  | replace_types (Abs (x, _, b)) (T :: Ts) =
wenzelm@24483
   460
      let val (b', Ts') = replace_types b Ts
wenzelm@24483
   461
      in (Abs (x, T, b'), Ts') end
wenzelm@24483
   462
  | replace_types (t $ u) Ts =
wenzelm@24483
   463
      let
wenzelm@24483
   464
        val (t', Ts') = replace_types t Ts;
wenzelm@24483
   465
        val (u', Ts'') = replace_types u Ts';
wenzelm@24483
   466
      in (t' $ u', Ts'') end;
wenzelm@24483
   467
wenzelm@24483
   468
fun burrow_types f ts =
wenzelm@24483
   469
  let
wenzelm@49674
   470
    val Ts = rev ((fold o fold_types) cons ts []);
wenzelm@24483
   471
    val Ts' = f Ts;
wenzelm@24483
   472
    val (ts', []) = fold_map replace_types ts Ts';
wenzelm@24483
   473
  in ts' end;
wenzelm@24483
   474
wenzelm@16943
   475
(*collect variables*)
wenzelm@29257
   476
val add_tvar_namesT = fold_atyps (fn TVar (xi, _) => insert (op =) xi | _ => I);
wenzelm@29257
   477
val add_tvar_names = fold_types add_tvar_namesT;
wenzelm@16943
   478
val add_tvarsT = fold_atyps (fn TVar v => insert (op =) v | _ => I);
wenzelm@16943
   479
val add_tvars = fold_types add_tvarsT;
wenzelm@29257
   480
val add_var_names = fold_aterms (fn Var (xi, _) => insert (op =) xi | _ => I);
wenzelm@16943
   481
val add_vars = fold_aterms (fn Var v => insert (op =) v | _ => I);
wenzelm@33697
   482
val add_tfree_namesT = fold_atyps (fn TFree (a, _) => insert (op =) a | _ => I);
wenzelm@29257
   483
val add_tfree_names = fold_types add_tfree_namesT;
wenzelm@16943
   484
val add_tfreesT = fold_atyps (fn TFree v => insert (op =) v | _ => I);
wenzelm@16943
   485
val add_tfrees = fold_types add_tfreesT;
wenzelm@29257
   486
val add_free_names = fold_aterms (fn Free (x, _) => insert (op =) x | _ => I);
wenzelm@16943
   487
val add_frees = fold_aterms (fn Free v => insert (op =) v | _ => I);
wenzelm@29286
   488
val add_const_names = fold_aterms (fn Const (c, _) => insert (op =) c | _ => I);
wenzelm@29286
   489
val add_consts = fold_aterms (fn Const c => insert (op =) c | _ => I);
wenzelm@16943
   490
wenzelm@25050
   491
(*extra type variables in a term, not covered by its type*)
wenzelm@25050
   492
fun hidden_polymorphism t =
wenzelm@21682
   493
  let
wenzelm@25050
   494
    val T = fastype_of t;
wenzelm@21682
   495
    val tvarsT = add_tvarsT T [];
wenzelm@21682
   496
    val extra_tvars = fold_types (fold_atyps
wenzelm@21682
   497
      (fn TVar v => if member (op =) tvarsT v then I else insert (op =) v | _ => I)) t [];
wenzelm@21682
   498
  in extra_tvars end;
wenzelm@21682
   499
wenzelm@16943
   500
wenzelm@29278
   501
(* renaming variables *)
wenzelm@29278
   502
wenzelm@29278
   503
val declare_typ_names = fold_atyps (fn TFree (a, _) => Name.declare a | _ => I);
wenzelm@29278
   504
wenzelm@29278
   505
fun declare_term_names tm =
wenzelm@29278
   506
  fold_aterms
wenzelm@30364
   507
    (fn Const (a, _) => Name.declare (Long_Name.base_name a)
wenzelm@29278
   508
      | Free (a, _) => Name.declare a
wenzelm@29278
   509
      | _ => I) tm #>
wenzelm@29278
   510
  fold_types declare_typ_names tm;
wenzelm@29278
   511
wenzelm@29278
   512
val declare_term_frees = fold_aterms (fn Free (x, _) => Name.declare x | _ => I);
wenzelm@29278
   513
wenzelm@29278
   514
fun variant_frees t frees =
wenzelm@43326
   515
  fst (fold_map Name.variant (map fst frees) (declare_term_names t Name.context)) ~~
wenzelm@43326
   516
    map snd frees;
wenzelm@29278
   517
wenzelm@29278
   518
fun rename_wrt_term t frees = rev (variant_frees t frees);  (*reversed result!*)
wenzelm@29278
   519
wenzelm@29278
   520
wenzelm@25050
   521
wenzelm@29269
   522
(** Comparing terms **)
wenzelm@29269
   523
wenzelm@29269
   524
(* variables *)
wenzelm@29269
   525
wenzelm@29269
   526
fun eq_ix ((x, i): indexname, (y, j)) = i = j andalso x = y;
wenzelm@16537
   527
wenzelm@29269
   528
fun eq_tvar ((xi, S: sort), (xi', S')) = eq_ix (xi, xi') andalso S = S';
wenzelm@29269
   529
fun eq_var ((xi, T: typ), (xi', T')) = eq_ix (xi, xi') andalso T = T';
wenzelm@29269
   530
wenzelm@29269
   531
wenzelm@29269
   532
(* alpha equivalence *)
wenzelm@20511
   533
wenzelm@20511
   534
fun tm1 aconv tm2 =
wenzelm@20511
   535
  pointer_eq (tm1, tm2) orelse
wenzelm@20511
   536
    (case (tm1, tm2) of
wenzelm@20511
   537
      (t1 $ u1, t2 $ u2) => t1 aconv t2 andalso u1 aconv u2
wenzelm@20511
   538
    | (Abs (_, T1, t1), Abs (_, T2, t2)) => t1 aconv t2 andalso T1 = T2
wenzelm@20511
   539
    | (a1, a2) => a1 = a2);
wenzelm@20511
   540
wenzelm@33537
   541
fun aconv_untyped (tm1, tm2) =
wenzelm@33537
   542
  pointer_eq (tm1, tm2) orelse
wenzelm@33537
   543
    (case (tm1, tm2) of
wenzelm@33537
   544
      (t1 $ u1, t2 $ u2) => aconv_untyped (t1, t2) andalso aconv_untyped (u1, u2)
wenzelm@33537
   545
    | (Abs (_, _, t1), Abs (_, _, t2)) => aconv_untyped (t1, t2)
wenzelm@33537
   546
    | (Const (a, _), Const (b, _)) => a = b
wenzelm@33537
   547
    | (Free (x, _), Free (y, _)) => x = y
wenzelm@33537
   548
    | (Var (xi, _), Var (yj, _)) => xi = yj
wenzelm@33537
   549
    | (Bound i, Bound j) => i = j
wenzelm@33537
   550
    | _ => false);
wenzelm@33537
   551
wenzelm@20511
   552
wenzelm@29269
   553
(*A fast unification filter: true unless the two terms cannot be unified.
wenzelm@29269
   554
  Terms must be NORMAL.  Treats all Vars as distinct. *)
wenzelm@29269
   555
fun could_unify (t, u) =
wenzelm@29269
   556
  let
wenzelm@29269
   557
    fun matchrands (f $ t) (g $ u) = could_unify (t, u) andalso matchrands f g
wenzelm@29269
   558
      | matchrands _ _ = true;
wenzelm@29269
   559
  in
wenzelm@29269
   560
    case (head_of t, head_of u) of
wenzelm@29269
   561
      (_, Var _) => true
wenzelm@29269
   562
    | (Var _, _) => true
wenzelm@29269
   563
    | (Const (a, _), Const (b, _)) => a = b andalso matchrands t u
wenzelm@29269
   564
    | (Free (a, _), Free (b, _)) => a = b andalso matchrands t u
wenzelm@29269
   565
    | (Bound i, Bound j) => i = j andalso matchrands t u
wenzelm@29269
   566
    | (Abs _, _) => true   (*because of possible eta equality*)
wenzelm@29269
   567
    | (_, Abs _) => true
wenzelm@29269
   568
    | _ => false
wenzelm@29269
   569
  end;
wenzelm@16678
   570
nipkow@16570
   571
wenzelm@16537
   572
clasohm@0
   573
(** Connectives of higher order logic **)
clasohm@0
   574
wenzelm@24850
   575
fun aT S = TFree (Name.aT, S);
wenzelm@19394
   576
wenzelm@375
   577
fun itselfT ty = Type ("itself", [ty]);
wenzelm@24850
   578
val a_itselfT = itselfT (TFree (Name.aT, []));
wenzelm@375
   579
wenzelm@46217
   580
val propT : typ = Type ("prop",[]);
clasohm@0
   581
clasohm@0
   582
(* maps  !!x1...xn. t   to   t  *)
wenzelm@13000
   583
fun strip_all_body (Const("all",_)$Abs(_,_,t))  =  strip_all_body t
clasohm@0
   584
  | strip_all_body t  =  t;
clasohm@0
   585
clasohm@0
   586
(* maps  !!x1...xn. t   to   [x1, ..., xn]  *)
clasohm@0
   587
fun strip_all_vars (Const("all",_)$Abs(a,T,t))  =
wenzelm@13000
   588
                (a,T) :: strip_all_vars t
clasohm@0
   589
  | strip_all_vars t  =  [] : (string*typ) list;
clasohm@0
   590
clasohm@0
   591
(*increments a term's non-local bound variables
clasohm@0
   592
  required when moving a term within abstractions
clasohm@0
   593
     inc is  increment for bound variables
clasohm@0
   594
     lev is  level at which a bound variable is considered 'loose'*)
wenzelm@13000
   595
fun incr_bv (inc, lev, u as Bound i) = if i>=lev then Bound(i+inc) else u
clasohm@0
   596
  | incr_bv (inc, lev, Abs(a,T,body)) =
wenzelm@9536
   597
        Abs(a, T, incr_bv(inc,lev+1,body))
wenzelm@13000
   598
  | incr_bv (inc, lev, f$t) =
clasohm@0
   599
      incr_bv(inc,lev,f) $ incr_bv(inc,lev,t)
clasohm@0
   600
  | incr_bv (inc, lev, u) = u;
clasohm@0
   601
clasohm@0
   602
fun incr_boundvars  0  t = t
clasohm@0
   603
  | incr_boundvars inc t = incr_bv(inc,0,t);
clasohm@0
   604
wenzelm@12981
   605
(*Scan a pair of terms; while they are similar,
wenzelm@12981
   606
  accumulate corresponding bound vars in "al"*)
wenzelm@12981
   607
fun match_bvs(Abs(x,_,s),Abs(y,_,t), al) =
wenzelm@12981
   608
      match_bvs(s, t, if x="" orelse y="" then al
wenzelm@12981
   609
                                          else (x,y)::al)
wenzelm@12981
   610
  | match_bvs(f$s, g$t, al) = match_bvs(f,g,match_bvs(s,t,al))
wenzelm@12981
   611
  | match_bvs(_,_,al) = al;
wenzelm@12981
   612
wenzelm@12981
   613
(* strip abstractions created by parameters *)
wenzelm@48263
   614
fun match_bvars (s,t) al = match_bvs(strip_abs_body s, strip_abs_body t, al);
wenzelm@12981
   615
haftmann@22031
   616
fun map_abs_vars f (t $ u) = map_abs_vars f t $ map_abs_vars f u
haftmann@22031
   617
  | map_abs_vars f (Abs (a, T, t)) = Abs (f a, T, map_abs_vars f t)
haftmann@22031
   618
  | map_abs_vars f t = t;
haftmann@22031
   619
wenzelm@12981
   620
fun rename_abs pat obj t =
wenzelm@12981
   621
  let
wenzelm@12981
   622
    val ren = match_bvs (pat, obj, []);
wenzelm@12981
   623
    fun ren_abs (Abs (x, T, b)) =
wenzelm@18942
   624
          Abs (the_default x (AList.lookup (op =) ren x), T, ren_abs b)
wenzelm@12981
   625
      | ren_abs (f $ t) = ren_abs f $ ren_abs t
wenzelm@12981
   626
      | ren_abs t = t
skalberg@15531
   627
  in if null ren then NONE else SOME (ren_abs t) end;
clasohm@0
   628
clasohm@0
   629
(*Accumulate all 'loose' bound vars referring to level 'lev' or beyond.
clasohm@0
   630
   (Bound 0) is loose at level 0 *)
wenzelm@13000
   631
fun add_loose_bnos (Bound i, lev, js) =
haftmann@20854
   632
        if i<lev then js else insert (op =) (i - lev) js
clasohm@0
   633
  | add_loose_bnos (Abs (_,_,t), lev, js) = add_loose_bnos (t, lev+1, js)
clasohm@0
   634
  | add_loose_bnos (f$t, lev, js) =
wenzelm@13000
   635
        add_loose_bnos (f, lev, add_loose_bnos (t, lev, js))
clasohm@0
   636
  | add_loose_bnos (_, _, js) = js;
clasohm@0
   637
clasohm@0
   638
fun loose_bnos t = add_loose_bnos (t, 0, []);
clasohm@0
   639
clasohm@0
   640
(* loose_bvar(t,k) iff t contains a 'loose' bound variable referring to
clasohm@0
   641
   level k or beyond. *)
clasohm@0
   642
fun loose_bvar(Bound i,k) = i >= k
clasohm@0
   643
  | loose_bvar(f$t, k) = loose_bvar(f,k) orelse loose_bvar(t,k)
clasohm@0
   644
  | loose_bvar(Abs(_,_,t),k) = loose_bvar(t,k+1)
clasohm@0
   645
  | loose_bvar _ = false;
clasohm@0
   646
nipkow@2792
   647
fun loose_bvar1(Bound i,k) = i = k
nipkow@2792
   648
  | loose_bvar1(f$t, k) = loose_bvar1(f,k) orelse loose_bvar1(t,k)
nipkow@2792
   649
  | loose_bvar1(Abs(_,_,t),k) = loose_bvar1(t,k+1)
nipkow@2792
   650
  | loose_bvar1 _ = false;
clasohm@0
   651
wenzelm@42083
   652
fun is_open t = loose_bvar (t, 0);
wenzelm@42083
   653
fun is_dependent t = loose_bvar1 (t, 0);
wenzelm@42083
   654
clasohm@0
   655
(*Substitute arguments for loose bound variables.
clasohm@0
   656
  Beta-reduction of arg(n-1)...arg0 into t replacing (Bound i) with (argi).
wenzelm@4626
   657
  Note that for ((%x y. c) a b), the bound vars in c are x=1 and y=0
wenzelm@9536
   658
        and the appropriate call is  subst_bounds([b,a], c) .
clasohm@0
   659
  Loose bound variables >=n are reduced by "n" to
clasohm@0
   660
     compensate for the disappearance of lambdas.
clasohm@0
   661
*)
wenzelm@13000
   662
fun subst_bounds (args: term list, t) : term =
wenzelm@19065
   663
  let
wenzelm@19065
   664
    val n = length args;
wenzelm@19065
   665
    fun subst (t as Bound i, lev) =
wenzelm@32020
   666
         (if i < lev then raise Same.SAME   (*var is locally bound*)
wenzelm@30146
   667
          else incr_boundvars lev (nth args (i - lev))
wenzelm@43278
   668
            handle General.Subscript => Bound (i - n))  (*loose: change it*)
wenzelm@19065
   669
      | subst (Abs (a, T, body), lev) = Abs (a, T, subst (body, lev + 1))
wenzelm@19065
   670
      | subst (f $ t, lev) =
wenzelm@32020
   671
          (subst (f, lev) $ (subst (t, lev) handle Same.SAME => t)
wenzelm@32020
   672
            handle Same.SAME => f $ subst (t, lev))
wenzelm@32020
   673
      | subst _ = raise Same.SAME;
wenzelm@32020
   674
  in case args of [] => t | _ => (subst (t, 0) handle Same.SAME => t) end;
clasohm@0
   675
paulson@2192
   676
(*Special case: one argument*)
wenzelm@13000
   677
fun subst_bound (arg, t) : term =
wenzelm@19065
   678
  let
wenzelm@19065
   679
    fun subst (Bound i, lev) =
wenzelm@32020
   680
          if i < lev then raise Same.SAME   (*var is locally bound*)
wenzelm@19065
   681
          else if i = lev then incr_boundvars lev arg
wenzelm@19065
   682
          else Bound (i - 1)   (*loose: change it*)
wenzelm@19065
   683
      | subst (Abs (a, T, body), lev) = Abs (a, T, subst (body, lev + 1))
wenzelm@19065
   684
      | subst (f $ t, lev) =
wenzelm@32020
   685
          (subst (f, lev) $ (subst (t, lev) handle Same.SAME => t)
wenzelm@32020
   686
            handle Same.SAME => f $ subst (t, lev))
wenzelm@32020
   687
      | subst _ = raise Same.SAME;
wenzelm@32020
   688
  in subst (t, 0) handle Same.SAME => t end;
paulson@2192
   689
clasohm@0
   690
(*beta-reduce if possible, else form application*)
paulson@2192
   691
fun betapply (Abs(_,_,t), u) = subst_bound (u,t)
clasohm@0
   692
  | betapply (f,u) = f$u;
clasohm@0
   693
wenzelm@18183
   694
val betapplys = Library.foldl betapply;
wenzelm@18183
   695
wenzelm@14786
   696
haftmann@20109
   697
(*unfolding abstractions with substitution
haftmann@20109
   698
  of bound variables and implicit eta-expansion*)
haftmann@20109
   699
fun strip_abs_eta k t =
haftmann@20109
   700
  let
wenzelm@29278
   701
    val used = fold_aterms declare_term_frees t Name.context;
haftmann@20109
   702
    fun strip_abs t (0, used) = (([], t), (0, used))
haftmann@20109
   703
      | strip_abs (Abs (v, T, t)) (k, used) =
haftmann@20109
   704
          let
wenzelm@43326
   705
            val (v', used') = Name.variant v used;
haftmann@21013
   706
            val t' = subst_bound (Free (v', T), t);
wenzelm@20122
   707
            val ((vs, t''), (k', used'')) = strip_abs t' (k - 1, used');
wenzelm@20122
   708
          in (((v', T) :: vs, t''), (k', used'')) end
haftmann@20109
   709
      | strip_abs t (k, used) = (([], t), (k, used));
haftmann@20109
   710
    fun expand_eta [] t _ = ([], t)
haftmann@20109
   711
      | expand_eta (T::Ts) t used =
haftmann@20109
   712
          let
wenzelm@43326
   713
            val (v, used') = Name.variant "" used;
wenzelm@20122
   714
            val (vs, t') = expand_eta Ts (t $ Free (v, T)) used';
haftmann@20109
   715
          in ((v, T) :: vs, t') end;
haftmann@20109
   716
    val ((vs1, t'), (k', used')) = strip_abs t (k, used);
wenzelm@40844
   717
    val Ts = fst (chop k' (binder_types (fastype_of t')));
haftmann@20109
   718
    val (vs2, t'') = expand_eta Ts t' used';
haftmann@20109
   719
  in (vs1 @ vs2, t'') end;
haftmann@20109
   720
haftmann@20109
   721
clasohm@0
   722
(*Substitute new for free occurrences of old in a term*)
wenzelm@29256
   723
fun subst_free [] = I
clasohm@0
   724
  | subst_free pairs =
wenzelm@13000
   725
      let fun substf u =
haftmann@17314
   726
            case AList.lookup (op aconv) pairs u of
skalberg@15531
   727
                SOME u' => u'
skalberg@15531
   728
              | NONE => (case u of Abs(a,T,t) => Abs(a, T, substf t)
wenzelm@9536
   729
                                 | t$u' => substf t $ substf u'
wenzelm@9536
   730
                                 | _ => u)
clasohm@0
   731
      in  substf  end;
clasohm@0
   732
wenzelm@13000
   733
(*Abstraction of the term "body" over its occurrences of v,
clasohm@0
   734
    which must contain no loose bound variables.
clasohm@0
   735
  The resulting term is ready to become the body of an Abs.*)
wenzelm@16882
   736
fun abstract_over (v, body) =
wenzelm@16882
   737
  let
wenzelm@16990
   738
    fun abs lev tm =
wenzelm@16990
   739
      if v aconv tm then Bound lev
wenzelm@16882
   740
      else
wenzelm@16990
   741
        (case tm of
wenzelm@16990
   742
          Abs (a, T, t) => Abs (a, T, abs (lev + 1) t)
wenzelm@32020
   743
        | t $ u =>
wenzelm@32020
   744
            (abs lev t $ (abs lev u handle Same.SAME => u)
wenzelm@32020
   745
              handle Same.SAME => t $ abs lev u)
wenzelm@32020
   746
        | _ => raise Same.SAME);
wenzelm@32020
   747
  in abs 0 body handle Same.SAME => body end;
clasohm@0
   748
wenzelm@32198
   749
fun term_name (Const (x, _)) = Long_Name.base_name x
wenzelm@32198
   750
  | term_name (Free (x, _)) = x
wenzelm@32198
   751
  | term_name (Var ((x, _), _)) = x
wenzelm@32198
   752
  | term_name _ = Name.uu;
wenzelm@32198
   753
wenzelm@32198
   754
fun lambda_name (x, v) t =
wenzelm@32198
   755
  Abs (if x = "" then term_name v else x, fastype_of v, abstract_over (v, t));
wenzelm@32198
   756
wenzelm@32198
   757
fun lambda v t = lambda_name ("", v) t;
clasohm@0
   758
wenzelm@44241
   759
fun absfree (a, T) body = Abs (a, T, abstract_over (Free (a, T), body));
wenzelm@44241
   760
fun absdummy T body = Abs (Name.uu_, T, body);
clasohm@0
   761
wenzelm@16678
   762
(*Replace the ATOMIC term ti by ui;    inst = [(t1,u1), ..., (tn,un)].
clasohm@0
   763
  A simultaneous substitution:  [ (a,b), (b,a) ] swaps a and b.  *)
wenzelm@16678
   764
fun subst_atomic [] tm = tm
wenzelm@16678
   765
  | subst_atomic inst tm =
wenzelm@16678
   766
      let
wenzelm@16678
   767
        fun subst (Abs (a, T, body)) = Abs (a, T, subst body)
wenzelm@16678
   768
          | subst (t $ u) = subst t $ subst u
wenzelm@18942
   769
          | subst t = the_default t (AList.lookup (op aconv) inst t);
wenzelm@16678
   770
      in subst tm end;
clasohm@0
   771
wenzelm@16678
   772
(*Replace the ATOMIC type Ti by Ui;    inst = [(T1,U1), ..., (Tn,Un)].*)
wenzelm@16678
   773
fun typ_subst_atomic [] ty = ty
wenzelm@16678
   774
  | typ_subst_atomic inst ty =
wenzelm@16678
   775
      let
wenzelm@16678
   776
        fun subst (Type (a, Ts)) = Type (a, map subst Ts)
wenzelm@18942
   777
          | subst T = the_default T (AList.lookup (op = : typ * typ -> bool) inst T);
wenzelm@16678
   778
      in subst ty end;
berghofe@15797
   779
wenzelm@16678
   780
fun subst_atomic_types [] tm = tm
wenzelm@20548
   781
  | subst_atomic_types inst tm = map_types (typ_subst_atomic inst) tm;
wenzelm@16678
   782
wenzelm@16678
   783
fun typ_subst_TVars [] ty = ty
wenzelm@16678
   784
  | typ_subst_TVars inst ty =
wenzelm@16678
   785
      let
wenzelm@16678
   786
        fun subst (Type (a, Ts)) = Type (a, map subst Ts)
wenzelm@18942
   787
          | subst (T as TVar (xi, _)) = the_default T (AList.lookup (op =) inst xi)
wenzelm@16678
   788
          | subst T = T;
wenzelm@16678
   789
      in subst ty end;
clasohm@0
   790
wenzelm@16678
   791
fun subst_TVars [] tm = tm
wenzelm@20548
   792
  | subst_TVars inst tm = map_types (typ_subst_TVars inst) tm;
clasohm@0
   793
wenzelm@16678
   794
fun subst_Vars [] tm = tm
wenzelm@16678
   795
  | subst_Vars inst tm =
wenzelm@16678
   796
      let
wenzelm@18942
   797
        fun subst (t as Var (xi, _)) = the_default t (AList.lookup (op =) inst xi)
wenzelm@16678
   798
          | subst (Abs (a, T, t)) = Abs (a, T, subst t)
wenzelm@16678
   799
          | subst (t $ u) = subst t $ subst u
wenzelm@16678
   800
          | subst t = t;
wenzelm@16678
   801
      in subst tm end;
clasohm@0
   802
wenzelm@16678
   803
fun subst_vars ([], []) tm = tm
wenzelm@16678
   804
  | subst_vars ([], inst) tm = subst_Vars inst tm
wenzelm@16678
   805
  | subst_vars (instT, inst) tm =
wenzelm@16678
   806
      let
wenzelm@16678
   807
        fun subst (Const (a, T)) = Const (a, typ_subst_TVars instT T)
wenzelm@16678
   808
          | subst (Free (a, T)) = Free (a, typ_subst_TVars instT T)
wenzelm@32784
   809
          | subst (Var (xi, T)) =
haftmann@17271
   810
              (case AList.lookup (op =) inst xi of
wenzelm@16678
   811
                NONE => Var (xi, typ_subst_TVars instT T)
wenzelm@16678
   812
              | SOME t => t)
wenzelm@16678
   813
          | subst (t as Bound _) = t
wenzelm@16678
   814
          | subst (Abs (a, T, t)) = Abs (a, typ_subst_TVars instT T, subst t)
wenzelm@16678
   815
          | subst (t $ u) = subst t $ subst u;
wenzelm@16678
   816
      in subst tm end;
clasohm@0
   817
wenzelm@25050
   818
fun close_schematic_term t =
wenzelm@25050
   819
  let
wenzelm@25050
   820
    val extra_types = map (fn v => Const ("TYPE", itselfT (TVar v))) (hidden_polymorphism t);
wenzelm@30285
   821
    val extra_terms = map Var (add_vars t []);
wenzelm@30285
   822
  in fold lambda (extra_terms @ extra_types) t end;
wenzelm@25050
   823
wenzelm@25050
   824
clasohm@0
   825
paulson@15573
   826
(** Identifying first-order terms **)
paulson@15573
   827
wenzelm@20199
   828
(*Differs from proofterm/is_fun in its treatment of TVar*)
wenzelm@29256
   829
fun is_funtype (Type ("fun", [_, _])) = true
wenzelm@20199
   830
  | is_funtype _ = false;
wenzelm@20199
   831
paulson@15573
   832
(*Argument Ts is a reverse list of binder types, needed if term t contains Bound vars*)
wenzelm@29256
   833
fun has_not_funtype Ts t = not (is_funtype (fastype_of1 (Ts, t)));
paulson@15573
   834
wenzelm@16537
   835
(*First order means in all terms of the form f(t1,...,tn) no argument has a
paulson@16589
   836
  function type. The supplied quantifiers are excluded: their argument always
paulson@16589
   837
  has a function type through a recursive call into its body.*)
wenzelm@16667
   838
fun is_first_order quants =
paulson@16589
   839
  let fun first_order1 Ts (Abs (_,T,body)) = first_order1 (T::Ts) body
wenzelm@16667
   840
        | first_order1 Ts (Const(q,_) $ Abs(a,T,body)) =
wenzelm@20664
   841
            member (op =) quants q  andalso   (*it is a known quantifier*)
paulson@16589
   842
            not (is_funtype T)   andalso first_order1 (T::Ts) body
wenzelm@16667
   843
        | first_order1 Ts t =
wenzelm@16667
   844
            case strip_comb t of
wenzelm@16667
   845
                 (Var _, ts) => forall (first_order1 Ts andf has_not_funtype Ts) ts
wenzelm@16667
   846
               | (Free _, ts) => forall (first_order1 Ts andf has_not_funtype Ts) ts
wenzelm@16667
   847
               | (Const _, ts) => forall (first_order1 Ts andf has_not_funtype Ts) ts
wenzelm@16667
   848
               | (Bound _, ts) => forall (first_order1 Ts andf has_not_funtype Ts) ts
wenzelm@16667
   849
               | (Abs _, ts) => false (*not in beta-normal form*)
wenzelm@16667
   850
               | _ => error "first_order: unexpected case"
paulson@16589
   851
    in  first_order1 []  end;
paulson@15573
   852
wenzelm@16710
   853
wenzelm@16990
   854
(* maximum index of typs and terms *)
clasohm@0
   855
wenzelm@16710
   856
fun maxidx_typ (TVar ((_, j), _)) i = Int.max (i, j)
wenzelm@16710
   857
  | maxidx_typ (Type (_, Ts)) i = maxidx_typs Ts i
wenzelm@16710
   858
  | maxidx_typ (TFree _) i = i
wenzelm@16710
   859
and maxidx_typs [] i = i
wenzelm@16710
   860
  | maxidx_typs (T :: Ts) i = maxidx_typs Ts (maxidx_typ T i);
clasohm@0
   861
wenzelm@16710
   862
fun maxidx_term (Var ((_, j), T)) i = maxidx_typ T (Int.max (i, j))
wenzelm@16710
   863
  | maxidx_term (Const (_, T)) i = maxidx_typ T i
wenzelm@16710
   864
  | maxidx_term (Free (_, T)) i = maxidx_typ T i
wenzelm@16710
   865
  | maxidx_term (Bound _) i = i
wenzelm@16710
   866
  | maxidx_term (Abs (_, T, t)) i = maxidx_term t (maxidx_typ T i)
wenzelm@16710
   867
  | maxidx_term (t $ u) i = maxidx_term u (maxidx_term t i);
clasohm@0
   868
wenzelm@16710
   869
fun maxidx_of_typ T = maxidx_typ T ~1;
wenzelm@16710
   870
fun maxidx_of_typs Ts = maxidx_typs Ts ~1;
wenzelm@16710
   871
fun maxidx_of_term t = maxidx_term t ~1;
berghofe@13665
   872
clasohm@0
   873
clasohm@0
   874
wenzelm@29270
   875
(** misc syntax operations **)
clasohm@0
   876
wenzelm@19909
   877
(* substructure *)
wenzelm@4017
   878
wenzelm@19909
   879
fun exists_subtype P =
wenzelm@19909
   880
  let
wenzelm@19909
   881
    fun ex ty = P ty orelse
wenzelm@19909
   882
      (case ty of Type (_, Ts) => exists ex Ts | _ => false);
wenzelm@19909
   883
  in ex end;
nipkow@13646
   884
wenzelm@20531
   885
fun exists_type P =
wenzelm@20531
   886
  let
wenzelm@20531
   887
    fun ex (Const (_, T)) = P T
wenzelm@20531
   888
      | ex (Free (_, T)) = P T
wenzelm@20531
   889
      | ex (Var (_, T)) = P T
wenzelm@20531
   890
      | ex (Bound _) = false
wenzelm@20531
   891
      | ex (Abs (_, T, t)) = P T orelse ex t
wenzelm@20531
   892
      | ex (t $ u) = ex t orelse ex u;
wenzelm@20531
   893
  in ex end;
wenzelm@20531
   894
wenzelm@16943
   895
fun exists_subterm P =
wenzelm@16943
   896
  let
wenzelm@16943
   897
    fun ex tm = P tm orelse
wenzelm@16943
   898
      (case tm of
wenzelm@16943
   899
        t $ u => ex t orelse ex u
wenzelm@16943
   900
      | Abs (_, _, t) => ex t
wenzelm@16943
   901
      | _ => false);
wenzelm@16943
   902
  in ex end;
obua@16108
   903
wenzelm@29270
   904
fun exists_Const P = exists_subterm (fn Const c => P c | _ => false);
wenzelm@29270
   905
wenzelm@24671
   906
fun has_abs (Abs _) = true
wenzelm@24671
   907
  | has_abs (t $ u) = has_abs t orelse has_abs u
wenzelm@24671
   908
  | has_abs _ = false;
wenzelm@24671
   909
wenzelm@24671
   910
wenzelm@20199
   911
(* dest abstraction *)
clasohm@0
   912
wenzelm@16678
   913
fun dest_abs (x, T, body) =
wenzelm@16678
   914
  let
wenzelm@16678
   915
    fun name_clash (Free (y, _)) = (x = y)
wenzelm@16678
   916
      | name_clash (t $ u) = name_clash t orelse name_clash u
wenzelm@16678
   917
      | name_clash (Abs (_, _, t)) = name_clash t
wenzelm@16678
   918
      | name_clash _ = false;
wenzelm@16678
   919
  in
wenzelm@43324
   920
    if name_clash body then
wenzelm@43324
   921
      dest_abs (singleton (Name.variant_list [x]) x, T, body)    (*potentially slow*)
wenzelm@16678
   922
    else (x, subst_bound (Free (x, T), body))
wenzelm@16678
   923
  end;
wenzelm@16678
   924
wenzelm@20160
   925
wenzelm@9536
   926
(* dummy patterns *)
wenzelm@9536
   927
wenzelm@9536
   928
val dummy_patternN = "dummy_pattern";
wenzelm@9536
   929
wenzelm@18253
   930
fun dummy_pattern T = Const (dummy_patternN, T);
wenzelm@45156
   931
val dummy = dummy_pattern dummyT;
wenzelm@45156
   932
val dummy_prop = dummy_pattern propT;
wenzelm@18253
   933
wenzelm@9536
   934
fun is_dummy_pattern (Const ("dummy_pattern", _)) = true
wenzelm@9536
   935
  | is_dummy_pattern _ = false;
wenzelm@9536
   936
wenzelm@9536
   937
fun no_dummy_patterns tm =
haftmann@16787
   938
  if not (fold_aterms (fn t => fn b => b orelse is_dummy_pattern t) tm false) then tm
wenzelm@9536
   939
  else raise TERM ("Illegal occurrence of '_' dummy pattern", [tm]);
wenzelm@9536
   940
wenzelm@24733
   941
fun free_dummy_patterns (Const ("dummy_pattern", T)) used =
wenzelm@43329
   942
      let val [x] = Name.invent used Name.uu 1
wenzelm@24733
   943
      in (Free (Name.internal x, T), Name.declare x used) end
wenzelm@24733
   944
  | free_dummy_patterns (Abs (x, T, b)) used =
wenzelm@24733
   945
      let val (b', used') = free_dummy_patterns b used
wenzelm@24733
   946
      in (Abs (x, T, b'), used') end
wenzelm@24733
   947
  | free_dummy_patterns (t $ u) used =
wenzelm@24733
   948
      let
wenzelm@24733
   949
        val (t', used') = free_dummy_patterns t used;
wenzelm@24733
   950
        val (u', used'') = free_dummy_patterns u used';
wenzelm@24733
   951
      in (t' $ u', used'') end
wenzelm@24733
   952
  | free_dummy_patterns a used = (a, used);
wenzelm@24733
   953
wenzelm@24762
   954
fun replace_dummy Ts (Const ("dummy_pattern", T)) i =
haftmann@33063
   955
      (list_comb (Var (("_dummy_", i), Ts ---> T), map_range Bound (length Ts)), i + 1)
wenzelm@24762
   956
  | replace_dummy Ts (Abs (x, T, t)) i =
wenzelm@24762
   957
      let val (t', i') = replace_dummy (T :: Ts) t i
wenzelm@24762
   958
      in (Abs (x, T, t'), i') end
wenzelm@24762
   959
  | replace_dummy Ts (t $ u) i =
wenzelm@24762
   960
      let
wenzelm@24762
   961
        val (t', i') = replace_dummy Ts t i;
wenzelm@24762
   962
        val (u', i'') = replace_dummy Ts u i';
wenzelm@24762
   963
      in (t' $ u', i'') end
wenzelm@24762
   964
  | replace_dummy _ a i = (a, i);
wenzelm@11903
   965
wenzelm@11903
   966
val replace_dummy_patterns = replace_dummy [];
wenzelm@9536
   967
wenzelm@10552
   968
fun is_replaced_dummy_pattern ("_dummy_", _) = true
wenzelm@10552
   969
  | is_replaced_dummy_pattern _ = false;
wenzelm@9536
   970
wenzelm@45156
   971
fun show_dummy_patterns (Var (("_dummy_", _), T)) = dummy_pattern T
wenzelm@16035
   972
  | show_dummy_patterns (t $ u) = show_dummy_patterns t $ show_dummy_patterns u
wenzelm@16035
   973
  | show_dummy_patterns (Abs (x, T, t)) = Abs (x, T, show_dummy_patterns t)
wenzelm@16035
   974
  | show_dummy_patterns a = a;
wenzelm@16035
   975
wenzelm@13484
   976
wenzelm@20100
   977
(* display variables *)
wenzelm@20100
   978
wenzelm@14786
   979
fun string_of_vname (x, i) =
wenzelm@14786
   980
  let
wenzelm@15986
   981
    val idx = string_of_int i;
wenzelm@15986
   982
    val dot =
wenzelm@15986
   983
      (case rev (Symbol.explode x) of
wenzelm@50242
   984
        _ :: "\\<^sub>" :: _ => false
wenzelm@50242
   985
      | _ :: "\\<^isub>" :: _ => false
wenzelm@15986
   986
      | _ :: "\\<^isup>" :: _ => false
wenzelm@15986
   987
      | c :: _ => Symbol.is_digit c
wenzelm@15986
   988
      | _ => true);
wenzelm@14786
   989
  in
wenzelm@38980
   990
    if dot then "?" ^ x ^ "." ^ idx
wenzelm@38980
   991
    else if i <> 0 then "?" ^ x ^ idx
wenzelm@38980
   992
    else "?" ^ x
wenzelm@14786
   993
  end;
wenzelm@14786
   994
wenzelm@14786
   995
fun string_of_vname' (x, ~1) = x
wenzelm@14786
   996
  | string_of_vname' xi = string_of_vname xi;
wenzelm@14786
   997
clasohm@1364
   998
end;
clasohm@1364
   999
wenzelm@40841
  1000
structure Basic_Term: BASIC_TERM = Term;
wenzelm@40841
  1001
open Basic_Term;