src/ZF/Tools/inductive_package.ML
author wenzelm
Sun Mar 08 17:26:14 2009 +0100 (2009-03-08)
changeset 30364 577edc39b501
parent 30345 76fd85bbf139
child 30595 c87a3350f5a9
permissions -rw-r--r--
moved basic algebra of long names from structure NameSpace to Long_Name;
wenzelm@12191
     1
(*  Title:      ZF/Tools/inductive_package.ML
paulson@6051
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@6051
     3
paulson@6051
     4
Fixedpoint definition module -- for Inductive/Coinductive Definitions
paulson@6051
     5
paulson@6051
     6
The functor will be instantiated for normal sums/products (inductive defs)
paulson@6051
     7
                         and non-standard sums/products (coinductive defs)
paulson@6051
     8
paulson@6051
     9
Sums are used only for mutual recursion;
paulson@6051
    10
Products are used only to derive "streamlined" induction rules for relations
paulson@6051
    11
*)
paulson@6051
    12
paulson@6051
    13
type inductive_result =
paulson@6051
    14
   {defs       : thm list,             (*definitions made in thy*)
paulson@6051
    15
    bnd_mono   : thm,                  (*monotonicity for the lfp definition*)
paulson@6051
    16
    dom_subset : thm,                  (*inclusion of recursive set in dom*)
paulson@6051
    17
    intrs      : thm list,             (*introduction rules*)
paulson@6051
    18
    elim       : thm,                  (*case analysis theorem*)
paulson@6141
    19
    mk_cases   : string -> thm,        (*generates case theorems*)
paulson@6051
    20
    induct     : thm,                  (*main induction rule*)
paulson@6051
    21
    mutual_induct : thm};              (*mutual induction rule*)
paulson@6051
    22
paulson@6051
    23
paulson@6051
    24
(*Functor's result signature*)
paulson@6051
    25
signature INDUCTIVE_PACKAGE =
wenzelm@12132
    26
sig
paulson@6051
    27
  (*Insert definitions for the recursive sets, which
paulson@6051
    28
     must *already* be declared as constants in parent theory!*)
wenzelm@12132
    29
  val add_inductive_i: bool -> term list * term ->
haftmann@29579
    30
    ((binding * term) * attribute list) list ->
wenzelm@12132
    31
    thm list * thm list * thm list * thm list -> theory -> theory * inductive_result
wenzelm@12132
    32
  val add_inductive: string list * string ->
haftmann@29579
    33
    ((binding * string) * Attrib.src list) list ->
wenzelm@26336
    34
    (Facts.ref * Attrib.src list) list * (Facts.ref * Attrib.src list) list *
wenzelm@26336
    35
    (Facts.ref * Attrib.src list) list * (Facts.ref * Attrib.src list) list ->
wenzelm@12132
    36
    theory -> theory * inductive_result
wenzelm@12132
    37
end;
paulson@6051
    38
paulson@6051
    39
paulson@6051
    40
(*Declares functions to add fixedpoint/constructor defs to a theory.
paulson@6051
    41
  Recursive sets must *already* be declared as constants.*)
wenzelm@12132
    42
functor Add_inductive_def_Fun
wenzelm@12132
    43
    (structure Fp: FP and Pr : PR and CP: CARTPROD and Su : SU val coind: bool)
paulson@6051
    44
 : INDUCTIVE_PACKAGE =
paulson@6051
    45
struct
wenzelm@12183
    46
wenzelm@16855
    47
open Ind_Syntax;
paulson@6051
    48
wenzelm@12227
    49
val co_prefix = if coind then "co" else "";
wenzelm@12227
    50
wenzelm@7695
    51
wenzelm@7695
    52
(* utils *)
wenzelm@7695
    53
wenzelm@7695
    54
(*make distinct individual variables a1, a2, a3, ..., an. *)
wenzelm@7695
    55
fun mk_frees a [] = []
wenzelm@12902
    56
  | mk_frees a (T::Ts) = Free(a,T) :: mk_frees (Symbol.bump_string a) Ts;
wenzelm@7695
    57
wenzelm@7695
    58
wenzelm@7695
    59
(* add_inductive(_i) *)
wenzelm@7695
    60
paulson@6051
    61
(*internal version, accepting terms*)
wenzelm@12132
    62
fun add_inductive_i verbose (rec_tms, dom_sum)
wenzelm@28083
    63
  raw_intr_specs (monos, con_defs, type_intrs, type_elims) thy =
wenzelm@12132
    64
let
krauss@26056
    65
  val _ = Theory.requires thy "Inductive_ZF" "(co)inductive definitions";
wenzelm@26189
    66
  val ctxt = ProofContext.init thy;
paulson@6051
    67
wenzelm@30223
    68
  val intr_specs = map (apfst (apfst Binding.name_of)) raw_intr_specs;
wenzelm@12191
    69
  val (intr_names, intr_tms) = split_list (map fst intr_specs);
wenzelm@12191
    70
  val case_names = RuleCases.case_names intr_names;
paulson@6051
    71
paulson@6051
    72
  (*recT and rec_params should agree for all mutually recursive components*)
paulson@6051
    73
  val rec_hds = map head_of rec_tms;
paulson@6051
    74
paulson@6051
    75
  val dummy = assert_all is_Const rec_hds
wenzelm@12132
    76
          (fn t => "Recursive set not previously declared as constant: " ^
wenzelm@26189
    77
                   Syntax.string_of_term ctxt t);
paulson@6051
    78
paulson@6051
    79
  (*Now we know they are all Consts, so get their names, type and params*)
paulson@6051
    80
  val rec_names = map (#1 o dest_Const) rec_hds
paulson@6051
    81
  and (Const(_,recT),rec_params) = strip_comb (hd rec_tms);
paulson@6051
    82
wenzelm@30364
    83
  val rec_base_names = map Long_Name.base_name rec_names;
paulson@6051
    84
  val dummy = assert_all Syntax.is_identifier rec_base_names
paulson@6051
    85
    (fn a => "Base name of recursive set not an identifier: " ^ a);
paulson@6051
    86
paulson@6051
    87
  local (*Checking the introduction rules*)
wenzelm@20342
    88
    val intr_sets = map (#2 o rule_concl_msg thy) intr_tms;
paulson@6051
    89
    fun intr_ok set =
wenzelm@12132
    90
        case head_of set of Const(a,recT) => a mem rec_names | _ => false;
paulson@6051
    91
  in
paulson@6051
    92
    val dummy =  assert_all intr_ok intr_sets
wenzelm@12132
    93
       (fn t => "Conclusion of rule does not name a recursive set: " ^
wenzelm@26189
    94
                Syntax.string_of_term ctxt t);
paulson@6051
    95
  end;
paulson@6051
    96
paulson@6051
    97
  val dummy = assert_all is_Free rec_params
paulson@6051
    98
      (fn t => "Param in recursion term not a free variable: " ^
wenzelm@26189
    99
               Syntax.string_of_term ctxt t);
paulson@6051
   100
paulson@6051
   101
  (*** Construct the fixedpoint definition ***)
wenzelm@30190
   102
  val mk_variant = Name.variant (List.foldr OldTerm.add_term_names [] intr_tms);
paulson@6051
   103
paulson@6051
   104
  val z' = mk_variant"z" and X' = mk_variant"X" and w' = mk_variant"w";
paulson@6051
   105
paulson@6051
   106
  fun dest_tprop (Const("Trueprop",_) $ P) = P
wenzelm@12132
   107
    | dest_tprop Q = error ("Ill-formed premise of introduction rule: " ^
wenzelm@26189
   108
                            Syntax.string_of_term ctxt Q);
paulson@6051
   109
paulson@6051
   110
  (*Makes a disjunct from an introduction rule*)
paulson@6051
   111
  fun fp_part intr = (*quantify over rule's free vars except parameters*)
wenzelm@16855
   112
    let val prems = map dest_tprop (Logic.strip_imp_prems intr)
skalberg@15570
   113
        val dummy = List.app (fn rec_hd => List.app (chk_prem rec_hd) prems) rec_hds
wenzelm@29265
   114
        val exfrees = OldTerm.term_frees intr \\ rec_params
wenzelm@12132
   115
        val zeq = FOLogic.mk_eq (Free(z',iT), #1 (rule_concl intr))
wenzelm@30190
   116
    in List.foldr FOLogic.mk_exists
wenzelm@23419
   117
             (BalancedTree.make FOLogic.mk_conj (zeq::prems)) exfrees
paulson@6051
   118
    end;
paulson@6051
   119
paulson@6051
   120
  (*The Part(A,h) terms -- compose injections to make h*)
paulson@6051
   121
  fun mk_Part (Bound 0) = Free(X',iT) (*no mutual rec, no Part needed*)
wenzelm@26189
   122
    | mk_Part h         = @{const Part} $ Free(X',iT) $ Abs(w',iT,h);
paulson@6051
   123
paulson@6051
   124
  (*Access to balanced disjoint sums via injections*)
wenzelm@23419
   125
  val parts = map mk_Part
wenzelm@23419
   126
    (BalancedTree.accesses {left = fn t => Su.inl $ t, right = fn t => Su.inr $ t, init = Bound 0}
wenzelm@23419
   127
      (length rec_tms));
paulson@6051
   128
paulson@6051
   129
  (*replace each set by the corresponding Part(A,h)*)
paulson@6051
   130
  val part_intrs = map (subst_free (rec_tms ~~ parts) o fp_part) intr_tms;
paulson@6051
   131
wenzelm@12132
   132
  val fp_abs = absfree(X', iT,
wenzelm@12132
   133
                   mk_Collect(z', dom_sum,
wenzelm@23419
   134
                              BalancedTree.make FOLogic.mk_disj part_intrs));
paulson@6051
   135
paulson@6051
   136
  val fp_rhs = Fp.oper $ dom_sum $ fp_abs
paulson@6051
   137
wenzelm@22567
   138
  val dummy = List.app (fn rec_hd => (Logic.occs (rec_hd, fp_rhs) andalso
wenzelm@22567
   139
                             error "Illegal occurrence of recursion operator"; ()))
wenzelm@12132
   140
           rec_hds;
paulson@6051
   141
paulson@6051
   142
  (*** Make the new theory ***)
paulson@6051
   143
paulson@6051
   144
  (*A key definition:
paulson@6051
   145
    If no mutual recursion then it equals the one recursive set.
paulson@6051
   146
    If mutual recursion then it differs from all the recursive sets. *)
paulson@6051
   147
  val big_rec_base_name = space_implode "_" rec_base_names;
wenzelm@20342
   148
  val big_rec_name = Sign.intern_const thy big_rec_base_name;
paulson@6051
   149
wenzelm@12132
   150
wenzelm@21962
   151
  val _ =
wenzelm@21962
   152
    if verbose then
wenzelm@21962
   153
      writeln ((if coind then "Coind" else "Ind") ^ "uctive definition " ^ quote big_rec_name)
wenzelm@21962
   154
    else ();
paulson@6051
   155
paulson@6051
   156
  (*Big_rec... is the union of the mutually recursive sets*)
paulson@6051
   157
  val big_rec_tm = list_comb(Const(big_rec_name,recT), rec_params);
paulson@6051
   158
paulson@6051
   159
  (*The individual sets must already be declared*)
wenzelm@24255
   160
  val axpairs = map PrimitiveDefs.mk_defpair
wenzelm@12132
   161
        ((big_rec_tm, fp_rhs) ::
wenzelm@12132
   162
         (case parts of
wenzelm@12132
   163
             [_] => []                        (*no mutual recursion*)
wenzelm@12132
   164
           | _ => rec_tms ~~          (*define the sets as Parts*)
wenzelm@12132
   165
                  map (subst_atomic [(Free(X',iT),big_rec_tm)]) parts));
paulson@6051
   166
paulson@6051
   167
  (*tracing: print the fixedpoint definition*)
paulson@6051
   168
  val dummy = if !Ind_Syntax.trace then
wenzelm@26189
   169
              writeln (cat_lines (map (Syntax.string_of_term ctxt o #2) axpairs))
wenzelm@12132
   170
          else ()
paulson@6051
   171
paulson@6051
   172
  (*add definitions of the inductive sets*)
haftmann@18377
   173
  val (_, thy1) =
haftmann@18377
   174
    thy
wenzelm@24712
   175
    |> Sign.add_path big_rec_base_name
haftmann@29579
   176
    |> PureThy.add_defs false (map (Thm.no_attributes o apfst Binding.name) axpairs);
wenzelm@26189
   177
wenzelm@26189
   178
  val ctxt1 = ProofContext.init thy1;
paulson@6051
   179
paulson@6051
   180
paulson@6051
   181
  (*fetch fp definitions from the theory*)
wenzelm@12132
   182
  val big_rec_def::part_rec_defs =
wenzelm@30345
   183
    map (Drule.get_def thy1)
wenzelm@12132
   184
        (case rec_names of [_] => rec_names
wenzelm@12132
   185
                         | _   => big_rec_base_name::rec_names);
paulson@6051
   186
paulson@6051
   187
paulson@6051
   188
  (********)
paulson@6051
   189
  val dummy = writeln "  Proving monotonicity...";
paulson@6051
   190
wenzelm@12132
   191
  val bnd_mono =
wenzelm@20342
   192
    Goal.prove_global thy1 [] [] (FOLogic.mk_Trueprop (Fp.bnd_mono $ dom_sum $ fp_abs))
wenzelm@17985
   193
      (fn _ => EVERY
wenzelm@24893
   194
        [rtac (@{thm Collect_subset} RS @{thm bnd_monoI}) 1,
wenzelm@24893
   195
         REPEAT (ares_tac (@{thms basic_monos} @ monos) 1)]);
paulson@6051
   196
paulson@6051
   197
  val dom_subset = standard (big_rec_def RS Fp.subs);
paulson@6051
   198
paulson@6051
   199
  val unfold = standard ([big_rec_def, bnd_mono] MRS Fp.Tarski);
paulson@6051
   200
paulson@6051
   201
  (********)
paulson@6051
   202
  val dummy = writeln "  Proving the introduction rules...";
paulson@6051
   203
wenzelm@12132
   204
  (*Mutual recursion?  Helps to derive subset rules for the
paulson@6051
   205
    individual sets.*)
paulson@6051
   206
  val Part_trans =
paulson@6051
   207
      case rec_names of
wenzelm@12132
   208
           [_] => asm_rl
wenzelm@24893
   209
         | _   => standard (@{thm Part_subset} RS @{thm subset_trans});
paulson@6051
   210
paulson@6051
   211
  (*To type-check recursive occurrences of the inductive sets, possibly
paulson@6051
   212
    enclosed in some monotonic operator M.*)
wenzelm@12132
   213
  val rec_typechecks =
wenzelm@12132
   214
     [dom_subset] RL (asm_rl :: ([Part_trans] RL monos))
wenzelm@24893
   215
     RL [@{thm subsetD}];
paulson@6051
   216
paulson@6051
   217
  (*Type-checking is hardest aspect of proof;
paulson@6051
   218
    disjIn selects the correct disjunct after unfolding*)
wenzelm@17985
   219
  fun intro_tacsf disjIn =
wenzelm@17985
   220
    [DETERM (stac unfold 1),
wenzelm@24893
   221
     REPEAT (resolve_tac [@{thm Part_eqI}, @{thm CollectI}] 1),
paulson@6051
   222
     (*Now 2-3 subgoals: typechecking, the disjunction, perhaps equality.*)
paulson@6051
   223
     rtac disjIn 2,
paulson@6051
   224
     (*Not ares_tac, since refl must be tried before equality assumptions;
paulson@6051
   225
       backtracking may occur if the premises have extra variables!*)
paulson@6051
   226
     DEPTH_SOLVE_1 (resolve_tac [refl,exI,conjI] 2 APPEND assume_tac 2),
paulson@6051
   227
     (*Now solve the equations like Tcons(a,f) = Inl(?b4)*)
paulson@6051
   228
     rewrite_goals_tac con_defs,
wenzelm@26189
   229
     REPEAT (rtac @{thm refl} 2),
paulson@6051
   230
     (*Typechecking; this can fail*)
paulson@6172
   231
     if !Ind_Syntax.trace then print_tac "The type-checking subgoal:"
paulson@6051
   232
     else all_tac,
paulson@6051
   233
     REPEAT (FIRSTGOAL (        dresolve_tac rec_typechecks
wenzelm@24893
   234
                        ORELSE' eresolve_tac (asm_rl::@{thm PartE}::@{thm SigmaE2}::
wenzelm@12132
   235
                                              type_elims)
wenzelm@12132
   236
                        ORELSE' hyp_subst_tac)),
paulson@6051
   237
     if !Ind_Syntax.trace then print_tac "The subgoal after monos, type_elims:"
paulson@6051
   238
     else all_tac,
wenzelm@24893
   239
     DEPTH_SOLVE (swap_res_tac (@{thm SigmaI}::@{thm subsetI}::type_intrs) 1)];
paulson@6051
   240
paulson@6051
   241
  (*combines disjI1 and disjI2 to get the corresponding nested disjunct...*)
wenzelm@23419
   242
  val mk_disj_rls = BalancedTree.accesses
wenzelm@26189
   243
    {left = fn rl => rl RS @{thm disjI1},
wenzelm@26189
   244
     right = fn rl => rl RS @{thm disjI2},
wenzelm@26189
   245
     init = @{thm asm_rl}};
paulson@6051
   246
wenzelm@17985
   247
  val intrs =
wenzelm@17985
   248
    (intr_tms, map intro_tacsf (mk_disj_rls (length intr_tms)))
wenzelm@17985
   249
    |> ListPair.map (fn (t, tacs) =>
wenzelm@20342
   250
      Goal.prove_global thy1 [] [] t
wenzelm@20046
   251
        (fn _ => EVERY (rewrite_goals_tac part_rec_defs :: tacs)))
wenzelm@29306
   252
    handle MetaSimplifier.SIMPLIFIER (msg, thm) => (Display.print_thm thm; error msg);
paulson@6051
   253
paulson@6051
   254
  (********)
paulson@6051
   255
  val dummy = writeln "  Proving the elimination rule...";
paulson@6051
   256
paulson@6051
   257
  (*Breaks down logical connectives in the monotonic function*)
paulson@6051
   258
  val basic_elim_tac =
paulson@6051
   259
      REPEAT (SOMEGOAL (eresolve_tac (Ind_Syntax.elim_rls @ Su.free_SEs)
wenzelm@12132
   260
                ORELSE' bound_hyp_subst_tac))
paulson@6051
   261
      THEN prune_params_tac
wenzelm@12132
   262
          (*Mutual recursion: collapse references to Part(D,h)*)
wenzelm@28839
   263
      THEN (PRIMITIVE (fold_rule part_rec_defs));
paulson@6051
   264
paulson@6051
   265
  (*Elimination*)
wenzelm@12132
   266
  val elim = rule_by_tactic basic_elim_tac
wenzelm@12132
   267
                 (unfold RS Ind_Syntax.equals_CollectD)
paulson@6051
   268
paulson@6051
   269
  (*Applies freeness of the given constructors, which *must* be unfolded by
wenzelm@12132
   270
      the given defs.  Cannot simply use the local con_defs because
wenzelm@12132
   271
      con_defs=[] for inference systems.
wenzelm@12175
   272
    Proposition A should have the form t:Si where Si is an inductive set*)
wenzelm@12175
   273
  fun make_cases ss A =
wenzelm@12175
   274
    rule_by_tactic
wenzelm@12175
   275
      (basic_elim_tac THEN ALLGOALS (asm_full_simp_tac ss) THEN basic_elim_tac)
wenzelm@12175
   276
      (Thm.assume A RS elim)
wenzelm@12175
   277
      |> Drule.standard';
wenzelm@12175
   278
  fun mk_cases a = make_cases (*delayed evaluation of body!*)
wenzelm@27261
   279
    (simpset ())
wenzelm@27261
   280
    let val thy = Thm.theory_of_thm elim in cterm_of thy (Syntax.read_prop_global thy a) end;
paulson@6051
   281
paulson@6051
   282
  fun induction_rules raw_induct thy =
paulson@6051
   283
   let
paulson@6051
   284
     val dummy = writeln "  Proving the induction rule...";
paulson@6051
   285
paulson@6051
   286
     (*** Prove the main induction rule ***)
paulson@6051
   287
paulson@6051
   288
     val pred_name = "P";            (*name for predicate variables*)
paulson@6051
   289
paulson@6051
   290
     (*Used to make induction rules;
wenzelm@12132
   291
        ind_alist = [(rec_tm1,pred1),...] associates predicates with rec ops
wenzelm@12132
   292
        prem is a premise of an intr rule*)
wenzelm@26189
   293
     fun add_induct_prem ind_alist (prem as Const (@{const_name Trueprop}, _) $
wenzelm@26189
   294
                      (Const (@{const_name mem}, _) $ t $ X), iprems) =
haftmann@17314
   295
          (case AList.lookup (op aconv) ind_alist X of
skalberg@15531
   296
               SOME pred => prem :: FOLogic.mk_Trueprop (pred $ t) :: iprems
skalberg@15531
   297
             | NONE => (*possibly membership in M(rec_tm), for M monotone*)
wenzelm@12132
   298
                 let fun mk_sb (rec_tm,pred) =
wenzelm@26189
   299
                             (rec_tm, @{const Collect} $ rec_tm $ pred)
wenzelm@12132
   300
                 in  subst_free (map mk_sb ind_alist) prem :: iprems  end)
paulson@6051
   301
       | add_induct_prem ind_alist (prem,iprems) = prem :: iprems;
paulson@6051
   302
paulson@6051
   303
     (*Make a premise of the induction rule.*)
paulson@6051
   304
     fun induct_prem ind_alist intr =
wenzelm@29265
   305
       let val quantfrees = map dest_Free (OldTerm.term_frees intr \\ rec_params)
wenzelm@30190
   306
           val iprems = List.foldr (add_induct_prem ind_alist) []
skalberg@15574
   307
                              (Logic.strip_imp_prems intr)
wenzelm@12132
   308
           val (t,X) = Ind_Syntax.rule_concl intr
haftmann@17314
   309
           val (SOME pred) = AList.lookup (op aconv) ind_alist X
wenzelm@12132
   310
           val concl = FOLogic.mk_Trueprop (pred $ t)
paulson@6051
   311
       in list_all_free (quantfrees, Logic.list_implies (iprems,concl)) end
paulson@6051
   312
       handle Bind => error"Recursion term not found in conclusion";
paulson@6051
   313
paulson@6051
   314
     (*Minimizes backtracking by delivering the correct premise to each goal.
paulson@6051
   315
       Intro rules with extra Vars in premises still cause some backtracking *)
paulson@6051
   316
     fun ind_tac [] 0 = all_tac
wenzelm@12132
   317
       | ind_tac(prem::prems) i =
paulson@13747
   318
             DEPTH_SOLVE_1 (ares_tac [prem, refl] i) THEN ind_tac prems (i-1);
paulson@6051
   319
paulson@6051
   320
     val pred = Free(pred_name, Ind_Syntax.iT --> FOLogic.oT);
paulson@6051
   321
wenzelm@12132
   322
     val ind_prems = map (induct_prem (map (rpair pred) rec_tms))
wenzelm@12132
   323
                         intr_tms;
paulson@6051
   324
wenzelm@12132
   325
     val dummy = if !Ind_Syntax.trace then
wenzelm@12132
   326
                 (writeln "ind_prems = ";
wenzelm@26189
   327
                  List.app (writeln o Syntax.string_of_term ctxt1) ind_prems;
wenzelm@26928
   328
                  writeln "raw_induct = "; Display.print_thm raw_induct)
wenzelm@12132
   329
             else ();
paulson@6051
   330
paulson@6051
   331
wenzelm@12132
   332
     (*We use a MINIMAL simpset. Even FOL_ss contains too many simpules.
paulson@6051
   333
       If the premises get simplified, then the proofs could fail.*)
wenzelm@17892
   334
     val min_ss = Simplifier.theory_context thy empty_ss
wenzelm@12725
   335
           setmksimps (map mk_eq o ZF_atomize o gen_all)
wenzelm@12132
   336
           setSolver (mk_solver "minimal"
wenzelm@12132
   337
                      (fn prems => resolve_tac (triv_rls@prems)
wenzelm@12132
   338
                                   ORELSE' assume_tac
wenzelm@12132
   339
                                   ORELSE' etac FalseE));
paulson@6051
   340
wenzelm@12132
   341
     val quant_induct =
wenzelm@20342
   342
       Goal.prove_global thy1 [] ind_prems
wenzelm@17985
   343
         (FOLogic.mk_Trueprop (Ind_Syntax.mk_all_imp (big_rec_tm, pred)))
wenzelm@26712
   344
         (fn {prems, ...} => EVERY
wenzelm@17985
   345
           [rewrite_goals_tac part_rec_defs,
wenzelm@26189
   346
            rtac (@{thm impI} RS @{thm allI}) 1,
wenzelm@17985
   347
            DETERM (etac raw_induct 1),
wenzelm@17985
   348
            (*Push Part inside Collect*)
wenzelm@24893
   349
            full_simp_tac (min_ss addsimps [@{thm Part_Collect}]) 1,
wenzelm@17985
   350
            (*This CollectE and disjE separates out the introduction rules*)
wenzelm@26189
   351
            REPEAT (FIRSTGOAL (eresolve_tac [@{thm CollectE}, @{thm disjE}])),
wenzelm@17985
   352
            (*Now break down the individual cases.  No disjE here in case
wenzelm@17985
   353
              some premise involves disjunction.*)
wenzelm@26189
   354
            REPEAT (FIRSTGOAL (eresolve_tac [@{thm CollectE}, @{thm exE}, @{thm conjE}]
wenzelm@17985
   355
                               ORELSE' bound_hyp_subst_tac)),
wenzelm@20046
   356
            ind_tac (rev (map (rewrite_rule part_rec_defs) prems)) (length prems)]);
paulson@6051
   357
wenzelm@12132
   358
     val dummy = if !Ind_Syntax.trace then
wenzelm@26928
   359
                 (writeln "quant_induct = "; Display.print_thm quant_induct)
wenzelm@12132
   360
             else ();
paulson@6051
   361
paulson@6051
   362
paulson@6051
   363
     (*** Prove the simultaneous induction rule ***)
paulson@6051
   364
paulson@6051
   365
     (*Make distinct predicates for each inductive set*)
paulson@6051
   366
paulson@6051
   367
     (*The components of the element type, several if it is a product*)
paulson@6051
   368
     val elem_type = CP.pseudo_type dom_sum;
paulson@6051
   369
     val elem_factors = CP.factors elem_type;
paulson@6051
   370
     val elem_frees = mk_frees "za" elem_factors;
paulson@6051
   371
     val elem_tuple = CP.mk_tuple Pr.pair elem_type elem_frees;
paulson@6051
   372
paulson@6051
   373
     (*Given a recursive set and its domain, return the "fsplit" predicate
paulson@6051
   374
       and a conclusion for the simultaneous induction rule.
paulson@6051
   375
       NOTE.  This will not work for mutually recursive predicates.  Previously
paulson@6051
   376
       a summand 'domt' was also an argument, but this required the domain of
paulson@6051
   377
       mutual recursion to invariably be a disjoint sum.*)
wenzelm@12132
   378
     fun mk_predpair rec_tm =
paulson@6051
   379
       let val rec_name = (#1 o dest_Const o head_of) rec_tm
wenzelm@30364
   380
           val pfree = Free(pred_name ^ "_" ^ Long_Name.base_name rec_name,
wenzelm@12132
   381
                            elem_factors ---> FOLogic.oT)
wenzelm@12132
   382
           val qconcl =
wenzelm@30190
   383
             List.foldr FOLogic.mk_all
skalberg@15574
   384
               (FOLogic.imp $
wenzelm@26189
   385
                (@{const mem} $ elem_tuple $ rec_tm)
skalberg@15574
   386
                      $ (list_comb (pfree, elem_frees))) elem_frees
wenzelm@12132
   387
       in  (CP.ap_split elem_type FOLogic.oT pfree,
wenzelm@12132
   388
            qconcl)
paulson@6051
   389
       end;
paulson@6051
   390
paulson@6051
   391
     val (preds,qconcls) = split_list (map mk_predpair rec_tms);
paulson@6051
   392
paulson@6051
   393
     (*Used to form simultaneous induction lemma*)
wenzelm@12132
   394
     fun mk_rec_imp (rec_tm,pred) =
wenzelm@26189
   395
         FOLogic.imp $ (@{const mem} $ Bound 0 $ rec_tm) $
wenzelm@12132
   396
                          (pred $ Bound 0);
paulson@6051
   397
paulson@6051
   398
     (*To instantiate the main induction rule*)
wenzelm@12132
   399
     val induct_concl =
wenzelm@12132
   400
         FOLogic.mk_Trueprop
wenzelm@12132
   401
           (Ind_Syntax.mk_all_imp
wenzelm@12132
   402
            (big_rec_tm,
wenzelm@12132
   403
             Abs("z", Ind_Syntax.iT,
wenzelm@23419
   404
                 BalancedTree.make FOLogic.mk_conj
wenzelm@12132
   405
                 (ListPair.map mk_rec_imp (rec_tms, preds)))))
paulson@6051
   406
     and mutual_induct_concl =
wenzelm@23419
   407
      FOLogic.mk_Trueprop(BalancedTree.make FOLogic.mk_conj qconcls);
paulson@6051
   408
wenzelm@12132
   409
     val dummy = if !Ind_Syntax.trace then
wenzelm@12132
   410
                 (writeln ("induct_concl = " ^
wenzelm@26189
   411
                           Syntax.string_of_term ctxt1 induct_concl);
wenzelm@12132
   412
                  writeln ("mutual_induct_concl = " ^
wenzelm@26189
   413
                           Syntax.string_of_term ctxt1 mutual_induct_concl))
wenzelm@12132
   414
             else ();
paulson@6051
   415
paulson@6051
   416
wenzelm@26189
   417
     val lemma_tac = FIRST' [eresolve_tac [@{thm asm_rl}, @{thm conjE}, @{thm PartE}, @{thm mp}],
wenzelm@26189
   418
                             resolve_tac [@{thm allI}, @{thm impI}, @{thm conjI}, @{thm Part_eqI}],
wenzelm@26189
   419
                             dresolve_tac [@{thm spec}, @{thm mp}, Pr.fsplitD]];
paulson@6051
   420
paulson@6051
   421
     val need_mutual = length rec_names > 1;
paulson@6051
   422
paulson@6051
   423
     val lemma = (*makes the link between the two induction rules*)
paulson@6051
   424
       if need_mutual then
wenzelm@12132
   425
          (writeln "  Proving the mutual induction rule...";
wenzelm@20342
   426
           Goal.prove_global thy1 [] []
wenzelm@17985
   427
             (Logic.mk_implies (induct_concl, mutual_induct_concl))
wenzelm@17985
   428
             (fn _ => EVERY
wenzelm@17985
   429
               [rewrite_goals_tac part_rec_defs,
wenzelm@20046
   430
                REPEAT (rewrite_goals_tac [Pr.split_eq] THEN lemma_tac 1)]))
wenzelm@26189
   431
       else (writeln "  [ No mutual induction rule needed ]"; @{thm TrueI});
paulson@6051
   432
wenzelm@12132
   433
     val dummy = if !Ind_Syntax.trace then
wenzelm@26928
   434
                 (writeln "lemma = "; Display.print_thm lemma)
wenzelm@12132
   435
             else ();
paulson@6051
   436
paulson@6051
   437
paulson@6051
   438
     (*Mutual induction follows by freeness of Inl/Inr.*)
paulson@6051
   439
wenzelm@12132
   440
     (*Simplification largely reduces the mutual induction rule to the
paulson@6051
   441
       standard rule*)
wenzelm@12132
   442
     val mut_ss =
wenzelm@12132
   443
         min_ss addsimps [Su.distinct, Su.distinct', Su.inl_iff, Su.inr_iff];
paulson@6051
   444
paulson@6051
   445
     val all_defs = con_defs @ part_rec_defs;
paulson@6051
   446
paulson@6051
   447
     (*Removes Collects caused by M-operators in the intro rules.  It is very
paulson@6051
   448
       hard to simplify
wenzelm@12132
   449
         list({v: tf. (v : t --> P_t(v)) & (v : f --> P_f(v))})
paulson@6051
   450
       where t==Part(tf,Inl) and f==Part(tf,Inr) to  list({v: tf. P_t(v)}).
paulson@6051
   451
       Instead the following rules extract the relevant conjunct.
paulson@6051
   452
     *)
wenzelm@24893
   453
     val cmonos = [@{thm subset_refl} RS @{thm Collect_mono}] RL monos
wenzelm@24893
   454
                   RLN (2,[@{thm rev_subsetD}]);
paulson@6051
   455
paulson@6051
   456
     (*Minimizes backtracking by delivering the correct premise to each goal*)
paulson@6051
   457
     fun mutual_ind_tac [] 0 = all_tac
wenzelm@12132
   458
       | mutual_ind_tac(prem::prems) i =
wenzelm@12132
   459
           DETERM
wenzelm@12132
   460
            (SELECT_GOAL
wenzelm@12132
   461
               (
wenzelm@12132
   462
                (*Simplify the assumptions and goal by unfolding Part and
wenzelm@12132
   463
                  using freeness of the Sum constructors; proves all but one
wenzelm@12132
   464
                  conjunct by contradiction*)
wenzelm@12132
   465
                rewrite_goals_tac all_defs  THEN
wenzelm@24893
   466
                simp_tac (mut_ss addsimps [@{thm Part_iff}]) 1  THEN
wenzelm@12132
   467
                IF_UNSOLVED (*simp_tac may have finished it off!*)
wenzelm@12132
   468
                  ((*simplify assumptions*)
wenzelm@12132
   469
                   (*some risk of excessive simplification here -- might have
wenzelm@12132
   470
                     to identify the bare minimum set of rewrites*)
wenzelm@12132
   471
                   full_simp_tac
wenzelm@26287
   472
                      (mut_ss addsimps @{thms conj_simps} @ @{thms imp_simps} @ @{thms quant_simps}) 1
wenzelm@12132
   473
                   THEN
wenzelm@12132
   474
                   (*unpackage and use "prem" in the corresponding place*)
wenzelm@12132
   475
                   REPEAT (rtac impI 1)  THEN
wenzelm@12132
   476
                   rtac (rewrite_rule all_defs prem) 1  THEN
wenzelm@12132
   477
                   (*prem must not be REPEATed below: could loop!*)
wenzelm@12132
   478
                   DEPTH_SOLVE (FIRSTGOAL (ares_tac [impI] ORELSE'
wenzelm@12132
   479
                                           eresolve_tac (conjE::mp::cmonos))))
wenzelm@12132
   480
               ) i)
wenzelm@12132
   481
            THEN mutual_ind_tac prems (i-1);
paulson@6051
   482
wenzelm@12132
   483
     val mutual_induct_fsplit =
paulson@6051
   484
       if need_mutual then
wenzelm@20342
   485
         Goal.prove_global thy1 [] (map (induct_prem (rec_tms~~preds)) intr_tms)
wenzelm@17985
   486
           mutual_induct_concl
wenzelm@26712
   487
           (fn {prems, ...} => EVERY
wenzelm@17985
   488
             [rtac (quant_induct RS lemma) 1,
wenzelm@20046
   489
              mutual_ind_tac (rev prems) (length prems)])
paulson@6051
   490
       else TrueI;
paulson@6051
   491
paulson@6051
   492
     (** Uncurrying the predicate in the ordinary induction rule **)
paulson@6051
   493
paulson@6051
   494
     (*instantiate the variable to a tuple, if it is non-trivial, in order to
paulson@6051
   495
       allow the predicate to be "opened up".
paulson@6051
   496
       The name "x.1" comes from the "RS spec" !*)
wenzelm@12132
   497
     val inst =
wenzelm@12132
   498
         case elem_frees of [_] => I
wenzelm@20342
   499
            | _ => instantiate ([], [(cterm_of thy1 (Var(("x",1), Ind_Syntax.iT)),
wenzelm@20342
   500
                                      cterm_of thy1 elem_tuple)]);
paulson@6051
   501
paulson@6051
   502
     (*strip quantifier and the implication*)
wenzelm@26189
   503
     val induct0 = inst (quant_induct RS spec RSN (2, @{thm rev_mp}));
paulson@6051
   504
wenzelm@26189
   505
     val Const (@{const_name Trueprop}, _) $ (pred_var $ _) = concl_of induct0
paulson@6051
   506
wenzelm@12132
   507
     val induct = CP.split_rule_var(pred_var, elem_type-->FOLogic.oT, induct0)
wenzelm@12132
   508
                  |> standard
paulson@6051
   509
     and mutual_induct = CP.remove_split mutual_induct_fsplit
wenzelm@8438
   510
haftmann@18377
   511
     val ([induct', mutual_induct'], thy') =
haftmann@18377
   512
       thy
haftmann@29579
   513
       |> PureThy.add_thms [((Binding.name (co_prefix ^ "induct"), induct),
wenzelm@24861
   514
             [case_names, Induct.induct_pred big_rec_name]),
haftmann@29579
   515
           ((Binding.name "mutual_induct", mutual_induct), [case_names])];
wenzelm@12227
   516
    in ((thy', induct'), mutual_induct')
paulson@6051
   517
    end;  (*of induction_rules*)
paulson@6051
   518
paulson@6051
   519
  val raw_induct = standard ([big_rec_def, bnd_mono] MRS Fp.induct)
paulson@6051
   520
wenzelm@12227
   521
  val ((thy2, induct), mutual_induct) =
wenzelm@12227
   522
    if not coind then induction_rules raw_induct thy1
haftmann@18377
   523
    else
haftmann@18377
   524
      (thy1
haftmann@29579
   525
      |> PureThy.add_thms [((Binding.name (co_prefix ^ "induct"), raw_induct), [])]
haftmann@18377
   526
      |> apfst hd |> Library.swap, TrueI)
paulson@6051
   527
  and defs = big_rec_def :: part_rec_defs
paulson@6051
   528
paulson@6051
   529
haftmann@18377
   530
  val (([bnd_mono', dom_subset', elim'], [defs', intrs']), thy3) =
wenzelm@8438
   531
    thy2
wenzelm@12183
   532
    |> IndCases.declare big_rec_name make_cases
wenzelm@12132
   533
    |> PureThy.add_thms
haftmann@29579
   534
      [((Binding.name "bnd_mono", bnd_mono), []),
haftmann@29579
   535
       ((Binding.name "dom_subset", dom_subset), []),
haftmann@29579
   536
       ((Binding.name "cases", elim), [case_names, Induct.cases_pred big_rec_name])]
haftmann@18377
   537
    ||>> (PureThy.add_thmss o map Thm.no_attributes)
haftmann@29579
   538
        [(Binding.name "defs", defs),
haftmann@29579
   539
         (Binding.name "intros", intrs)];
haftmann@18377
   540
  val (intrs'', thy4) =
haftmann@18377
   541
    thy3
haftmann@29579
   542
    |> PureThy.add_thms ((map Binding.name intr_names ~~ intrs') ~~ map #2 intr_specs)
wenzelm@24712
   543
    ||> Sign.parent_path;
wenzelm@8438
   544
  in
wenzelm@12132
   545
    (thy4,
wenzelm@8438
   546
      {defs = defs',
wenzelm@8438
   547
       bnd_mono = bnd_mono',
wenzelm@8438
   548
       dom_subset = dom_subset',
wenzelm@12132
   549
       intrs = intrs'',
wenzelm@8438
   550
       elim = elim',
wenzelm@8438
   551
       mk_cases = mk_cases,
wenzelm@8438
   552
       induct = induct,
wenzelm@8438
   553
       mutual_induct = mutual_induct})
wenzelm@8438
   554
  end;
paulson@6051
   555
wenzelm@12132
   556
(*source version*)
wenzelm@12132
   557
fun add_inductive (srec_tms, sdom_sum) intr_srcs
wenzelm@12132
   558
    (raw_monos, raw_con_defs, raw_type_intrs, raw_type_elims) thy =
wenzelm@12132
   559
  let
wenzelm@24726
   560
    val ctxt = ProofContext.init thy;
wenzelm@24726
   561
    val read_terms = map (Syntax.parse_term ctxt #> TypeInfer.constrain Ind_Syntax.iT)
wenzelm@24726
   562
      #> Syntax.check_terms ctxt;
wenzelm@24726
   563
wenzelm@18728
   564
    val intr_atts = map (map (Attrib.attribute thy) o snd) intr_srcs;
wenzelm@17937
   565
    val sintrs = map fst intr_srcs ~~ intr_atts;
wenzelm@24726
   566
    val rec_tms = read_terms srec_tms;
wenzelm@24726
   567
    val dom_sum = singleton read_terms sdom_sum;
wenzelm@24726
   568
    val intr_tms = Syntax.read_props ctxt (map (snd o fst) sintrs);
wenzelm@17937
   569
    val intr_specs = (map (fst o fst) sintrs ~~ intr_tms) ~~ map snd sintrs;
wenzelm@24726
   570
    val monos = Attrib.eval_thms ctxt raw_monos;
wenzelm@24726
   571
    val con_defs = Attrib.eval_thms ctxt raw_con_defs;
wenzelm@24726
   572
    val type_intrs = Attrib.eval_thms ctxt raw_type_intrs;
wenzelm@24726
   573
    val type_elims = Attrib.eval_thms ctxt raw_type_elims;
wenzelm@12132
   574
  in
haftmann@18418
   575
    thy
wenzelm@24726
   576
    |> add_inductive_i true (rec_tms, dom_sum) intr_specs (monos, con_defs, type_intrs, type_elims)
haftmann@18418
   577
  end;
wenzelm@12132
   578
wenzelm@12132
   579
wenzelm@12132
   580
(* outer syntax *)
wenzelm@12132
   581
wenzelm@17057
   582
local structure P = OuterParse and K = OuterKeyword in
wenzelm@12132
   583
wenzelm@27354
   584
val _ = List.app OuterKeyword.keyword
wenzelm@24867
   585
  ["domains", "intros", "monos", "con_defs", "type_intros", "type_elims"];
wenzelm@24867
   586
wenzelm@12132
   587
fun mk_ind (((((doms, intrs), monos), con_defs), type_intrs), type_elims) =
wenzelm@12132
   588
  #1 o add_inductive doms (map P.triple_swap intrs) (monos, con_defs, type_intrs, type_elims);
wenzelm@12132
   589
wenzelm@12132
   590
val ind_decl =
wenzelm@12132
   591
  (P.$$$ "domains" |-- P.!!! (P.enum1 "+" P.term --
wenzelm@25985
   592
      ((P.$$$ "\<subseteq>" || P.$$$ "<=") |-- P.term))) --
wenzelm@12132
   593
  (P.$$$ "intros" |--
wenzelm@22101
   594
    P.!!! (Scan.repeat1 (SpecParse.opt_thm_name ":" -- P.prop))) --
wenzelm@22101
   595
  Scan.optional (P.$$$ "monos" |-- P.!!! SpecParse.xthms1) [] --
wenzelm@22101
   596
  Scan.optional (P.$$$ "con_defs" |-- P.!!! SpecParse.xthms1) [] --
wenzelm@22101
   597
  Scan.optional (P.$$$ "type_intros" |-- P.!!! SpecParse.xthms1) [] --
wenzelm@22101
   598
  Scan.optional (P.$$$ "type_elims" |-- P.!!! SpecParse.xthms1) []
wenzelm@12132
   599
  >> (Toplevel.theory o mk_ind);
wenzelm@12132
   600
wenzelm@24867
   601
val _ = OuterSyntax.command (co_prefix ^ "inductive")
wenzelm@12227
   602
  ("define " ^ co_prefix ^ "inductive sets") K.thy_decl ind_decl;
wenzelm@12132
   603
paulson@6051
   604
end;
wenzelm@12132
   605
wenzelm@12132
   606
end;
wenzelm@15705
   607