src/HOL/Tools/Sledgehammer/clausifier.ML
author blanchet
Tue Aug 17 16:47:40 2010 +0200 (2010-08-17)
changeset 38490 57de0f12516f
parent 38282 319c59682c51
child 38608 01ed56c46259
permissions -rw-r--r--
tuning
blanchet@37574
     1
(*  Title:      HOL/Tools/Sledgehammer/clausifier.ML
blanchet@38027
     2
    Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
blanchet@36393
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@15347
     4
wenzelm@20461
     5
Transformation of axiom rules (elim/intro/etc) into CNF forms.
paulson@15347
     6
*)
paulson@15347
     7
blanchet@37574
     8
signature CLAUSIFIER =
wenzelm@21505
     9
sig
blanchet@38001
    10
  val introduce_combinators_in_cterm : cterm -> thm
blanchet@38028
    11
  val introduce_combinators_in_theorem : thm -> thm
blanchet@38016
    12
  val cnf_axiom: theory -> thm -> thm list
wenzelm@21505
    13
end;
mengj@19196
    14
blanchet@37574
    15
structure Clausifier : CLAUSIFIER =
paulson@15997
    16
struct
paulson@15347
    17
paulson@15997
    18
(**** Transformation of Elimination Rules into First-Order Formulas****)
paulson@15347
    19
wenzelm@29064
    20
val cfalse = cterm_of @{theory HOL} HOLogic.false_const;
wenzelm@29064
    21
val ctp_false = cterm_of @{theory HOL} (HOLogic.mk_Trueprop HOLogic.false_const);
wenzelm@20461
    22
blanchet@38001
    23
(* Converts an elim-rule into an equivalent theorem that does not have the
blanchet@38001
    24
   predicate variable. Leaves other theorems unchanged. We simply instantiate
blanchet@38001
    25
   the conclusion variable to False. (Cf. "transform_elim_term" in
blanchet@38001
    26
   "ATP_Systems".) *)
blanchet@38001
    27
fun transform_elim_theorem th =
paulson@21430
    28
  case concl_of th of    (*conclusion variable*)
blanchet@35963
    29
       @{const Trueprop} $ (v as Var (_, @{typ bool})) =>
wenzelm@29064
    30
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, cfalse)]) th
blanchet@35963
    31
    | v as Var(_, @{typ prop}) =>
wenzelm@29064
    32
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, ctp_false)]) th
blanchet@38001
    33
    | _ => th
paulson@15997
    34
paulson@24742
    35
(*To enforce single-threading*)
paulson@24742
    36
exception Clausify_failure of theory;
wenzelm@20461
    37
wenzelm@28544
    38
paulson@16009
    39
(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
paulson@16009
    40
blanchet@37410
    41
fun mk_skolem_id t =
blanchet@37436
    42
  let val T = fastype_of t in
blanchet@37496
    43
    Const (@{const_name skolem_id}, T --> T) $ t
blanchet@37436
    44
  end
blanchet@37410
    45
blanchet@37617
    46
fun beta_eta_under_lambdas (Abs (s, T, t')) =
blanchet@37617
    47
    Abs (s, T, beta_eta_under_lambdas t')
blanchet@37617
    48
  | beta_eta_under_lambdas t = Envir.beta_eta_contract t
blanchet@37512
    49
paulson@18141
    50
(*Traverse a theorem, accumulating Skolem function definitions.*)
blanchet@37617
    51
fun assume_skolem_funs th =
blanchet@37399
    52
  let
blanchet@37617
    53
    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (s', T, p))) rhss =
blanchet@37399
    54
        (*Existential: declare a Skolem function, then insert into body and continue*)
blanchet@37399
    55
        let
blanchet@37617
    56
          val args = OldTerm.term_frees body
blanchet@37399
    57
          val Ts = map type_of args
blanchet@38280
    58
          val cT = Ts ---> T
blanchet@37500
    59
          (* Forms a lambda-abstraction over the formal parameters *)
blanchet@37500
    60
          val rhs =
blanchet@37500
    61
            list_abs_free (map dest_Free args,
blanchet@37617
    62
                           HOLogic.choice_const T $ beta_eta_under_lambdas body)
blanchet@37518
    63
            |> mk_skolem_id
blanchet@37518
    64
          val comb = list_comb (rhs, args)
blanchet@37617
    65
        in dec_sko (subst_bound (comb, p)) (rhs :: rhss) end
blanchet@37617
    66
      | dec_sko (Const (@{const_name All},_) $ Abs (a, T, p)) rhss =
blanchet@37399
    67
        (*Universal quant: insert a free variable into body and continue*)
blanchet@37399
    68
        let val fname = Name.variant (OldTerm.add_term_names (p,[])) a
blanchet@37617
    69
        in dec_sko (subst_bound (Free(fname,T), p)) rhss end
blanchet@37617
    70
      | dec_sko (@{const "op &"} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
blanchet@37617
    71
      | dec_sko (@{const "op |"} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
blanchet@37617
    72
      | dec_sko (@{const Trueprop} $ p) rhss = dec_sko p rhss
blanchet@37617
    73
      | dec_sko _ rhss = rhss
paulson@20419
    74
  in  dec_sko (prop_of th) []  end;
paulson@20419
    75
paulson@20419
    76
paulson@24827
    77
(**** REPLACING ABSTRACTIONS BY COMBINATORS ****)
paulson@20419
    78
paulson@20419
    79
(*Returns the vars of a theorem*)
paulson@20419
    80
fun vars_of_thm th =
blanchet@38280
    81
  map (cterm_of (theory_of_thm th) o Var) (Thm.fold_terms Term.add_vars th []);
paulson@20419
    82
blanchet@37540
    83
val fun_cong_all = @{thm expand_fun_eq [THEN iffD1]}
paulson@20419
    84
blanchet@38001
    85
(* Removes the lambdas from an equation of the form "t = (%x. u)".
blanchet@38001
    86
   (Cf. "extensionalize_term" in "ATP_Systems".) *)
blanchet@38000
    87
fun extensionalize_theorem th =
blanchet@37540
    88
  case prop_of th of
blanchet@37540
    89
    _ $ (Const (@{const_name "op ="}, Type (_, [Type (@{type_name fun}, _), _]))
blanchet@38000
    90
         $ _ $ Abs (s, _, _)) => extensionalize_theorem (th RS fun_cong_all)
blanchet@37540
    91
  | _ => th
paulson@20419
    92
blanchet@37416
    93
fun is_quasi_lambda_free (Const (@{const_name skolem_id}, _) $ _) = true
blanchet@37416
    94
  | is_quasi_lambda_free (t1 $ t2) =
blanchet@37416
    95
    is_quasi_lambda_free t1 andalso is_quasi_lambda_free t2
blanchet@37416
    96
  | is_quasi_lambda_free (Abs _) = false
blanchet@37416
    97
  | is_quasi_lambda_free _ = true
wenzelm@20461
    98
wenzelm@32010
    99
val [f_B,g_B] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_B}));
wenzelm@32010
   100
val [g_C,f_C] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_C}));
wenzelm@32010
   101
val [f_S,g_S] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_S}));
paulson@20863
   102
blanchet@38282
   103
(* FIXME: Requires more use of cterm constructors. *)
paulson@24827
   104
fun abstract ct =
wenzelm@28544
   105
  let
wenzelm@28544
   106
      val thy = theory_of_cterm ct
paulson@25256
   107
      val Abs(x,_,body) = term_of ct
blanchet@35963
   108
      val Type(@{type_name fun}, [xT,bodyT]) = typ_of (ctyp_of_term ct)
blanchet@38005
   109
      val cxT = ctyp_of thy xT
blanchet@38005
   110
      val cbodyT = ctyp_of thy bodyT
blanchet@38005
   111
      fun makeK () =
blanchet@38005
   112
        instantiate' [SOME cxT, SOME cbodyT] [SOME (cterm_of thy body)]
blanchet@38005
   113
                     @{thm abs_K}
paulson@24827
   114
  in
paulson@24827
   115
      case body of
paulson@24827
   116
          Const _ => makeK()
paulson@24827
   117
        | Free _ => makeK()
paulson@24827
   118
        | Var _ => makeK()  (*though Var isn't expected*)
wenzelm@27184
   119
        | Bound 0 => instantiate' [SOME cxT] [] @{thm abs_I} (*identity: I*)
paulson@24827
   120
        | rator$rand =>
wenzelm@27184
   121
            if loose_bvar1 (rator,0) then (*C or S*)
wenzelm@27179
   122
               if loose_bvar1 (rand,0) then (*S*)
wenzelm@27179
   123
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27179
   124
                     val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27184
   125
                     val abs_S' = cterm_instantiate [(f_S,crator),(g_S,crand)] @{thm abs_S}
wenzelm@27184
   126
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_S')
wenzelm@27179
   127
                 in
wenzelm@27179
   128
                   Thm.transitive abs_S' (Conv.binop_conv abstract rhs)
wenzelm@27179
   129
                 end
wenzelm@27179
   130
               else (*C*)
wenzelm@27179
   131
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27184
   132
                     val abs_C' = cterm_instantiate [(f_C,crator),(g_C,cterm_of thy rand)] @{thm abs_C}
wenzelm@27184
   133
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_C')
wenzelm@27179
   134
                 in
wenzelm@27179
   135
                   Thm.transitive abs_C' (Conv.fun_conv (Conv.arg_conv abstract) rhs)
wenzelm@27179
   136
                 end
wenzelm@27184
   137
            else if loose_bvar1 (rand,0) then (*B or eta*)
wenzelm@36945
   138
               if rand = Bound 0 then Thm.eta_conversion ct
wenzelm@27179
   139
               else (*B*)
wenzelm@27179
   140
                 let val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27179
   141
                     val crator = cterm_of thy rator
wenzelm@27184
   142
                     val abs_B' = cterm_instantiate [(f_B,crator),(g_B,crand)] @{thm abs_B}
wenzelm@27184
   143
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_B')
blanchet@37349
   144
                 in Thm.transitive abs_B' (Conv.arg_conv abstract rhs) end
wenzelm@27179
   145
            else makeK()
blanchet@37349
   146
        | _ => raise Fail "abstract: Bad term"
paulson@24827
   147
  end;
paulson@20863
   148
blanchet@37349
   149
(* Traverse a theorem, remplacing lambda-abstractions with combinators. *)
blanchet@38001
   150
fun introduce_combinators_in_cterm ct =
blanchet@37416
   151
  if is_quasi_lambda_free (term_of ct) then
blanchet@37349
   152
    Thm.reflexive ct
blanchet@37349
   153
  else case term_of ct of
blanchet@37349
   154
    Abs _ =>
blanchet@37349
   155
    let
blanchet@37349
   156
      val (cv, cta) = Thm.dest_abs NONE ct
blanchet@37349
   157
      val (v, _) = dest_Free (term_of cv)
blanchet@38001
   158
      val u_th = introduce_combinators_in_cterm cta
blanchet@37349
   159
      val cu = Thm.rhs_of u_th
blanchet@37349
   160
      val comb_eq = abstract (Thm.cabs cv cu)
blanchet@37349
   161
    in Thm.transitive (Thm.abstract_rule v cv u_th) comb_eq end
blanchet@37349
   162
  | _ $ _ =>
blanchet@37349
   163
    let val (ct1, ct2) = Thm.dest_comb ct in
blanchet@38001
   164
        Thm.combination (introduce_combinators_in_cterm ct1)
blanchet@38001
   165
                        (introduce_combinators_in_cterm ct2)
blanchet@37349
   166
    end
blanchet@37349
   167
blanchet@38001
   168
fun introduce_combinators_in_theorem th =
blanchet@37416
   169
  if is_quasi_lambda_free (prop_of th) then
blanchet@37349
   170
    th
paulson@24827
   171
  else
blanchet@37349
   172
    let
blanchet@37349
   173
      val th = Drule.eta_contraction_rule th
blanchet@38001
   174
      val eqth = introduce_combinators_in_cterm (cprop_of th)
blanchet@37349
   175
    in Thm.equal_elim eqth th end
blanchet@37349
   176
    handle THM (msg, _, _) =>
blanchet@37349
   177
           (warning ("Error in the combinator translation of " ^
blanchet@37349
   178
                     Display.string_of_thm_without_context th ^
blanchet@37349
   179
                     "\nException message: " ^ msg ^ ".");
blanchet@37349
   180
            (* A type variable of sort "{}" will make abstraction fail. *)
blanchet@37349
   181
            TrueI)
paulson@16009
   182
paulson@16009
   183
(*cterms are used throughout for efficiency*)
blanchet@38280
   184
val cTrueprop = cterm_of @{theory HOL} HOLogic.Trueprop;
paulson@16009
   185
paulson@16009
   186
(*Given an abstraction over n variables, replace the bound variables by free
paulson@16009
   187
  ones. Return the body, along with the list of free variables.*)
wenzelm@20461
   188
fun c_variant_abs_multi (ct0, vars) =
paulson@16009
   189
      let val (cv,ct) = Thm.dest_abs NONE ct0
paulson@16009
   190
      in  c_variant_abs_multi (ct, cv::vars)  end
paulson@16009
   191
      handle CTERM _ => (ct0, rev vars);
paulson@16009
   192
blanchet@37617
   193
val skolem_id_def_raw = @{thms skolem_id_def_raw}
blanchet@37617
   194
blanchet@37617
   195
(* Given the definition of a Skolem function, return a theorem to replace
blanchet@37617
   196
   an existential formula by a use of that function.
paulson@18141
   197
   Example: "EX x. x : A & x ~: B ==> sko A B : A & sko A B ~: B"  [.] *)
blanchet@38016
   198
fun skolem_theorem_of_def thy rhs0 =
blanchet@37399
   199
  let
blanchet@38280
   200
    val rhs = rhs0 |> Type.legacy_freeze_thaw |> #1 |> cterm_of thy
blanchet@37617
   201
    val rhs' = rhs |> Thm.dest_comb |> snd
blanchet@37617
   202
    val (ch, frees) = c_variant_abs_multi (rhs', [])
blanchet@37617
   203
    val (hilbert, cabs) = ch |> Thm.dest_comb |>> term_of
blanchet@37617
   204
    val T =
blanchet@37617
   205
      case hilbert of
blanchet@37617
   206
        Const (@{const_name Eps}, Type (@{type_name fun}, [_, T])) => T
blanchet@37617
   207
      | _ => raise TERM ("skolem_theorem_of_def: expected \"Eps\"", [hilbert])
blanchet@38280
   208
    val cex = cterm_of thy (HOLogic.exists_const T)
blanchet@37617
   209
    val ex_tm = Thm.capply cTrueprop (Thm.capply cex cabs)
blanchet@37629
   210
    val conc =
blanchet@37617
   211
      Drule.list_comb (rhs, frees)
blanchet@37617
   212
      |> Drule.beta_conv cabs |> Thm.capply cTrueprop
blanchet@37617
   213
    fun tacf [prem] =
blanchet@38016
   214
      rewrite_goals_tac skolem_id_def_raw
blanchet@38016
   215
      THEN rtac ((prem |> rewrite_rule skolem_id_def_raw) RS @{thm someI_ex}) 1
blanchet@37617
   216
  in
blanchet@37629
   217
    Goal.prove_internal [ex_tm] conc tacf
blanchet@37629
   218
    |> forall_intr_list frees
blanchet@37629
   219
    |> Thm.forall_elim_vars 0  (*Introduce Vars, but don't discharge defs.*)
blanchet@37629
   220
    |> Thm.varifyT_global
blanchet@37617
   221
  end
paulson@24742
   222
blanchet@37995
   223
(* Converts an Isabelle theorem (intro, elim or simp format, even higher-order)
blanchet@37995
   224
   into NNF. *)
paulson@24937
   225
fun to_nnf th ctxt0 =
blanchet@38001
   226
  let val th1 = th |> transform_elim_theorem |> zero_var_indexes
wenzelm@32262
   227
      val ((_, [th2]), ctxt) = Variable.import true [th1] ctxt0
blanchet@37540
   228
      val th3 = th2 |> Conv.fconv_rule Object_Logic.atomize
blanchet@38000
   229
                    |> extensionalize_theorem
blanchet@37540
   230
                    |> Meson.make_nnf ctxt
paulson@24937
   231
  in  (th3, ctxt)  end;
paulson@16009
   232
blanchet@38278
   233
(* Convert a theorem to CNF, with Skolem functions as additional premises. *)
blanchet@38278
   234
fun cnf_axiom thy th =
blanchet@37626
   235
  let
blanchet@37626
   236
    val ctxt0 = Variable.global_thm_context th
blanchet@37626
   237
    val (nnfth, ctxt) = to_nnf th ctxt0
blanchet@38016
   238
    val sko_ths = map (skolem_theorem_of_def thy)
blanchet@37628
   239
                      (assume_skolem_funs nnfth)
blanchet@37626
   240
    val (cnfs, ctxt) = Meson.make_cnf sko_ths nnfth ctxt
blanchet@37626
   241
  in
blanchet@38001
   242
    cnfs |> map introduce_combinators_in_theorem
blanchet@37626
   243
         |> Variable.export ctxt ctxt0
blanchet@37626
   244
         |> Meson.finish_cnf
blanchet@37626
   245
         |> map Thm.close_derivation
blanchet@37626
   246
  end
blanchet@37626
   247
  handle THM _ => []
wenzelm@27184
   248
wenzelm@20461
   249
end;