src/HOL/Arith.ML
author paulson
Wed Apr 09 12:32:04 1997 +0200 (1997-04-09)
changeset 2922 580647a879cf
parent 2682 13cdbf95ed92
child 3234 503f4c8c29eb
permissions -rw-r--r--
Using Blast_tac
clasohm@1465
     1
(*  Title:      HOL/Arith.ML
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@923
     4
    Copyright   1993  University of Cambridge
clasohm@923
     5
clasohm@923
     6
Proofs about elementary arithmetic: addition, multiplication, etc.
clasohm@923
     7
Tests definitions and simplifier.
clasohm@923
     8
*)
clasohm@923
     9
clasohm@923
    10
open Arith;
clasohm@923
    11
clasohm@923
    12
(*** Basic rewrite rules for the arithmetic operators ***)
clasohm@923
    13
nipkow@2099
    14
goalw Arith.thy [pred_def] "pred 0 = 0";
nipkow@2099
    15
by(Simp_tac 1);
nipkow@2099
    16
qed "pred_0";
nipkow@2099
    17
nipkow@2099
    18
goalw Arith.thy [pred_def] "pred(Suc n) = n";
nipkow@2099
    19
by(Simp_tac 1);
nipkow@2099
    20
qed "pred_Suc";
nipkow@2099
    21
pusch@2682
    22
Addsimps [pred_0,pred_Suc];
nipkow@1301
    23
nipkow@1301
    24
(** pred **)
nipkow@1301
    25
nipkow@1301
    26
val prems = goal Arith.thy "n ~= 0 ==> Suc(pred n) = n";
paulson@1552
    27
by (res_inst_tac [("n","n")] natE 1);
paulson@1552
    28
by (cut_facts_tac prems 1);
paulson@1552
    29
by (ALLGOALS Asm_full_simp_tac);
nipkow@1301
    30
qed "Suc_pred";
nipkow@1301
    31
Addsimps [Suc_pred];
clasohm@923
    32
clasohm@923
    33
(** Difference **)
clasohm@923
    34
pusch@2682
    35
qed_goalw "diff_0_eq_0" Arith.thy [pred_def]
clasohm@923
    36
    "0 - n = 0"
clasohm@1264
    37
 (fn _ => [nat_ind_tac "n" 1,  ALLGOALS Asm_simp_tac]);
clasohm@923
    38
clasohm@923
    39
(*Must simplify BEFORE the induction!!  (Else we get a critical pair)
clasohm@923
    40
  Suc(m) - Suc(n)   rewrites to   pred(Suc(m) - n)  *)
pusch@2682
    41
qed_goalw "diff_Suc_Suc" Arith.thy [pred_def]
clasohm@923
    42
    "Suc(m) - Suc(n) = m - n"
clasohm@923
    43
 (fn _ =>
clasohm@1264
    44
  [Simp_tac 1, nat_ind_tac "n" 1, ALLGOALS Asm_simp_tac]);
clasohm@923
    45
pusch@2682
    46
Addsimps [diff_0_eq_0, diff_Suc_Suc];
clasohm@923
    47
clasohm@923
    48
paulson@1713
    49
goal Arith.thy "!!k. 0<k ==> EX j. k = Suc(j)";
paulson@1713
    50
by (etac rev_mp 1);
paulson@1713
    51
by (nat_ind_tac "k" 1);
paulson@1713
    52
by (Simp_tac 1);
paulson@2922
    53
by (Blast_tac 1);
paulson@1713
    54
val lemma = result();
paulson@1713
    55
paulson@1713
    56
(* [| 0 < k; !!j. [| j: nat; k = succ(j) |] ==> Q |] ==> Q *)
paulson@1713
    57
bind_thm ("zero_less_natE", lemma RS exE);
paulson@1713
    58
paulson@1713
    59
paulson@1713
    60
clasohm@923
    61
(**** Inductive properties of the operators ****)
clasohm@923
    62
clasohm@923
    63
(*** Addition ***)
clasohm@923
    64
clasohm@923
    65
qed_goal "add_0_right" Arith.thy "m + 0 = m"
clasohm@1264
    66
 (fn _ => [nat_ind_tac "m" 1, ALLGOALS Asm_simp_tac]);
clasohm@923
    67
clasohm@923
    68
qed_goal "add_Suc_right" Arith.thy "m + Suc(n) = Suc(m+n)"
clasohm@1264
    69
 (fn _ => [nat_ind_tac "m" 1, ALLGOALS Asm_simp_tac]);
clasohm@923
    70
clasohm@1264
    71
Addsimps [add_0_right,add_Suc_right];
clasohm@923
    72
clasohm@923
    73
(*Associative law for addition*)
clasohm@923
    74
qed_goal "add_assoc" Arith.thy "(m + n) + k = m + ((n + k)::nat)"
clasohm@1264
    75
 (fn _ => [nat_ind_tac "m" 1, ALLGOALS Asm_simp_tac]);
clasohm@923
    76
clasohm@923
    77
(*Commutative law for addition*)  
clasohm@923
    78
qed_goal "add_commute" Arith.thy "m + n = n + (m::nat)"
clasohm@1264
    79
 (fn _ =>  [nat_ind_tac "m" 1, ALLGOALS Asm_simp_tac]);
clasohm@923
    80
clasohm@923
    81
qed_goal "add_left_commute" Arith.thy "x+(y+z)=y+((x+z)::nat)"
clasohm@923
    82
 (fn _ => [rtac (add_commute RS trans) 1, rtac (add_assoc RS trans) 1,
clasohm@923
    83
           rtac (add_commute RS arg_cong) 1]);
clasohm@923
    84
clasohm@923
    85
(*Addition is an AC-operator*)
clasohm@923
    86
val add_ac = [add_assoc, add_commute, add_left_commute];
clasohm@923
    87
clasohm@923
    88
goal Arith.thy "!!k::nat. (k + m = k + n) = (m=n)";
clasohm@923
    89
by (nat_ind_tac "k" 1);
clasohm@1264
    90
by (Simp_tac 1);
clasohm@1264
    91
by (Asm_simp_tac 1);
clasohm@923
    92
qed "add_left_cancel";
clasohm@923
    93
clasohm@923
    94
goal Arith.thy "!!k::nat. (m + k = n + k) = (m=n)";
clasohm@923
    95
by (nat_ind_tac "k" 1);
clasohm@1264
    96
by (Simp_tac 1);
clasohm@1264
    97
by (Asm_simp_tac 1);
clasohm@923
    98
qed "add_right_cancel";
clasohm@923
    99
clasohm@923
   100
goal Arith.thy "!!k::nat. (k + m <= k + n) = (m<=n)";
clasohm@923
   101
by (nat_ind_tac "k" 1);
clasohm@1264
   102
by (Simp_tac 1);
clasohm@1264
   103
by (Asm_simp_tac 1);
clasohm@923
   104
qed "add_left_cancel_le";
clasohm@923
   105
clasohm@923
   106
goal Arith.thy "!!k::nat. (k + m < k + n) = (m<n)";
clasohm@923
   107
by (nat_ind_tac "k" 1);
clasohm@1264
   108
by (Simp_tac 1);
clasohm@1264
   109
by (Asm_simp_tac 1);
clasohm@923
   110
qed "add_left_cancel_less";
clasohm@923
   111
nipkow@1327
   112
Addsimps [add_left_cancel, add_right_cancel,
nipkow@1327
   113
          add_left_cancel_le, add_left_cancel_less];
nipkow@1327
   114
nipkow@1327
   115
goal Arith.thy "(m+n = 0) = (m=0 & n=0)";
nipkow@1327
   116
by (nat_ind_tac "m" 1);
nipkow@1327
   117
by (ALLGOALS Asm_simp_tac);
nipkow@1327
   118
qed "add_is_0";
nipkow@1327
   119
Addsimps [add_is_0];
nipkow@1327
   120
nipkow@1327
   121
goal Arith.thy "!!n. n ~= 0 ==> m + pred n = pred(m+n)";
nipkow@1327
   122
by (nat_ind_tac "m" 1);
nipkow@1327
   123
by (ALLGOALS Asm_simp_tac);
nipkow@1327
   124
qed "add_pred";
nipkow@1327
   125
Addsimps [add_pred];
nipkow@1327
   126
clasohm@923
   127
(*** Multiplication ***)
clasohm@923
   128
clasohm@923
   129
(*right annihilation in product*)
clasohm@923
   130
qed_goal "mult_0_right" Arith.thy "m * 0 = 0"
clasohm@1264
   131
 (fn _ => [nat_ind_tac "m" 1, ALLGOALS Asm_simp_tac]);
clasohm@923
   132
clasohm@923
   133
(*right Sucessor law for multiplication*)
clasohm@923
   134
qed_goal "mult_Suc_right" Arith.thy  "m * Suc(n) = m + (m * n)"
clasohm@923
   135
 (fn _ => [nat_ind_tac "m" 1,
clasohm@1264
   136
           ALLGOALS(asm_simp_tac (!simpset addsimps add_ac))]);
clasohm@923
   137
clasohm@1264
   138
Addsimps [mult_0_right,mult_Suc_right];
clasohm@923
   139
paulson@1795
   140
goal Arith.thy "1 * n = n";
paulson@1795
   141
by (Asm_simp_tac 1);
paulson@1795
   142
qed "mult_1";
paulson@1795
   143
paulson@1795
   144
goal Arith.thy "n * 1 = n";
paulson@1795
   145
by (Asm_simp_tac 1);
paulson@1795
   146
qed "mult_1_right";
paulson@1795
   147
clasohm@923
   148
(*Commutative law for multiplication*)
clasohm@923
   149
qed_goal "mult_commute" Arith.thy "m * n = n * (m::nat)"
clasohm@1264
   150
 (fn _ => [nat_ind_tac "m" 1, ALLGOALS Asm_simp_tac]);
clasohm@923
   151
clasohm@923
   152
(*addition distributes over multiplication*)
clasohm@923
   153
qed_goal "add_mult_distrib" Arith.thy "(m + n)*k = (m*k) + ((n*k)::nat)"
clasohm@923
   154
 (fn _ => [nat_ind_tac "m" 1,
clasohm@1264
   155
           ALLGOALS(asm_simp_tac (!simpset addsimps add_ac))]);
clasohm@923
   156
clasohm@923
   157
qed_goal "add_mult_distrib2" Arith.thy "k*(m + n) = (k*m) + ((k*n)::nat)"
clasohm@923
   158
 (fn _ => [nat_ind_tac "m" 1,
clasohm@1264
   159
           ALLGOALS(asm_simp_tac (!simpset addsimps add_ac))]);
clasohm@923
   160
clasohm@923
   161
(*Associative law for multiplication*)
clasohm@923
   162
qed_goal "mult_assoc" Arith.thy "(m * n) * k = m * ((n * k)::nat)"
paulson@1795
   163
  (fn _ => [nat_ind_tac "m" 1, 
paulson@2031
   164
            ALLGOALS (asm_simp_tac (!simpset addsimps [add_mult_distrib]))]);
clasohm@923
   165
clasohm@923
   166
qed_goal "mult_left_commute" Arith.thy "x*(y*z) = y*((x*z)::nat)"
clasohm@923
   167
 (fn _ => [rtac trans 1, rtac mult_commute 1, rtac trans 1,
clasohm@923
   168
           rtac mult_assoc 1, rtac (mult_commute RS arg_cong) 1]);
clasohm@923
   169
clasohm@923
   170
val mult_ac = [mult_assoc,mult_commute,mult_left_commute];
clasohm@923
   171
clasohm@923
   172
(*** Difference ***)
clasohm@923
   173
pusch@2682
   174
qed_goal "pred_Suc_diff" Arith.thy "pred(Suc m - n) = m - n"
pusch@2682
   175
 (fn _ => [nat_ind_tac "n" 1, ALLGOALS Asm_simp_tac]);
pusch@2682
   176
Addsimps [pred_Suc_diff];
pusch@2682
   177
clasohm@923
   178
qed_goal "diff_self_eq_0" Arith.thy "m - m = 0"
clasohm@1264
   179
 (fn _ => [nat_ind_tac "m" 1, ALLGOALS Asm_simp_tac]);
nipkow@1496
   180
Addsimps [diff_self_eq_0];
clasohm@923
   181
clasohm@923
   182
(*Addition is the inverse of subtraction: if n<=m then n+(m-n) = m. *)
clasohm@923
   183
val [prem] = goal Arith.thy "[| ~ m<n |] ==> n+(m-n) = (m::nat)";
clasohm@923
   184
by (rtac (prem RS rev_mp) 1);
clasohm@923
   185
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
oheimb@1660
   186
by (ALLGOALS (Asm_simp_tac));
clasohm@923
   187
qed "add_diff_inverse";
clasohm@923
   188
clasohm@923
   189
clasohm@923
   190
(*** Remainder ***)
clasohm@923
   191
clasohm@923
   192
goal Arith.thy "m - n < Suc(m)";
clasohm@923
   193
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
clasohm@923
   194
by (etac less_SucE 3);
oheimb@1660
   195
by (ALLGOALS (asm_simp_tac (!simpset addsimps [less_Suc_eq])));
clasohm@923
   196
qed "diff_less_Suc";
clasohm@923
   197
clasohm@923
   198
goal Arith.thy "!!m::nat. m - n <= m";
clasohm@923
   199
by (res_inst_tac [("m","m"), ("n","n")] diff_induct 1);
clasohm@1264
   200
by (ALLGOALS Asm_simp_tac);
clasohm@923
   201
qed "diff_le_self";
clasohm@923
   202
clasohm@923
   203
goal Arith.thy "!!n::nat. (n+m) - n = m";
clasohm@923
   204
by (nat_ind_tac "n" 1);
clasohm@1264
   205
by (ALLGOALS Asm_simp_tac);
clasohm@923
   206
qed "diff_add_inverse";
clasohm@923
   207
paulson@1713
   208
goal Arith.thy "!!n::nat.(m+n) - n = m";
paulson@1713
   209
by (res_inst_tac [("m1","m")] (add_commute RS ssubst) 1);
paulson@1713
   210
by (REPEAT (ares_tac [diff_add_inverse] 1));
paulson@1713
   211
qed "diff_add_inverse2";
paulson@1713
   212
paulson@1713
   213
goal Arith.thy "!!k::nat. (k+m) - (k+n) = m - n";
paulson@1713
   214
by (nat_ind_tac "k" 1);
paulson@1713
   215
by (ALLGOALS Asm_simp_tac);
paulson@1713
   216
qed "diff_cancel";
paulson@1713
   217
Addsimps [diff_cancel];
paulson@1713
   218
paulson@1713
   219
goal Arith.thy "!!m::nat. (m+k) - (n+k) = m - n";
paulson@1713
   220
val add_commute_k = read_instantiate [("n","k")] add_commute;
paulson@1713
   221
by (asm_simp_tac (!simpset addsimps ([add_commute_k])) 1);
paulson@1713
   222
qed "diff_cancel2";
paulson@1713
   223
Addsimps [diff_cancel2];
paulson@1713
   224
clasohm@923
   225
goal Arith.thy "!!n::nat. n - (n+m) = 0";
clasohm@923
   226
by (nat_ind_tac "n" 1);
clasohm@1264
   227
by (ALLGOALS Asm_simp_tac);
clasohm@923
   228
qed "diff_add_0";
paulson@1713
   229
Addsimps [diff_add_0];
paulson@1713
   230
paulson@1713
   231
(** Difference distributes over multiplication **)
paulson@1713
   232
paulson@1713
   233
goal Arith.thy "!!m::nat. (m - n) * k = (m * k) - (n * k)";
paulson@1713
   234
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
paulson@1713
   235
by (ALLGOALS Asm_simp_tac);
paulson@1713
   236
qed "diff_mult_distrib" ;
paulson@1713
   237
paulson@1713
   238
goal Arith.thy "!!m::nat. k * (m - n) = (k * m) - (k * n)";
paulson@1713
   239
val mult_commute_k = read_instantiate [("m","k")] mult_commute;
paulson@1713
   240
by (simp_tac (!simpset addsimps [diff_mult_distrib, mult_commute_k]) 1);
paulson@1713
   241
qed "diff_mult_distrib2" ;
paulson@1713
   242
(*NOT added as rewrites, since sometimes they are used from right-to-left*)
paulson@1713
   243
paulson@1713
   244
paulson@1713
   245
(** Less-then properties **)
clasohm@923
   246
clasohm@923
   247
(*In ordinary notation: if 0<n and n<=m then m-n < m *)
clasohm@923
   248
goal Arith.thy "!!m. [| 0<n; ~ m<n |] ==> m - n < m";
clasohm@923
   249
by (subgoal_tac "0<n --> ~ m<n --> m - n < m" 1);
paulson@2922
   250
by (Blast_tac 1);
clasohm@923
   251
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
clasohm@1264
   252
by (ALLGOALS(asm_simp_tac(!simpset addsimps [diff_less_Suc])));
nipkow@1398
   253
qed "diff_less";
clasohm@923
   254
clasohm@923
   255
val wf_less_trans = wf_pred_nat RS wf_trancl RSN (2, def_wfrec RS trans);
clasohm@923
   256
clasohm@972
   257
goalw Nat.thy [less_def] "(m,n) : pred_nat^+ = (m<n)";
clasohm@923
   258
by (rtac refl 1);
clasohm@923
   259
qed "less_eq";
clasohm@923
   260
clasohm@1475
   261
goal Arith.thy "(%m. m mod n) = wfrec (trancl pred_nat) \
clasohm@1475
   262
             \                      (%f j. if j<n then j else f (j-n))";
clasohm@1475
   263
by (simp_tac (HOL_ss addsimps [mod_def]) 1);
clasohm@1475
   264
val mod_def1 = result() RS eq_reflection;
clasohm@1475
   265
clasohm@923
   266
goal Arith.thy "!!m. m<n ==> m mod n = m";
clasohm@1475
   267
by (rtac (mod_def1 RS wf_less_trans) 1);
paulson@1552
   268
by (Asm_simp_tac 1);
clasohm@923
   269
qed "mod_less";
clasohm@923
   270
clasohm@923
   271
goal Arith.thy "!!m. [| 0<n;  ~m<n |] ==> m mod n = (m-n) mod n";
clasohm@1475
   272
by (rtac (mod_def1 RS wf_less_trans) 1);
paulson@1552
   273
by (asm_simp_tac (!simpset addsimps [diff_less, cut_apply, less_eq]) 1);
clasohm@923
   274
qed "mod_geq";
clasohm@923
   275
clasohm@923
   276
clasohm@923
   277
(*** Quotient ***)
clasohm@923
   278
clasohm@1475
   279
goal Arith.thy "(%m. m div n) = wfrec (trancl pred_nat) \
clasohm@1475
   280
                        \            (%f j. if j<n then 0 else Suc (f (j-n)))";
clasohm@1475
   281
by (simp_tac (HOL_ss addsimps [div_def]) 1);
clasohm@1475
   282
val div_def1 = result() RS eq_reflection;
clasohm@1475
   283
clasohm@923
   284
goal Arith.thy "!!m. m<n ==> m div n = 0";
clasohm@1475
   285
by (rtac (div_def1 RS wf_less_trans) 1);
paulson@1552
   286
by (Asm_simp_tac 1);
clasohm@923
   287
qed "div_less";
clasohm@923
   288
clasohm@923
   289
goal Arith.thy "!!M. [| 0<n;  ~m<n |] ==> m div n = Suc((m-n) div n)";
clasohm@1475
   290
by (rtac (div_def1 RS wf_less_trans) 1);
paulson@1552
   291
by (asm_simp_tac (!simpset addsimps [diff_less, cut_apply, less_eq]) 1);
clasohm@923
   292
qed "div_geq";
clasohm@923
   293
clasohm@923
   294
(*Main Result about quotient and remainder.*)
clasohm@923
   295
goal Arith.thy "!!m. 0<n ==> (m div n)*n + m mod n = m";
clasohm@923
   296
by (res_inst_tac [("n","m")] less_induct 1);
clasohm@923
   297
by (rename_tac "k" 1);    (*Variable name used in line below*)
clasohm@923
   298
by (case_tac "k<n" 1);
oheimb@1660
   299
by (ALLGOALS (asm_simp_tac(!simpset addsimps ([add_assoc] @
clasohm@923
   300
                       [mod_less, mod_geq, div_less, div_geq,
clasohm@1465
   301
                        add_diff_inverse, diff_less]))));
clasohm@923
   302
qed "mod_div_equality";
clasohm@923
   303
clasohm@923
   304
clasohm@923
   305
(*** More results about difference ***)
clasohm@923
   306
clasohm@923
   307
val [prem] = goal Arith.thy "m < Suc(n) ==> m-n = 0";
clasohm@923
   308
by (rtac (prem RS rev_mp) 1);
clasohm@923
   309
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
oheimb@1660
   310
by (asm_simp_tac (!simpset addsimps [less_Suc_eq]) 1);
oheimb@1660
   311
by (ALLGOALS (Asm_simp_tac));
clasohm@923
   312
qed "less_imp_diff_is_0";
clasohm@923
   313
clasohm@923
   314
val prems = goal Arith.thy "m-n = 0  -->  n-m = 0  -->  m=n";
clasohm@923
   315
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
clasohm@1264
   316
by (REPEAT(Simp_tac 1 THEN TRY(atac 1)));
nipkow@1485
   317
qed_spec_mp "diffs0_imp_equal";
clasohm@923
   318
clasohm@923
   319
val [prem] = goal Arith.thy "m<n ==> 0<n-m";
clasohm@923
   320
by (rtac (prem RS rev_mp) 1);
clasohm@923
   321
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
oheimb@1660
   322
by (ALLGOALS (Asm_simp_tac));
clasohm@923
   323
qed "less_imp_diff_positive";
clasohm@923
   324
clasohm@923
   325
val [prem] = goal Arith.thy "n < Suc(m) ==> Suc(m)-n = Suc(m-n)";
clasohm@923
   326
by (rtac (prem RS rev_mp) 1);
clasohm@923
   327
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
oheimb@1660
   328
by (ALLGOALS (Asm_simp_tac));
clasohm@923
   329
qed "Suc_diff_n";
clasohm@923
   330
nipkow@1398
   331
goal Arith.thy "Suc(m)-n = (if m<n then 0 else Suc(m-n))";
paulson@1552
   332
by (simp_tac (!simpset addsimps [less_imp_diff_is_0, not_less_eq, Suc_diff_n]
clasohm@923
   333
                    setloop (split_tac [expand_if])) 1);
clasohm@923
   334
qed "if_Suc_diff_n";
clasohm@923
   335
clasohm@923
   336
goal Arith.thy "P(k) --> (!n. P(Suc(n))--> P(n)) --> P(k-i)";
clasohm@923
   337
by (res_inst_tac [("m","k"),("n","i")] diff_induct 1);
paulson@2922
   338
by (ALLGOALS (strip_tac THEN' Simp_tac THEN' TRY o Blast_tac));
clasohm@923
   339
qed "zero_induct_lemma";
clasohm@923
   340
clasohm@923
   341
val prems = goal Arith.thy "[| P(k);  !!n. P(Suc(n)) ==> P(n) |] ==> P(0)";
clasohm@923
   342
by (rtac (diff_self_eq_0 RS subst) 1);
clasohm@923
   343
by (rtac (zero_induct_lemma RS mp RS mp) 1);
clasohm@923
   344
by (REPEAT (ares_tac ([impI,allI]@prems) 1));
clasohm@923
   345
qed "zero_induct";
clasohm@923
   346
clasohm@923
   347
(*13 July 1992: loaded in 105.7s*)
clasohm@923
   348
paulson@1618
   349
paulson@1618
   350
(*** Further facts about mod (mainly for mutilated checkerboard ***)
paulson@1618
   351
paulson@1618
   352
goal Arith.thy
paulson@1618
   353
    "!!m n. 0<n ==> \
paulson@1618
   354
\           Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))";
paulson@1618
   355
by (res_inst_tac [("n","m")] less_induct 1);
paulson@1618
   356
by (excluded_middle_tac "Suc(na)<n" 1);
paulson@1618
   357
(* case Suc(na) < n *)
paulson@1618
   358
by (forward_tac [lessI RS less_trans] 2);
paulson@1618
   359
by (asm_simp_tac (!simpset addsimps [mod_less, less_not_refl2 RS not_sym]) 2);
paulson@1618
   360
(* case n <= Suc(na) *)
paulson@1618
   361
by (asm_full_simp_tac (!simpset addsimps [not_less_iff_le, mod_geq]) 1);
paulson@1618
   362
by (etac (le_imp_less_or_eq RS disjE) 1);
paulson@1618
   363
by (asm_simp_tac (!simpset addsimps [Suc_diff_n]) 1);
paulson@1618
   364
by (asm_full_simp_tac (!simpset addsimps [not_less_eq RS sym, 
paulson@1618
   365
                                          diff_less, mod_geq]) 1);
paulson@1618
   366
by (asm_simp_tac (!simpset addsimps [mod_less]) 1);
paulson@1618
   367
qed "mod_Suc";
paulson@1618
   368
paulson@1618
   369
goal Arith.thy "!!m n. 0<n ==> m mod n < n";
paulson@1618
   370
by (res_inst_tac [("n","m")] less_induct 1);
paulson@1618
   371
by (excluded_middle_tac "na<n" 1);
paulson@1618
   372
(*case na<n*)
paulson@1618
   373
by (asm_simp_tac (!simpset addsimps [mod_less]) 2);
paulson@1618
   374
(*case n le na*)
paulson@1618
   375
by (asm_full_simp_tac (!simpset addsimps [mod_geq, diff_less]) 1);
paulson@1618
   376
qed "mod_less_divisor";
paulson@1618
   377
paulson@1618
   378
paulson@1626
   379
(** Evens and Odds **)
paulson@1626
   380
paulson@1909
   381
(*With less_zeroE, causes case analysis on b<2*)
paulson@1909
   382
AddSEs [less_SucE];
berghofe@1760
   383
paulson@1626
   384
goal thy "!!k b. b<2 ==> k mod 2 = b | k mod 2 = (if b=1 then 0 else 1)";
paulson@1626
   385
by (subgoal_tac "k mod 2 < 2" 1);
paulson@1626
   386
by (asm_simp_tac (!simpset addsimps [mod_less_divisor]) 2);
paulson@1626
   387
by (asm_simp_tac (!simpset setloop split_tac [expand_if]) 1);
paulson@2922
   388
by (Blast_tac 1);
paulson@1626
   389
qed "mod2_cases";
paulson@1626
   390
paulson@1626
   391
goal thy "Suc(Suc(m)) mod 2 = m mod 2";
paulson@1626
   392
by (subgoal_tac "m mod 2 < 2" 1);
paulson@1626
   393
by (asm_simp_tac (!simpset addsimps [mod_less_divisor]) 2);
paulson@1909
   394
by (Step_tac 1);
paulson@1626
   395
by (ALLGOALS (asm_simp_tac (!simpset addsimps [mod_Suc])));
paulson@1626
   396
qed "mod2_Suc_Suc";
paulson@1626
   397
Addsimps [mod2_Suc_Suc];
paulson@1626
   398
paulson@1626
   399
goal thy "(m+m) mod 2 = 0";
paulson@1626
   400
by (nat_ind_tac "m" 1);
paulson@1626
   401
by (simp_tac (!simpset addsimps [mod_less]) 1);
paulson@1626
   402
by (asm_simp_tac (!simpset addsimps [mod2_Suc_Suc, add_Suc_right]) 1);
paulson@1626
   403
qed "mod2_add_self";
paulson@1626
   404
Addsimps [mod2_add_self];
paulson@1626
   405
paulson@1909
   406
Delrules [less_SucE];
paulson@1909
   407
paulson@1626
   408
clasohm@923
   409
(**** Additional theorems about "less than" ****)
clasohm@923
   410
paulson@1909
   411
goal Arith.thy "? k::nat. n = n+k";
paulson@1909
   412
by (res_inst_tac [("x","0")] exI 1);
paulson@1909
   413
by (Simp_tac 1);
paulson@1909
   414
val lemma = result();
paulson@1909
   415
clasohm@923
   416
goal Arith.thy "!!m. m<n --> (? k. n=Suc(m+k))";
clasohm@923
   417
by (nat_ind_tac "n" 1);
paulson@1909
   418
by (ALLGOALS (simp_tac (!simpset addsimps [less_Suc_eq])));
paulson@1909
   419
by (step_tac (!claset addSIs [lemma]) 1);
clasohm@923
   420
by (res_inst_tac [("x","Suc(k)")] exI 1);
clasohm@1264
   421
by (Simp_tac 1);
nipkow@1485
   422
qed_spec_mp "less_eq_Suc_add";
clasohm@923
   423
clasohm@923
   424
goal Arith.thy "n <= ((m + n)::nat)";
clasohm@923
   425
by (nat_ind_tac "m" 1);
clasohm@1264
   426
by (ALLGOALS Simp_tac);
clasohm@923
   427
by (etac le_trans 1);
clasohm@923
   428
by (rtac (lessI RS less_imp_le) 1);
clasohm@923
   429
qed "le_add2";
clasohm@923
   430
clasohm@923
   431
goal Arith.thy "n <= ((n + m)::nat)";
clasohm@1264
   432
by (simp_tac (!simpset addsimps add_ac) 1);
clasohm@923
   433
by (rtac le_add2 1);
clasohm@923
   434
qed "le_add1";
clasohm@923
   435
clasohm@923
   436
bind_thm ("less_add_Suc1", (lessI RS (le_add1 RS le_less_trans)));
clasohm@923
   437
bind_thm ("less_add_Suc2", (lessI RS (le_add2 RS le_less_trans)));
clasohm@923
   438
clasohm@923
   439
(*"i <= j ==> i <= j+m"*)
clasohm@923
   440
bind_thm ("trans_le_add1", le_add1 RSN (2,le_trans));
clasohm@923
   441
clasohm@923
   442
(*"i <= j ==> i <= m+j"*)
clasohm@923
   443
bind_thm ("trans_le_add2", le_add2 RSN (2,le_trans));
clasohm@923
   444
clasohm@923
   445
(*"i < j ==> i < j+m"*)
clasohm@923
   446
bind_thm ("trans_less_add1", le_add1 RSN (2,less_le_trans));
clasohm@923
   447
clasohm@923
   448
(*"i < j ==> i < m+j"*)
clasohm@923
   449
bind_thm ("trans_less_add2", le_add2 RSN (2,less_le_trans));
clasohm@923
   450
nipkow@1152
   451
goal Arith.thy "!!i. i+j < (k::nat) ==> i<k";
paulson@1552
   452
by (etac rev_mp 1);
paulson@1552
   453
by (nat_ind_tac "j" 1);
clasohm@1264
   454
by (ALLGOALS Asm_simp_tac);
paulson@2922
   455
by (blast_tac (!claset addDs [Suc_lessD]) 1);
nipkow@1152
   456
qed "add_lessD1";
nipkow@1152
   457
clasohm@923
   458
goal Arith.thy "!!k::nat. m <= n ==> m <= n+k";
paulson@1552
   459
by (etac le_trans 1);
paulson@1552
   460
by (rtac le_add1 1);
clasohm@923
   461
qed "le_imp_add_le";
clasohm@923
   462
clasohm@923
   463
goal Arith.thy "!!k::nat. m < n ==> m < n+k";
paulson@1552
   464
by (etac less_le_trans 1);
paulson@1552
   465
by (rtac le_add1 1);
clasohm@923
   466
qed "less_imp_add_less";
clasohm@923
   467
clasohm@923
   468
goal Arith.thy "m+k<=n --> m<=(n::nat)";
clasohm@923
   469
by (nat_ind_tac "k" 1);
clasohm@1264
   470
by (ALLGOALS Asm_simp_tac);
paulson@2922
   471
by (blast_tac (!claset addDs [Suc_leD]) 1);
nipkow@1485
   472
qed_spec_mp "add_leD1";
clasohm@923
   473
paulson@2498
   474
goal Arith.thy "!!n::nat. m+k<=n ==> k<=n";
paulson@2498
   475
by (full_simp_tac (!simpset addsimps [add_commute]) 1);
paulson@2498
   476
by (etac add_leD1 1);
paulson@2498
   477
qed_spec_mp "add_leD2";
paulson@2498
   478
paulson@2498
   479
goal Arith.thy "!!n::nat. m+k<=n ==> m<=n & k<=n";
paulson@2922
   480
by (blast_tac (!claset addDs [add_leD1, add_leD2]) 1);
paulson@2498
   481
bind_thm ("add_leE", result() RS conjE);
paulson@2498
   482
clasohm@923
   483
goal Arith.thy "!!k l::nat. [| k<l; m+l = k+n |] ==> m<n";
berghofe@1786
   484
by (safe_tac (!claset addSDs [less_eq_Suc_add]));
clasohm@923
   485
by (asm_full_simp_tac
clasohm@1264
   486
    (!simpset delsimps [add_Suc_right]
clasohm@1264
   487
                addsimps ([add_Suc_right RS sym, add_left_cancel] @add_ac)) 1);
paulson@1552
   488
by (etac subst 1);
clasohm@1264
   489
by (simp_tac (!simpset addsimps [less_add_Suc1]) 1);
clasohm@923
   490
qed "less_add_eq_less";
clasohm@923
   491
clasohm@923
   492
paulson@1713
   493
(*** Monotonicity of Addition ***)
clasohm@923
   494
clasohm@923
   495
(*strict, in 1st argument*)
clasohm@923
   496
goal Arith.thy "!!i j k::nat. i < j ==> i + k < j + k";
clasohm@923
   497
by (nat_ind_tac "k" 1);
clasohm@1264
   498
by (ALLGOALS Asm_simp_tac);
clasohm@923
   499
qed "add_less_mono1";
clasohm@923
   500
clasohm@923
   501
(*strict, in both arguments*)
clasohm@923
   502
goal Arith.thy "!!i j k::nat. [|i < j; k < l|] ==> i + k < j + l";
clasohm@923
   503
by (rtac (add_less_mono1 RS less_trans) 1);
lcp@1198
   504
by (REPEAT (assume_tac 1));
clasohm@923
   505
by (nat_ind_tac "j" 1);
clasohm@1264
   506
by (ALLGOALS Asm_simp_tac);
clasohm@923
   507
qed "add_less_mono";
clasohm@923
   508
clasohm@923
   509
(*A [clumsy] way of lifting < monotonicity to <= monotonicity *)
clasohm@923
   510
val [lt_mono,le] = goal Arith.thy
clasohm@1465
   511
     "[| !!i j::nat. i<j ==> f(i) < f(j);       \
clasohm@1465
   512
\        i <= j                                 \
clasohm@923
   513
\     |] ==> f(i) <= (f(j)::nat)";
clasohm@923
   514
by (cut_facts_tac [le] 1);
clasohm@1264
   515
by (asm_full_simp_tac (!simpset addsimps [le_eq_less_or_eq]) 1);
paulson@2922
   516
by (blast_tac (!claset addSIs [lt_mono]) 1);
clasohm@923
   517
qed "less_mono_imp_le_mono";
clasohm@923
   518
clasohm@923
   519
(*non-strict, in 1st argument*)
clasohm@923
   520
goal Arith.thy "!!i j k::nat. i<=j ==> i + k <= j + k";
clasohm@923
   521
by (res_inst_tac [("f", "%j.j+k")] less_mono_imp_le_mono 1);
paulson@1552
   522
by (etac add_less_mono1 1);
clasohm@923
   523
by (assume_tac 1);
clasohm@923
   524
qed "add_le_mono1";
clasohm@923
   525
clasohm@923
   526
(*non-strict, in both arguments*)
clasohm@923
   527
goal Arith.thy "!!k l::nat. [|i<=j;  k<=l |] ==> i + k <= j + l";
clasohm@923
   528
by (etac (add_le_mono1 RS le_trans) 1);
clasohm@1264
   529
by (simp_tac (!simpset addsimps [add_commute]) 1);
clasohm@923
   530
(*j moves to the end because it is free while k, l are bound*)
paulson@1552
   531
by (etac add_le_mono1 1);
clasohm@923
   532
qed "add_le_mono";
paulson@1713
   533
paulson@1713
   534
(*** Monotonicity of Multiplication ***)
paulson@1713
   535
paulson@1713
   536
goal Arith.thy "!!i::nat. i<=j ==> i*k<=j*k";
paulson@1713
   537
by (nat_ind_tac "k" 1);
paulson@1713
   538
by (ALLGOALS (asm_simp_tac (!simpset addsimps [add_le_mono])));
paulson@1713
   539
qed "mult_le_mono1";
paulson@1713
   540
paulson@1713
   541
(*<=monotonicity, BOTH arguments*)
paulson@1713
   542
goal Arith.thy "!!i::nat. [| i<=j; k<=l |] ==> i*k<=j*l";
paulson@2007
   543
by (etac (mult_le_mono1 RS le_trans) 1);
paulson@1713
   544
by (rtac le_trans 1);
paulson@2007
   545
by (stac mult_commute 2);
paulson@2007
   546
by (etac mult_le_mono1 2);
paulson@2007
   547
by (simp_tac (!simpset addsimps [mult_commute]) 1);
paulson@1713
   548
qed "mult_le_mono";
paulson@1713
   549
paulson@1713
   550
(*strict, in 1st argument; proof is by induction on k>0*)
paulson@1713
   551
goal Arith.thy "!!i::nat. [| i<j; 0<k |] ==> k*i < k*j";
paulson@2031
   552
by (etac zero_less_natE 1);
paulson@1713
   553
by (Asm_simp_tac 1);
paulson@1713
   554
by (nat_ind_tac "x" 1);
paulson@1713
   555
by (ALLGOALS (asm_simp_tac (!simpset addsimps [add_less_mono])));
paulson@1713
   556
qed "mult_less_mono2";
paulson@1713
   557
paulson@1713
   558
goal Arith.thy "(0 < m*n) = (0<m & 0<n)";
paulson@1713
   559
by (nat_ind_tac "m" 1);
paulson@1713
   560
by (nat_ind_tac "n" 2);
paulson@1713
   561
by (ALLGOALS Asm_simp_tac);
paulson@1713
   562
qed "zero_less_mult_iff";
paulson@1713
   563
paulson@1795
   564
goal Arith.thy "(m*n = 1) = (m=1 & n=1)";
paulson@1795
   565
by (nat_ind_tac "m" 1);
paulson@1795
   566
by (Simp_tac 1);
paulson@1795
   567
by (nat_ind_tac "n" 1);
paulson@1795
   568
by (Simp_tac 1);
paulson@1795
   569
by (fast_tac (!claset addss !simpset) 1);
paulson@1795
   570
qed "mult_eq_1_iff";
paulson@1795
   571
paulson@1713
   572
(*Cancellation law for division*)
paulson@1713
   573
goal Arith.thy "!!k. [| 0<n; 0<k |] ==> (k*m) div (k*n) = m div n";
paulson@1713
   574
by (res_inst_tac [("n","m")] less_induct 1);
paulson@1713
   575
by (case_tac "na<n" 1);
paulson@1713
   576
by (asm_simp_tac (!simpset addsimps [div_less, zero_less_mult_iff, 
paulson@2031
   577
                                     mult_less_mono2]) 1);
paulson@1713
   578
by (subgoal_tac "~ k*na < k*n" 1);
paulson@1713
   579
by (asm_simp_tac
paulson@1713
   580
     (!simpset addsimps [zero_less_mult_iff, div_geq,
paulson@2031
   581
                         diff_mult_distrib2 RS sym, diff_less]) 1);
paulson@1713
   582
by (asm_full_simp_tac (!simpset addsimps [not_less_iff_le, 
paulson@2031
   583
                                          le_refl RS mult_le_mono]) 1);
paulson@1713
   584
qed "div_cancel";
paulson@1713
   585
paulson@1713
   586
goal Arith.thy "!!k. [| 0<n; 0<k |] ==> (k*m) mod (k*n) = k * (m mod n)";
paulson@1713
   587
by (res_inst_tac [("n","m")] less_induct 1);
paulson@1713
   588
by (case_tac "na<n" 1);
paulson@1713
   589
by (asm_simp_tac (!simpset addsimps [mod_less, zero_less_mult_iff, 
paulson@2031
   590
                                     mult_less_mono2]) 1);
paulson@1713
   591
by (subgoal_tac "~ k*na < k*n" 1);
paulson@1713
   592
by (asm_simp_tac
paulson@1713
   593
     (!simpset addsimps [zero_less_mult_iff, mod_geq,
paulson@2031
   594
                         diff_mult_distrib2 RS sym, diff_less]) 1);
paulson@1713
   595
by (asm_full_simp_tac (!simpset addsimps [not_less_iff_le, 
paulson@2031
   596
                                          le_refl RS mult_le_mono]) 1);
paulson@1713
   597
qed "mult_mod_distrib";
paulson@1713
   598
paulson@1713
   599
paulson@1795
   600
(** Lemma for gcd **)
paulson@1795
   601
paulson@1795
   602
goal Arith.thy "!!m n. m = m*n ==> n=1 | m=0";
paulson@1795
   603
by (dtac sym 1);
paulson@1795
   604
by (rtac disjCI 1);
paulson@1795
   605
by (rtac nat_less_cases 1 THEN assume_tac 2);
paulson@1909
   606
by (fast_tac (!claset addSEs [less_SucE] addss !simpset) 1);
paulson@1979
   607
by (best_tac (!claset addDs [mult_less_mono2] 
paulson@1795
   608
                      addss (!simpset addsimps [zero_less_eq RS sym])) 1);
paulson@1795
   609
qed "mult_eq_self_implies_10";
paulson@1795
   610
paulson@1795
   611