src/HOL/Bali/Basis.thy
author nipkow
Wed Mar 04 10:47:20 2009 +0100 (2009-03-04)
changeset 30235 58d147683393
parent 27239 f2f42f9fa09d
child 32149 ef59550a55d3
permissions -rw-r--r--
Made Option a separate theory and renamed option_map to Option.map
wenzelm@12857
     1
(*  Title:      HOL/Bali/Basis.thy
schirmer@12854
     2
    ID:         $Id$
schirmer@12854
     3
    Author:     David von Oheimb
schirmer@12854
     4
schirmer@12854
     5
*)
schirmer@12854
     6
header {* Definitions extending HOL as logical basis of Bali *}
schirmer@12854
     7
haftmann@16417
     8
theory Basis imports Main begin
schirmer@12854
     9
wenzelm@24178
    10
declare [[unify_search_bound = 40, unify_trace_bound = 40]]
wenzelm@24178
    11
schirmer@12854
    12
schirmer@12854
    13
section "misc"
schirmer@12854
    14
schirmer@12854
    15
declare same_fstI [intro!] (*### TO HOL/Wellfounded_Relations *)
schirmer@12854
    16
schirmer@12854
    17
declare split_if_asm  [split] option.split [split] option.split_asm [split]
wenzelm@24019
    18
declaration {* K (Simplifier.map_ss (fn ss => ss addloop ("split_all_tac", split_all_tac))) *}
schirmer@12854
    19
declare if_weak_cong [cong del] option.weak_case_cong [cong del]
paulson@18447
    20
declare length_Suc_conv [iff]
paulson@18447
    21
schirmer@12854
    22
lemma Collect_split_eq: "{p. P (split f p)} = {(a,b). P (f a b)}"
schirmer@12854
    23
apply auto
schirmer@12854
    24
done
schirmer@12854
    25
schirmer@12854
    26
lemma subset_insertD: 
schirmer@12854
    27
  "A <= insert x B ==> A <= B & x ~: A | (EX B'. A = insert x B' & B' <= B)"
schirmer@12854
    28
apply (case_tac "x:A")
schirmer@12854
    29
apply (rule disjI2)
schirmer@12854
    30
apply (rule_tac x = "A-{x}" in exI)
schirmer@12854
    31
apply fast+
schirmer@12854
    32
done
schirmer@12854
    33
schirmer@12854
    34
syntax
schirmer@12925
    35
  "3" :: nat   ("3") 
schirmer@12854
    36
  "4" :: nat   ("4")
schirmer@12854
    37
translations
schirmer@12854
    38
 "3" == "Suc 2"
schirmer@12854
    39
 "4" == "Suc 3"
schirmer@12854
    40
schirmer@12854
    41
(*unused*)
schirmer@12854
    42
lemma range_bool_domain: "range f = {f True, f False}"
schirmer@12854
    43
apply auto
schirmer@12854
    44
apply (case_tac "xa")
schirmer@12854
    45
apply auto
schirmer@12854
    46
done
schirmer@12854
    47
nipkow@13867
    48
(* irrefl_tranclI in Transitive_Closure.thy is more general *)
schirmer@12854
    49
lemma irrefl_tranclI': "r^-1 Int r^+ = {} ==> !x. (x, x) ~: r^+"
nipkow@13867
    50
by(blast elim: tranclE dest: trancl_into_rtrancl)
nipkow@13867
    51
schirmer@12854
    52
schirmer@12854
    53
lemma trancl_rtrancl_trancl:
schirmer@12854
    54
"\<lbrakk>(x,y)\<in>r^+; (y,z)\<in>r^*\<rbrakk> \<Longrightarrow> (x,z)\<in>r^+"
schirmer@12854
    55
by (auto dest: tranclD rtrancl_trans rtrancl_into_trancl2)
schirmer@12854
    56
schirmer@12854
    57
lemma rtrancl_into_trancl3:
schirmer@12925
    58
"\<lbrakk>(a,b)\<in>r^*; a\<noteq>b\<rbrakk> \<Longrightarrow> (a,b)\<in>r^+" 
schirmer@12854
    59
apply (drule rtranclD)
schirmer@12854
    60
apply auto
schirmer@12854
    61
done
schirmer@12854
    62
schirmer@12854
    63
lemma rtrancl_into_rtrancl2: 
schirmer@12854
    64
  "\<lbrakk> (a, b) \<in>  r; (b, c) \<in> r^* \<rbrakk> \<Longrightarrow> (a, c) \<in>  r^*"
schirmer@12854
    65
by (auto intro: r_into_rtrancl rtrancl_trans)
schirmer@12854
    66
schirmer@12854
    67
lemma triangle_lemma:
schirmer@12854
    68
 "\<lbrakk> \<And> a b c. \<lbrakk>(a,b)\<in>r; (a,c)\<in>r\<rbrakk> \<Longrightarrow> b=c; (a,x)\<in>r\<^sup>*; (a,y)\<in>r\<^sup>*\<rbrakk> 
schirmer@12854
    69
 \<Longrightarrow> (x,y)\<in>r\<^sup>* \<or> (y,x)\<in>r\<^sup>*"
schirmer@12854
    70
proof -
schirmer@12854
    71
  note converse_rtrancl_induct = converse_rtrancl_induct [consumes 1]
schirmer@12854
    72
  note converse_rtranclE = converse_rtranclE [consumes 1] 
schirmer@12854
    73
  assume unique: "\<And> a b c. \<lbrakk>(a,b)\<in>r; (a,c)\<in>r\<rbrakk> \<Longrightarrow> b=c"
schirmer@12854
    74
  assume "(a,x)\<in>r\<^sup>*" 
schirmer@12854
    75
  then show "(a,y)\<in>r\<^sup>* \<Longrightarrow> (x,y)\<in>r\<^sup>* \<or> (y,x)\<in>r\<^sup>*"
schirmer@12854
    76
  proof (induct rule: converse_rtrancl_induct)
schirmer@12854
    77
    assume "(x,y)\<in>r\<^sup>*"
schirmer@12854
    78
    then show ?thesis 
schirmer@12854
    79
      by blast
schirmer@12854
    80
  next
schirmer@12854
    81
    fix a v
schirmer@12854
    82
    assume a_v_r: "(a, v) \<in> r" and
schirmer@12854
    83
          v_x_rt: "(v, x) \<in> r\<^sup>*" and
schirmer@12854
    84
          a_y_rt: "(a, y) \<in> r\<^sup>*"  and
schirmer@12854
    85
             hyp: "(v, y) \<in> r\<^sup>* \<Longrightarrow> (x, y) \<in> r\<^sup>* \<or> (y, x) \<in> r\<^sup>*"
schirmer@12854
    86
    from a_y_rt 
schirmer@12854
    87
    show "(x, y) \<in> r\<^sup>* \<or> (y, x) \<in> r\<^sup>*"
schirmer@12854
    88
    proof (cases rule: converse_rtranclE)
schirmer@12854
    89
      assume "a=y"
schirmer@12854
    90
      with a_v_r v_x_rt have "(y,x) \<in> r\<^sup>*"
schirmer@12854
    91
	by (auto intro: r_into_rtrancl rtrancl_trans)
schirmer@12854
    92
      then show ?thesis 
schirmer@12854
    93
	by blast
schirmer@12854
    94
    next
schirmer@12854
    95
      fix w 
schirmer@12854
    96
      assume a_w_r: "(a, w) \<in> r" and
schirmer@12854
    97
            w_y_rt: "(w, y) \<in> r\<^sup>*"
schirmer@12854
    98
      from a_v_r a_w_r unique 
schirmer@12854
    99
      have "v=w" 
schirmer@12854
   100
	by auto
schirmer@12854
   101
      with w_y_rt hyp 
schirmer@12854
   102
      show ?thesis
schirmer@12854
   103
	by blast
schirmer@12854
   104
    qed
schirmer@12854
   105
  qed
schirmer@12854
   106
qed
schirmer@12854
   107
schirmer@12854
   108
schirmer@12854
   109
lemma rtrancl_cases [consumes 1, case_names Refl Trancl]:
schirmer@12854
   110
 "\<lbrakk>(a,b)\<in>r\<^sup>*;  a = b \<Longrightarrow> P; (a,b)\<in>r\<^sup>+ \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
schirmer@12854
   111
apply (erule rtranclE)
schirmer@12854
   112
apply (auto dest: rtrancl_into_trancl1)
schirmer@12854
   113
done
schirmer@12854
   114
schirmer@12854
   115
(* ### To Transitive_Closure *)
schirmer@12854
   116
theorems converse_rtrancl_induct 
schirmer@12854
   117
 = converse_rtrancl_induct [consumes 1,case_names Id Step]
schirmer@12854
   118
schirmer@12854
   119
theorems converse_trancl_induct 
schirmer@12854
   120
         = converse_trancl_induct [consumes 1,case_names Single Step]
schirmer@12854
   121
schirmer@12854
   122
(* context (theory "Set") *)
schirmer@12854
   123
lemma Ball_weaken:"\<lbrakk>Ball s P;\<And> x. P x\<longrightarrow>Q x\<rbrakk>\<Longrightarrow>Ball s Q"
schirmer@12854
   124
by auto
schirmer@12854
   125
schirmer@12854
   126
(* context (theory "Finite") *)
schirmer@12854
   127
lemma finite_SetCompr2: "[| finite (Collect P); !y. P y --> finite (range (f y)) |] ==>  
schirmer@12854
   128
  finite {f y x |x y. P y}"
schirmer@12854
   129
apply (subgoal_tac "{f y x |x y. P y} = UNION (Collect P) (%y. range (f y))")
schirmer@12854
   130
prefer 2 apply  fast
schirmer@12854
   131
apply (erule ssubst)
schirmer@12854
   132
apply (erule finite_UN_I)
schirmer@12854
   133
apply fast
schirmer@12854
   134
done
schirmer@12854
   135
schirmer@12854
   136
schirmer@12854
   137
(* ### TO theory "List" *)
schirmer@12854
   138
lemma list_all2_trans: "\<forall> a b c. P1 a b \<longrightarrow> P2 b c \<longrightarrow> P3 a c \<Longrightarrow>
schirmer@12854
   139
 \<forall>xs2 xs3. list_all2 P1 xs1 xs2 \<longrightarrow> list_all2 P2 xs2 xs3 \<longrightarrow> list_all2 P3 xs1 xs3"
schirmer@12854
   140
apply (induct_tac "xs1")
schirmer@12854
   141
apply simp
schirmer@12854
   142
apply (rule allI)
schirmer@12854
   143
apply (induct_tac "xs2")
schirmer@12854
   144
apply simp
schirmer@12854
   145
apply (rule allI)
schirmer@12854
   146
apply (induct_tac "xs3")
schirmer@12854
   147
apply auto
schirmer@12854
   148
done
schirmer@12854
   149
schirmer@12854
   150
schirmer@12854
   151
section "pairs"
schirmer@12854
   152
schirmer@12854
   153
lemma surjective_pairing5: "p = (fst p, fst (snd p), fst (snd (snd p)), fst (snd (snd (snd p))), 
schirmer@12854
   154
  snd (snd (snd (snd p))))"
schirmer@12854
   155
apply auto
schirmer@12854
   156
done
schirmer@12854
   157
schirmer@12854
   158
lemma fst_splitE [elim!]: 
schirmer@12854
   159
"[| fst s' = x';  !!x s. [| s' = (x,s);  x = x' |] ==> Q |] ==> Q"
haftmann@26349
   160
by (cases s') auto
schirmer@12854
   161
schirmer@12854
   162
lemma fst_in_set_lemma [rule_format (no_asm)]: "(x, y) : set l --> x : fst ` set l"
schirmer@12854
   163
apply (induct_tac "l")
schirmer@12854
   164
apply  auto
schirmer@12854
   165
done
schirmer@12854
   166
schirmer@12854
   167
schirmer@12854
   168
section "quantifiers"
schirmer@12854
   169
schirmer@12854
   170
lemma All_Ex_refl_eq2 [simp]: 
schirmer@12854
   171
 "(!x. (? b. x = f b & Q b) \<longrightarrow> P x) = (!b. Q b --> P (f b))"
schirmer@12854
   172
apply auto
schirmer@12854
   173
done
schirmer@12854
   174
schirmer@12854
   175
lemma ex_ex_miniscope1 [simp]:
schirmer@12854
   176
  "(EX w v. P w v & Q v) = (EX v. (EX w. P w v) & Q v)"
schirmer@12854
   177
apply auto
schirmer@12854
   178
done
schirmer@12854
   179
schirmer@12854
   180
lemma ex_miniscope2 [simp]:
schirmer@12854
   181
  "(EX v. P v & Q & R v) = (Q & (EX v. P v & R v))" 
schirmer@12854
   182
apply auto
schirmer@12854
   183
done
schirmer@12854
   184
schirmer@12854
   185
lemma ex_reorder31: "(\<exists>z x y. P x y z) = (\<exists>x y z. P x y z)"
schirmer@12854
   186
apply auto
schirmer@12854
   187
done
schirmer@12854
   188
schirmer@12854
   189
lemma All_Ex_refl_eq1 [simp]: "(!x. (? b. x = f b) --> P x) = (!b. P (f b))"
schirmer@12854
   190
apply auto
schirmer@12854
   191
done
schirmer@12854
   192
schirmer@12854
   193
schirmer@12854
   194
section "sums"
schirmer@12854
   195
schirmer@12854
   196
hide const In0 In1
schirmer@12854
   197
schirmer@12854
   198
syntax
schirmer@12854
   199
  fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80)
schirmer@12854
   200
translations
berghofe@22781
   201
 "fun_sum" == "CONST sum_case"
schirmer@12854
   202
schirmer@12854
   203
consts    the_Inl  :: "'a + 'b \<Rightarrow> 'a"
schirmer@12854
   204
          the_Inr  :: "'a + 'b \<Rightarrow> 'b"
schirmer@12854
   205
primrec  "the_Inl (Inl a) = a"
schirmer@12854
   206
primrec  "the_Inr (Inr b) = b"
schirmer@12854
   207
schirmer@12854
   208
datatype ('a, 'b, 'c) sum3 = In1 'a | In2 'b | In3 'c
schirmer@12854
   209
schirmer@12854
   210
consts    the_In1  :: "('a, 'b, 'c) sum3 \<Rightarrow> 'a"
schirmer@12854
   211
          the_In2  :: "('a, 'b, 'c) sum3 \<Rightarrow> 'b"
schirmer@12854
   212
          the_In3  :: "('a, 'b, 'c) sum3 \<Rightarrow> 'c"
schirmer@12854
   213
primrec  "the_In1 (In1 a) = a"
schirmer@12854
   214
primrec  "the_In2 (In2 b) = b"
schirmer@12854
   215
primrec  "the_In3 (In3 c) = c"
schirmer@12854
   216
schirmer@12854
   217
syntax
schirmer@12854
   218
	 In1l	:: "'al \<Rightarrow> ('al + 'ar, 'b, 'c) sum3"
schirmer@12854
   219
	 In1r	:: "'ar \<Rightarrow> ('al + 'ar, 'b, 'c) sum3"
schirmer@12854
   220
translations
schirmer@12854
   221
	"In1l e" == "In1 (Inl e)"
schirmer@12854
   222
	"In1r c" == "In1 (Inr c)"
schirmer@12854
   223
schirmer@13688
   224
syntax the_In1l :: "('al + 'ar, 'b, 'c) sum3 \<Rightarrow> 'al"
schirmer@13688
   225
       the_In1r :: "('al + 'ar, 'b, 'c) sum3 \<Rightarrow> 'ar"
schirmer@13688
   226
translations
schirmer@13688
   227
   "the_In1l" == "the_Inl \<circ> the_In1"
schirmer@13688
   228
   "the_In1r" == "the_Inr \<circ> the_In1"
schirmer@13688
   229
schirmer@12854
   230
ML {*
wenzelm@27226
   231
fun sum3_instantiate ctxt thm = map (fn s =>
wenzelm@27226
   232
  simplify (Simplifier.local_simpset_of ctxt delsimps[@{thm not_None_eq}])
wenzelm@27239
   233
    (read_instantiate ctxt [(("t", 0), "In" ^ s ^ " ?x")] thm)) ["1l","2","3","1r"]
schirmer@12854
   234
*}
schirmer@12854
   235
(* e.g. lemmas is_stmt_rews = is_stmt_def [of "In1l x", simplified] *)
schirmer@12854
   236
schirmer@12854
   237
translations
haftmann@24194
   238
  "option"<= (type) "Datatype.option"
schirmer@12854
   239
  "list"  <= (type) "List.list"
schirmer@12854
   240
  "sum3"  <= (type) "Basis.sum3"
schirmer@12854
   241
schirmer@12854
   242
schirmer@12854
   243
section "quantifiers for option type"
schirmer@12854
   244
schirmer@12854
   245
syntax
schirmer@12854
   246
  Oall :: "[pttrn, 'a option, bool] => bool"   ("(3! _:_:/ _)" [0,0,10] 10)
schirmer@12854
   247
  Oex  :: "[pttrn, 'a option, bool] => bool"   ("(3? _:_:/ _)" [0,0,10] 10)
schirmer@12854
   248
schirmer@12854
   249
syntax (symbols)
schirmer@12854
   250
  Oall :: "[pttrn, 'a option, bool] => bool"   ("(3\<forall>_\<in>_:/ _)"  [0,0,10] 10)
schirmer@12854
   251
  Oex  :: "[pttrn, 'a option, bool] => bool"   ("(3\<exists>_\<in>_:/ _)"  [0,0,10] 10)
schirmer@12854
   252
schirmer@12854
   253
translations
nipkow@30235
   254
  "! x:A: P"    == "! x:CONST Option.set A. P"
nipkow@30235
   255
  "? x:A: P"    == "? x:CONST Option.set A. P"
schirmer@12854
   256
nipkow@19323
   257
section "Special map update"
nipkow@19323
   258
nipkow@19323
   259
text{* Deemed too special for theory Map. *}
nipkow@19323
   260
nipkow@19323
   261
constdefs
nipkow@19323
   262
  chg_map :: "('b => 'b) => 'a => ('a ~=> 'b) => ('a ~=> 'b)"
nipkow@19323
   263
 "chg_map f a m == case m a of None => m | Some b => m(a|->f b)"
nipkow@19323
   264
nipkow@19323
   265
lemma chg_map_new[simp]: "m a = None   ==> chg_map f a m = m"
nipkow@19323
   266
by (unfold chg_map_def, auto)
nipkow@19323
   267
nipkow@19323
   268
lemma chg_map_upd[simp]: "m a = Some b ==> chg_map f a m = m(a|->f b)"
nipkow@19323
   269
by (unfold chg_map_def, auto)
nipkow@19323
   270
nipkow@19323
   271
lemma chg_map_other [simp]: "a \<noteq> b \<Longrightarrow> chg_map f a m b = m b"
nipkow@19323
   272
by (auto simp: chg_map_def split add: option.split)
nipkow@19323
   273
schirmer@12854
   274
schirmer@12854
   275
section "unique association lists"
schirmer@12854
   276
schirmer@12854
   277
constdefs
schirmer@12854
   278
  unique   :: "('a \<times> 'b) list \<Rightarrow> bool"
wenzelm@12893
   279
 "unique \<equiv> distinct \<circ> map fst"
schirmer@12854
   280
schirmer@12854
   281
lemma uniqueD [rule_format (no_asm)]: 
schirmer@12854
   282
"unique l--> (!x y. (x,y):set l --> (!x' y'. (x',y'):set l --> x=x'-->  y=y'))"
schirmer@12854
   283
apply (unfold unique_def o_def)
schirmer@12854
   284
apply (induct_tac "l")
schirmer@12854
   285
apply  (auto dest: fst_in_set_lemma)
schirmer@12854
   286
done
schirmer@12854
   287
schirmer@12854
   288
lemma unique_Nil [simp]: "unique []"
schirmer@12854
   289
apply (unfold unique_def)
schirmer@12854
   290
apply (simp (no_asm))
schirmer@12854
   291
done
schirmer@12854
   292
schirmer@12854
   293
lemma unique_Cons [simp]: "unique ((x,y)#l) = (unique l & (!y. (x,y) ~: set l))"
schirmer@12854
   294
apply (unfold unique_def)
schirmer@12854
   295
apply  (auto dest: fst_in_set_lemma)
schirmer@12854
   296
done
schirmer@12854
   297
schirmer@12854
   298
lemmas unique_ConsI = conjI [THEN unique_Cons [THEN iffD2], standard]
schirmer@12854
   299
schirmer@12854
   300
lemma unique_single [simp]: "!!p. unique [p]"
schirmer@12854
   301
apply auto
schirmer@12854
   302
done
schirmer@12854
   303
schirmer@12854
   304
lemma unique_ConsD: "unique (x#xs) ==> unique xs"
schirmer@12854
   305
apply (simp add: unique_def)
schirmer@12854
   306
done
schirmer@12854
   307
schirmer@12854
   308
lemma unique_append [rule_format (no_asm)]: "unique l' ==> unique l -->  
schirmer@12854
   309
  (!(x,y):set l. !(x',y'):set l'. x' ~= x) --> unique (l @ l')"
schirmer@12854
   310
apply (induct_tac "l")
schirmer@12854
   311
apply  (auto dest: fst_in_set_lemma)
schirmer@12854
   312
done
schirmer@12854
   313
schirmer@12854
   314
lemma unique_map_inj [rule_format (no_asm)]: "unique l --> inj f --> unique (map (%(k,x). (f k, g k x)) l)"
schirmer@12854
   315
apply (induct_tac "l")
schirmer@12854
   316
apply  (auto dest: fst_in_set_lemma simp add: inj_eq)
schirmer@12854
   317
done
schirmer@12854
   318
schirmer@12854
   319
lemma map_of_SomeI [rule_format (no_asm)]: "unique l --> (k, x) : set l --> map_of l k = Some x"
schirmer@12854
   320
apply (induct_tac "l")
schirmer@12854
   321
apply auto
schirmer@12854
   322
done
schirmer@12854
   323
schirmer@12854
   324
schirmer@12854
   325
section "list patterns"
schirmer@12854
   326
schirmer@12854
   327
consts
schirmer@12854
   328
  lsplit         :: "[['a, 'a list] => 'b, 'a list] => 'b"
schirmer@12854
   329
defs
schirmer@12854
   330
  lsplit_def:    "lsplit == %f l. f (hd l) (tl l)"
schirmer@12854
   331
(*  list patterns -- extends pre-defined type "pttrn" used in abstractions *)
schirmer@12854
   332
syntax
schirmer@12854
   333
  "_lpttrn"    :: "[pttrn,pttrn] => pttrn"     ("_#/_" [901,900] 900)
schirmer@12854
   334
translations
schirmer@12854
   335
  "%y#x#xs. b"  == "lsplit (%y x#xs. b)"
schirmer@12854
   336
  "%x#xs  . b"  == "lsplit (%x xs  . b)"
schirmer@12854
   337
schirmer@12854
   338
lemma lsplit [simp]: "lsplit c (x#xs) = c x xs"
schirmer@12854
   339
apply (unfold lsplit_def)
schirmer@12854
   340
apply (simp (no_asm))
schirmer@12854
   341
done
schirmer@12854
   342
schirmer@12854
   343
lemma lsplit2 [simp]: "lsplit P (x#xs) y z = P x xs y z"
schirmer@12854
   344
apply (unfold lsplit_def)
schirmer@12854
   345
apply simp
schirmer@12854
   346
done 
schirmer@12854
   347
schirmer@12854
   348
schirmer@12854
   349
end