src/HOL/List.thy
author nipkow
Thu Sep 22 23:56:15 2005 +0200 (2005-09-22)
changeset 17589 58eeffd73be1
parent 17501 acbebb72e85a
child 17629 f8ea8068c6d9
permissions -rw-r--r--
renamed rules to iprover
wenzelm@13462
     1
(*  Title:      HOL/List.thy
wenzelm@13462
     2
    ID:         $Id$
wenzelm@13462
     3
    Author:     Tobias Nipkow
clasohm@923
     4
*)
clasohm@923
     5
wenzelm@13114
     6
header {* The datatype of finite lists *}
wenzelm@13122
     7
nipkow@15131
     8
theory List
nipkow@15140
     9
imports PreList
nipkow@15131
    10
begin
clasohm@923
    11
wenzelm@13142
    12
datatype 'a list =
wenzelm@13366
    13
    Nil    ("[]")
wenzelm@13366
    14
  | Cons 'a  "'a list"    (infixr "#" 65)
clasohm@923
    15
nipkow@15392
    16
subsection{*Basic list processing functions*}
nipkow@15302
    17
clasohm@923
    18
consts
wenzelm@13366
    19
  "@" :: "'a list => 'a list => 'a list"    (infixr 65)
wenzelm@13366
    20
  filter:: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    21
  concat:: "'a list list => 'a list"
wenzelm@13366
    22
  foldl :: "('b => 'a => 'b) => 'b => 'a list => 'b"
wenzelm@13366
    23
  foldr :: "('a => 'b => 'b) => 'a list => 'b => 'b"
wenzelm@13366
    24
  hd:: "'a list => 'a"
wenzelm@13366
    25
  tl:: "'a list => 'a list"
wenzelm@13366
    26
  last:: "'a list => 'a"
wenzelm@13366
    27
  butlast :: "'a list => 'a list"
wenzelm@13366
    28
  set :: "'a list => 'a set"
wenzelm@13366
    29
  list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool"
wenzelm@13366
    30
  map :: "('a=>'b) => ('a list => 'b list)"
wenzelm@13366
    31
  nth :: "'a list => nat => 'a"    (infixl "!" 100)
wenzelm@13366
    32
  list_update :: "'a list => nat => 'a => 'a list"
wenzelm@13366
    33
  take:: "nat => 'a list => 'a list"
wenzelm@13366
    34
  drop:: "nat => 'a list => 'a list"
wenzelm@13366
    35
  takeWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    36
  dropWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    37
  rev :: "'a list => 'a list"
wenzelm@13366
    38
  zip :: "'a list => 'b list => ('a * 'b) list"
nipkow@15425
    39
  upt :: "nat => nat => nat list" ("(1[_..</_'])")
wenzelm@13366
    40
  remdups :: "'a list => 'a list"
nipkow@15110
    41
  remove1 :: "'a => 'a list => 'a list"
wenzelm@13366
    42
  null:: "'a list => bool"
wenzelm@13366
    43
  "distinct":: "'a list => bool"
wenzelm@13366
    44
  replicate :: "nat => 'a => 'a list"
nipkow@15302
    45
  rotate1 :: "'a list \<Rightarrow> 'a list"
nipkow@15302
    46
  rotate :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
nipkow@15302
    47
  sublist :: "'a list => nat set => 'a list"
nipkow@17086
    48
(* For efficiency *)
nipkow@17086
    49
  mem :: "'a => 'a list => bool"    (infixl 55)
nipkow@17086
    50
  list_inter :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
nipkow@17086
    51
  list_ex :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool"
nipkow@17086
    52
  list_all:: "('a => bool) => ('a list => bool)"
nipkow@17086
    53
  itrev :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
nipkow@17086
    54
  filtermap :: "('a \<Rightarrow> 'b option) \<Rightarrow> 'a list \<Rightarrow> 'b list"
nipkow@17086
    55
  map_filter :: "('a => 'b) => ('a => bool) => 'a list => 'b list"
nipkow@15302
    56
clasohm@923
    57
nipkow@13146
    58
nonterminals lupdbinds lupdbind
nipkow@5077
    59
clasohm@923
    60
syntax
wenzelm@13366
    61
  -- {* list Enumeration *}
wenzelm@13366
    62
  "@list" :: "args => 'a list"    ("[(_)]")
clasohm@923
    63
wenzelm@13366
    64
  -- {* Special syntax for filter *}
wenzelm@13366
    65
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_:_./ _])")
clasohm@923
    66
wenzelm@13366
    67
  -- {* list update *}
wenzelm@13366
    68
  "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
wenzelm@13366
    69
  "" :: "lupdbind => lupdbinds"    ("_")
wenzelm@13366
    70
  "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
wenzelm@13366
    71
  "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
nipkow@5077
    72
wenzelm@13366
    73
  upto:: "nat => nat => nat list"    ("(1[_../_])")
nipkow@5427
    74
clasohm@923
    75
translations
wenzelm@13366
    76
  "[x, xs]" == "x#[xs]"
wenzelm@13366
    77
  "[x]" == "x#[]"
wenzelm@13366
    78
  "[x:xs . P]"== "filter (%x. P) xs"
clasohm@923
    79
wenzelm@13366
    80
  "_LUpdate xs (_lupdbinds b bs)"== "_LUpdate (_LUpdate xs b) bs"
wenzelm@13366
    81
  "xs[i:=x]" == "list_update xs i x"
nipkow@5077
    82
nipkow@15425
    83
  "[i..j]" == "[i..<(Suc j)]"
nipkow@5427
    84
nipkow@5427
    85
wenzelm@12114
    86
syntax (xsymbols)
wenzelm@13366
    87
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
kleing@14565
    88
syntax (HTML output)
kleing@14565
    89
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
paulson@3342
    90
paulson@3342
    91
wenzelm@13142
    92
text {*
wenzelm@14589
    93
  Function @{text size} is overloaded for all datatypes. Users may
wenzelm@13366
    94
  refer to the list version as @{text length}. *}
wenzelm@13142
    95
wenzelm@13142
    96
syntax length :: "'a list => nat"
wenzelm@13142
    97
translations "length" => "size :: _ list => nat"
wenzelm@13114
    98
wenzelm@13142
    99
typed_print_translation {*
wenzelm@13366
   100
  let
wenzelm@13366
   101
    fun size_tr' _ (Type ("fun", (Type ("list", _) :: _))) [t] =
wenzelm@13366
   102
          Syntax.const "length" $ t
wenzelm@13366
   103
      | size_tr' _ _ _ = raise Match;
wenzelm@13366
   104
  in [("size", size_tr')] end
wenzelm@13114
   105
*}
paulson@3437
   106
nipkow@15302
   107
berghofe@5183
   108
primrec
paulson@15307
   109
  "hd(x#xs) = x"
paulson@15307
   110
berghofe@5183
   111
primrec
paulson@15307
   112
  "tl([]) = []"
paulson@15307
   113
  "tl(x#xs) = xs"
paulson@15307
   114
berghofe@5183
   115
primrec
paulson@15307
   116
  "null([]) = True"
paulson@15307
   117
  "null(x#xs) = False"
paulson@15307
   118
paulson@8972
   119
primrec
paulson@15307
   120
  "last(x#xs) = (if xs=[] then x else last xs)"
paulson@15307
   121
berghofe@5183
   122
primrec
paulson@15307
   123
  "butlast []= []"
paulson@15307
   124
  "butlast(x#xs) = (if xs=[] then [] else x#butlast xs)"
paulson@15307
   125
berghofe@5183
   126
primrec
paulson@15307
   127
  "set [] = {}"
paulson@15307
   128
  "set (x#xs) = insert x (set xs)"
paulson@15307
   129
berghofe@5183
   130
primrec
paulson@15307
   131
  "map f [] = []"
paulson@15307
   132
  "map f (x#xs) = f(x)#map f xs"
paulson@15307
   133
berghofe@5183
   134
primrec
paulson@15307
   135
  append_Nil:"[]@ys = ys"
paulson@15307
   136
  append_Cons: "(x#xs)@ys = x#(xs@ys)"
paulson@15307
   137
berghofe@5183
   138
primrec
paulson@15307
   139
  "rev([]) = []"
paulson@15307
   140
  "rev(x#xs) = rev(xs) @ [x]"
paulson@15307
   141
berghofe@5183
   142
primrec
paulson@15307
   143
  "filter P [] = []"
paulson@15307
   144
  "filter P (x#xs) = (if P x then x#filter P xs else filter P xs)"
paulson@15307
   145
berghofe@5183
   146
primrec
paulson@15307
   147
  foldl_Nil:"foldl f a [] = a"
paulson@15307
   148
  foldl_Cons: "foldl f a (x#xs) = foldl f (f a x) xs"
paulson@15307
   149
paulson@8000
   150
primrec
paulson@15307
   151
  "foldr f [] a = a"
paulson@15307
   152
  "foldr f (x#xs) a = f x (foldr f xs a)"
paulson@15307
   153
berghofe@5183
   154
primrec
paulson@15307
   155
  "concat([]) = []"
paulson@15307
   156
  "concat(x#xs) = x @ concat(xs)"
paulson@15307
   157
berghofe@5183
   158
primrec
paulson@15307
   159
  drop_Nil:"drop n [] = []"
paulson@15307
   160
  drop_Cons: "drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)"
paulson@15307
   161
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   162
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
paulson@15307
   163
berghofe@5183
   164
primrec
paulson@15307
   165
  take_Nil:"take n [] = []"
paulson@15307
   166
  take_Cons: "take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)"
paulson@15307
   167
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   168
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
paulson@15307
   169
wenzelm@13142
   170
primrec
paulson@15307
   171
  nth_Cons:"(x#xs)!n = (case n of 0 => x | (Suc k) => xs!k)"
paulson@15307
   172
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   173
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
paulson@15307
   174
berghofe@5183
   175
primrec
paulson@15307
   176
  "[][i:=v] = []"
paulson@15307
   177
  "(x#xs)[i:=v] = (case i of 0 => v # xs | Suc j => x # xs[j:=v])"
paulson@15307
   178
paulson@15307
   179
primrec
paulson@15307
   180
  "takeWhile P [] = []"
paulson@15307
   181
  "takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])"
paulson@15307
   182
berghofe@5183
   183
primrec
paulson@15307
   184
  "dropWhile P [] = []"
paulson@15307
   185
  "dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)"
paulson@15307
   186
berghofe@5183
   187
primrec
paulson@15307
   188
  "zip xs [] = []"
paulson@15307
   189
  zip_Cons: "zip xs (y#ys) = (case xs of [] => [] | z#zs => (z,y)#zip zs ys)"
paulson@15307
   190
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   191
       theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
paulson@15307
   192
nipkow@5427
   193
primrec
nipkow@15425
   194
  upt_0: "[i..<0] = []"
nipkow@15425
   195
  upt_Suc: "[i..<(Suc j)] = (if i <= j then [i..<j] @ [j] else [])"
paulson@15307
   196
berghofe@5183
   197
primrec
paulson@15307
   198
  "distinct [] = True"
paulson@15307
   199
  "distinct (x#xs) = (x ~: set xs \<and> distinct xs)"
paulson@15307
   200
berghofe@5183
   201
primrec
paulson@15307
   202
  "remdups [] = []"
paulson@15307
   203
  "remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)"
paulson@15307
   204
berghofe@5183
   205
primrec
paulson@15307
   206
  "remove1 x [] = []"
paulson@15307
   207
  "remove1 x (y#xs) = (if x=y then xs else y # remove1 x xs)"
paulson@15307
   208
nipkow@15110
   209
primrec
paulson@15307
   210
  replicate_0: "replicate 0 x = []"
paulson@15307
   211
  replicate_Suc: "replicate (Suc n) x = x # replicate n x"
paulson@15307
   212
nipkow@8115
   213
defs
nipkow@15302
   214
rotate1_def: "rotate1 xs == (case xs of [] \<Rightarrow> [] | x#xs \<Rightarrow> xs @ [x])"
nipkow@15302
   215
rotate_def:  "rotate n == rotate1 ^ n"
nipkow@15302
   216
nipkow@15302
   217
list_all2_def:
nipkow@15302
   218
 "list_all2 P xs ys ==
nipkow@15302
   219
  length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y)"
nipkow@15302
   220
nipkow@15302
   221
sublist_def:
nipkow@15425
   222
 "sublist xs A == map fst (filter (%p. snd p : A) (zip xs [0..<size xs]))"
nipkow@5281
   223
nipkow@17086
   224
primrec
nipkow@17086
   225
  "x mem [] = False"
nipkow@17086
   226
  "x mem (y#ys) = (if y=x then True else x mem ys)"
nipkow@17086
   227
nipkow@17086
   228
primrec
nipkow@17086
   229
 "list_inter [] bs = []"
nipkow@17086
   230
 "list_inter (a#as) bs =
nipkow@17086
   231
  (if a \<in> set bs then a#(list_inter as bs) else list_inter as bs)"
nipkow@17086
   232
nipkow@17086
   233
primrec
nipkow@17086
   234
  "list_all P [] = True"
nipkow@17086
   235
  "list_all P (x#xs) = (P(x) \<and> list_all P xs)"
nipkow@17086
   236
nipkow@17086
   237
primrec
nipkow@17086
   238
"list_ex P [] = False"
nipkow@17086
   239
"list_ex P (x#xs) = (P x \<or> list_ex P xs)"
nipkow@17086
   240
nipkow@17086
   241
primrec
nipkow@17086
   242
 "filtermap f [] = []"
nipkow@17086
   243
 "filtermap f (x#xs) =
nipkow@17086
   244
    (case f x of None \<Rightarrow> filtermap f xs
nipkow@17086
   245
     | Some y \<Rightarrow> y # (filtermap f xs))"
nipkow@17086
   246
nipkow@17086
   247
primrec
nipkow@17086
   248
  "map_filter f P [] = []"
nipkow@17086
   249
  "map_filter f P (x#xs) = (if P x then f x # map_filter f P xs else 
nipkow@17086
   250
               map_filter f P xs)"
nipkow@17086
   251
nipkow@17086
   252
primrec
nipkow@17086
   253
"itrev [] ys = ys"
nipkow@17086
   254
"itrev (x#xs) ys = itrev xs (x#ys)"
nipkow@17086
   255
wenzelm@13114
   256
wenzelm@13142
   257
lemma not_Cons_self [simp]: "xs \<noteq> x # xs"
nipkow@13145
   258
by (induct xs) auto
wenzelm@13114
   259
wenzelm@13142
   260
lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric]
wenzelm@13114
   261
wenzelm@13142
   262
lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)"
nipkow@13145
   263
by (induct xs) auto
wenzelm@13114
   264
wenzelm@13142
   265
lemma length_induct:
nipkow@13145
   266
"(!!xs. \<forall>ys. length ys < length xs --> P ys ==> P xs) ==> P xs"
nipkow@17589
   267
by (rule measure_induct [of length]) iprover
wenzelm@13114
   268
wenzelm@13114
   269
nipkow@15392
   270
subsubsection {* @{text length} *}
wenzelm@13114
   271
wenzelm@13142
   272
text {*
nipkow@13145
   273
Needs to come before @{text "@"} because of theorem @{text
nipkow@13145
   274
append_eq_append_conv}.
wenzelm@13142
   275
*}
wenzelm@13114
   276
wenzelm@13142
   277
lemma length_append [simp]: "length (xs @ ys) = length xs + length ys"
nipkow@13145
   278
by (induct xs) auto
wenzelm@13114
   279
wenzelm@13142
   280
lemma length_map [simp]: "length (map f xs) = length xs"
nipkow@13145
   281
by (induct xs) auto
wenzelm@13114
   282
wenzelm@13142
   283
lemma length_rev [simp]: "length (rev xs) = length xs"
nipkow@13145
   284
by (induct xs) auto
wenzelm@13114
   285
wenzelm@13142
   286
lemma length_tl [simp]: "length (tl xs) = length xs - 1"
nipkow@13145
   287
by (cases xs) auto
wenzelm@13114
   288
wenzelm@13142
   289
lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])"
nipkow@13145
   290
by (induct xs) auto
wenzelm@13114
   291
wenzelm@13142
   292
lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])"
nipkow@13145
   293
by (induct xs) auto
wenzelm@13114
   294
wenzelm@13114
   295
lemma length_Suc_conv:
nipkow@13145
   296
"(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
nipkow@13145
   297
by (induct xs) auto
wenzelm@13142
   298
nipkow@14025
   299
lemma Suc_length_conv:
nipkow@14025
   300
"(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
paulson@14208
   301
apply (induct xs, simp, simp)
nipkow@14025
   302
apply blast
nipkow@14025
   303
done
nipkow@14025
   304
oheimb@14099
   305
lemma impossible_Cons [rule_format]: 
oheimb@14099
   306
  "length xs <= length ys --> xs = x # ys = False"
paulson@14208
   307
apply (induct xs, auto)
oheimb@14099
   308
done
oheimb@14099
   309
nipkow@14247
   310
lemma list_induct2[consumes 1]: "\<And>ys.
nipkow@14247
   311
 \<lbrakk> length xs = length ys;
nipkow@14247
   312
   P [] [];
nipkow@14247
   313
   \<And>x xs y ys. \<lbrakk> length xs = length ys; P xs ys \<rbrakk> \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
nipkow@14247
   314
 \<Longrightarrow> P xs ys"
nipkow@14247
   315
apply(induct xs)
nipkow@14247
   316
 apply simp
nipkow@14247
   317
apply(case_tac ys)
nipkow@14247
   318
 apply simp
nipkow@14247
   319
apply(simp)
nipkow@14247
   320
done
wenzelm@13114
   321
nipkow@15392
   322
subsubsection {* @{text "@"} -- append *}
wenzelm@13114
   323
wenzelm@13142
   324
lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
nipkow@13145
   325
by (induct xs) auto
wenzelm@13114
   326
wenzelm@13142
   327
lemma append_Nil2 [simp]: "xs @ [] = xs"
nipkow@13145
   328
by (induct xs) auto
nipkow@3507
   329
wenzelm@13142
   330
lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])"
nipkow@13145
   331
by (induct xs) auto
wenzelm@13114
   332
wenzelm@13142
   333
lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])"
nipkow@13145
   334
by (induct xs) auto
wenzelm@13114
   335
wenzelm@13142
   336
lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])"
nipkow@13145
   337
by (induct xs) auto
wenzelm@13114
   338
wenzelm@13142
   339
lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])"
nipkow@13145
   340
by (induct xs) auto
wenzelm@13114
   341
berghofe@13883
   342
lemma append_eq_append_conv [simp]:
berghofe@13883
   343
 "!!ys. length xs = length ys \<or> length us = length vs
berghofe@13883
   344
 ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)"
berghofe@13883
   345
apply (induct xs)
paulson@14208
   346
 apply (case_tac ys, simp, force)
paulson@14208
   347
apply (case_tac ys, force, simp)
nipkow@13145
   348
done
wenzelm@13142
   349
nipkow@14495
   350
lemma append_eq_append_conv2: "!!ys zs ts.
nipkow@14495
   351
 (xs @ ys = zs @ ts) =
nipkow@14495
   352
 (EX us. xs = zs @ us & us @ ys = ts | xs @ us = zs & ys = us@ ts)"
nipkow@14495
   353
apply (induct xs)
nipkow@14495
   354
 apply fastsimp
nipkow@14495
   355
apply(case_tac zs)
nipkow@14495
   356
 apply simp
nipkow@14495
   357
apply fastsimp
nipkow@14495
   358
done
nipkow@14495
   359
wenzelm@13142
   360
lemma same_append_eq [iff]: "(xs @ ys = xs @ zs) = (ys = zs)"
nipkow@13145
   361
by simp
wenzelm@13142
   362
wenzelm@13142
   363
lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)"
nipkow@13145
   364
by simp
wenzelm@13114
   365
wenzelm@13142
   366
lemma append_same_eq [iff]: "(ys @ xs = zs @ xs) = (ys = zs)"
nipkow@13145
   367
by simp
wenzelm@13114
   368
wenzelm@13142
   369
lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])"
nipkow@13145
   370
using append_same_eq [of _ _ "[]"] by auto
nipkow@3507
   371
wenzelm@13142
   372
lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])"
nipkow@13145
   373
using append_same_eq [of "[]"] by auto
wenzelm@13114
   374
wenzelm@13142
   375
lemma hd_Cons_tl [simp]: "xs \<noteq> [] ==> hd xs # tl xs = xs"
nipkow@13145
   376
by (induct xs) auto
wenzelm@13114
   377
wenzelm@13142
   378
lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)"
nipkow@13145
   379
by (induct xs) auto
wenzelm@13114
   380
wenzelm@13142
   381
lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs"
nipkow@13145
   382
by (simp add: hd_append split: list.split)
wenzelm@13114
   383
wenzelm@13142
   384
lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)"
nipkow@13145
   385
by (simp split: list.split)
wenzelm@13114
   386
wenzelm@13142
   387
lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys"
nipkow@13145
   388
by (simp add: tl_append split: list.split)
wenzelm@13114
   389
wenzelm@13114
   390
nipkow@14300
   391
lemma Cons_eq_append_conv: "x#xs = ys@zs =
nipkow@14300
   392
 (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))"
nipkow@14300
   393
by(cases ys) auto
nipkow@14300
   394
nipkow@15281
   395
lemma append_eq_Cons_conv: "(ys@zs = x#xs) =
nipkow@15281
   396
 (ys = [] & zs = x#xs | (EX ys'. ys = x#ys' & ys'@zs = xs))"
nipkow@15281
   397
by(cases ys) auto
nipkow@15281
   398
nipkow@14300
   399
wenzelm@13142
   400
text {* Trivial rules for solving @{text "@"}-equations automatically. *}
wenzelm@13114
   401
wenzelm@13114
   402
lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys"
nipkow@13145
   403
by simp
wenzelm@13114
   404
wenzelm@13142
   405
lemma Cons_eq_appendI:
nipkow@13145
   406
"[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs"
nipkow@13145
   407
by (drule sym) simp
wenzelm@13114
   408
wenzelm@13142
   409
lemma append_eq_appendI:
nipkow@13145
   410
"[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us"
nipkow@13145
   411
by (drule sym) simp
wenzelm@13114
   412
wenzelm@13114
   413
wenzelm@13142
   414
text {*
nipkow@13145
   415
Simplification procedure for all list equalities.
nipkow@13145
   416
Currently only tries to rearrange @{text "@"} to see if
nipkow@13145
   417
- both lists end in a singleton list,
nipkow@13145
   418
- or both lists end in the same list.
wenzelm@13142
   419
*}
wenzelm@13142
   420
wenzelm@13142
   421
ML_setup {*
nipkow@3507
   422
local
nipkow@3507
   423
wenzelm@13122
   424
val append_assoc = thm "append_assoc";
wenzelm@13122
   425
val append_Nil = thm "append_Nil";
wenzelm@13122
   426
val append_Cons = thm "append_Cons";
wenzelm@13122
   427
val append1_eq_conv = thm "append1_eq_conv";
wenzelm@13122
   428
val append_same_eq = thm "append_same_eq";
wenzelm@13122
   429
wenzelm@13114
   430
fun last (cons as Const("List.list.Cons",_) $ _ $ xs) =
wenzelm@13462
   431
  (case xs of Const("List.list.Nil",_) => cons | _ => last xs)
wenzelm@13462
   432
  | last (Const("List.op @",_) $ _ $ ys) = last ys
wenzelm@13462
   433
  | last t = t;
wenzelm@13114
   434
wenzelm@13114
   435
fun list1 (Const("List.list.Cons",_) $ _ $ Const("List.list.Nil",_)) = true
wenzelm@13462
   436
  | list1 _ = false;
wenzelm@13114
   437
wenzelm@13114
   438
fun butlast ((cons as Const("List.list.Cons",_) $ x) $ xs) =
wenzelm@13462
   439
  (case xs of Const("List.list.Nil",_) => xs | _ => cons $ butlast xs)
wenzelm@13462
   440
  | butlast ((app as Const("List.op @",_) $ xs) $ ys) = app $ butlast ys
wenzelm@13462
   441
  | butlast xs = Const("List.list.Nil",fastype_of xs);
wenzelm@13114
   442
wenzelm@16973
   443
val rearr_ss = HOL_basic_ss addsimps [append_assoc, append_Nil, append_Cons];
wenzelm@16973
   444
wenzelm@16973
   445
fun list_eq sg ss (F as (eq as Const(_,eqT)) $ lhs $ rhs) =
wenzelm@13462
   446
  let
wenzelm@13462
   447
    val lastl = last lhs and lastr = last rhs;
wenzelm@13462
   448
    fun rearr conv =
wenzelm@13462
   449
      let
wenzelm@13462
   450
        val lhs1 = butlast lhs and rhs1 = butlast rhs;
wenzelm@13462
   451
        val Type(_,listT::_) = eqT
wenzelm@13462
   452
        val appT = [listT,listT] ---> listT
wenzelm@13462
   453
        val app = Const("List.op @",appT)
wenzelm@13462
   454
        val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr)
wenzelm@13480
   455
        val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2));
wenzelm@16973
   456
        val thm = Tactic.prove sg [] [] eq
wenzelm@16973
   457
          (K (simp_tac (Simplifier.inherit_bounds ss rearr_ss) 1));
skalberg@15531
   458
      in SOME ((conv RS (thm RS trans)) RS eq_reflection) end;
wenzelm@13114
   459
wenzelm@13462
   460
  in
wenzelm@13462
   461
    if list1 lastl andalso list1 lastr then rearr append1_eq_conv
wenzelm@13462
   462
    else if lastl aconv lastr then rearr append_same_eq
skalberg@15531
   463
    else NONE
wenzelm@13462
   464
  end;
wenzelm@13462
   465
wenzelm@13114
   466
in
wenzelm@13462
   467
wenzelm@13462
   468
val list_eq_simproc =
wenzelm@13462
   469
  Simplifier.simproc (Theory.sign_of (the_context ())) "list_eq" ["(xs::'a list) = ys"] list_eq;
wenzelm@13462
   470
wenzelm@13114
   471
end;
wenzelm@13114
   472
wenzelm@13114
   473
Addsimprocs [list_eq_simproc];
wenzelm@13114
   474
*}
wenzelm@13114
   475
wenzelm@13114
   476
nipkow@15392
   477
subsubsection {* @{text map} *}
wenzelm@13114
   478
wenzelm@13142
   479
lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs"
nipkow@13145
   480
by (induct xs) simp_all
wenzelm@13114
   481
wenzelm@13142
   482
lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)"
nipkow@13145
   483
by (rule ext, induct_tac xs) auto
wenzelm@13114
   484
wenzelm@13142
   485
lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys"
nipkow@13145
   486
by (induct xs) auto
wenzelm@13114
   487
wenzelm@13142
   488
lemma map_compose: "map (f o g) xs = map f (map g xs)"
nipkow@13145
   489
by (induct xs) (auto simp add: o_def)
wenzelm@13114
   490
wenzelm@13142
   491
lemma rev_map: "rev (map f xs) = map f (rev xs)"
nipkow@13145
   492
by (induct xs) auto
wenzelm@13114
   493
nipkow@13737
   494
lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)"
nipkow@13737
   495
by (induct xs) auto
nipkow@13737
   496
wenzelm@13366
   497
lemma map_cong [recdef_cong]:
nipkow@13145
   498
"xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys"
nipkow@13145
   499
-- {* a congruence rule for @{text map} *}
nipkow@13737
   500
by simp
wenzelm@13114
   501
wenzelm@13142
   502
lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])"
nipkow@13145
   503
by (cases xs) auto
wenzelm@13114
   504
wenzelm@13142
   505
lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])"
nipkow@13145
   506
by (cases xs) auto
wenzelm@13114
   507
nipkow@14025
   508
lemma map_eq_Cons_conv[iff]:
nipkow@14025
   509
 "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)"
nipkow@13145
   510
by (cases xs) auto
wenzelm@13114
   511
nipkow@14025
   512
lemma Cons_eq_map_conv[iff]:
nipkow@14025
   513
 "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)"
nipkow@14025
   514
by (cases ys) auto
nipkow@14025
   515
nipkow@14111
   516
lemma ex_map_conv:
nipkow@14111
   517
  "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)"
nipkow@14111
   518
by(induct ys, auto)
nipkow@14111
   519
nipkow@15110
   520
lemma map_eq_imp_length_eq:
nipkow@15110
   521
  "!!xs. map f xs = map f ys ==> length xs = length ys"
nipkow@15110
   522
apply (induct ys)
nipkow@15110
   523
 apply simp
nipkow@15110
   524
apply(simp (no_asm_use))
nipkow@15110
   525
apply clarify
nipkow@15110
   526
apply(simp (no_asm_use))
nipkow@15110
   527
apply fast
nipkow@15110
   528
done
nipkow@15110
   529
nipkow@15110
   530
lemma map_inj_on:
nipkow@15110
   531
 "[| map f xs = map f ys; inj_on f (set xs Un set ys) |]
nipkow@15110
   532
  ==> xs = ys"
nipkow@15110
   533
apply(frule map_eq_imp_length_eq)
nipkow@15110
   534
apply(rotate_tac -1)
nipkow@15110
   535
apply(induct rule:list_induct2)
nipkow@15110
   536
 apply simp
nipkow@15110
   537
apply(simp)
nipkow@15110
   538
apply (blast intro:sym)
nipkow@15110
   539
done
nipkow@15110
   540
nipkow@15110
   541
lemma inj_on_map_eq_map:
nipkow@15110
   542
 "inj_on f (set xs Un set ys) \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
nipkow@15110
   543
by(blast dest:map_inj_on)
nipkow@15110
   544
wenzelm@13114
   545
lemma map_injective:
nipkow@14338
   546
 "!!xs. map f xs = map f ys ==> inj f ==> xs = ys"
nipkow@14338
   547
by (induct ys) (auto dest!:injD)
wenzelm@13114
   548
nipkow@14339
   549
lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
nipkow@14339
   550
by(blast dest:map_injective)
nipkow@14339
   551
wenzelm@13114
   552
lemma inj_mapI: "inj f ==> inj (map f)"
nipkow@17589
   553
by (iprover dest: map_injective injD intro: inj_onI)
wenzelm@13114
   554
wenzelm@13114
   555
lemma inj_mapD: "inj (map f) ==> inj f"
paulson@14208
   556
apply (unfold inj_on_def, clarify)
nipkow@13145
   557
apply (erule_tac x = "[x]" in ballE)
paulson@14208
   558
 apply (erule_tac x = "[y]" in ballE, simp, blast)
nipkow@13145
   559
apply blast
nipkow@13145
   560
done
wenzelm@13114
   561
nipkow@14339
   562
lemma inj_map[iff]: "inj (map f) = inj f"
nipkow@13145
   563
by (blast dest: inj_mapD intro: inj_mapI)
wenzelm@13114
   564
nipkow@15303
   565
lemma inj_on_mapI: "inj_on f (\<Union>(set ` A)) \<Longrightarrow> inj_on (map f) A"
nipkow@15303
   566
apply(rule inj_onI)
nipkow@15303
   567
apply(erule map_inj_on)
nipkow@15303
   568
apply(blast intro:inj_onI dest:inj_onD)
nipkow@15303
   569
done
nipkow@15303
   570
kleing@14343
   571
lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs"
kleing@14343
   572
by (induct xs, auto)
wenzelm@13114
   573
nipkow@14402
   574
lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs"
nipkow@14402
   575
by (induct xs) auto
nipkow@14402
   576
nipkow@15110
   577
lemma map_fst_zip[simp]:
nipkow@15110
   578
  "length xs = length ys \<Longrightarrow> map fst (zip xs ys) = xs"
nipkow@15110
   579
by (induct rule:list_induct2, simp_all)
nipkow@15110
   580
nipkow@15110
   581
lemma map_snd_zip[simp]:
nipkow@15110
   582
  "length xs = length ys \<Longrightarrow> map snd (zip xs ys) = ys"
nipkow@15110
   583
by (induct rule:list_induct2, simp_all)
nipkow@15110
   584
nipkow@15110
   585
nipkow@15392
   586
subsubsection {* @{text rev} *}
wenzelm@13114
   587
wenzelm@13142
   588
lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs"
nipkow@13145
   589
by (induct xs) auto
wenzelm@13114
   590
wenzelm@13142
   591
lemma rev_rev_ident [simp]: "rev (rev xs) = xs"
nipkow@13145
   592
by (induct xs) auto
wenzelm@13114
   593
kleing@15870
   594
lemma rev_swap: "(rev xs = ys) = (xs = rev ys)"
kleing@15870
   595
by auto
kleing@15870
   596
wenzelm@13142
   597
lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])"
nipkow@13145
   598
by (induct xs) auto
wenzelm@13114
   599
wenzelm@13142
   600
lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])"
nipkow@13145
   601
by (induct xs) auto
wenzelm@13114
   602
kleing@15870
   603
lemma rev_singleton_conv [simp]: "(rev xs = [x]) = (xs = [x])"
kleing@15870
   604
by (cases xs) auto
kleing@15870
   605
kleing@15870
   606
lemma singleton_rev_conv [simp]: "([x] = rev xs) = (xs = [x])"
kleing@15870
   607
by (cases xs) auto
kleing@15870
   608
wenzelm@13142
   609
lemma rev_is_rev_conv [iff]: "!!ys. (rev xs = rev ys) = (xs = ys)"
paulson@14208
   610
apply (induct xs, force)
paulson@14208
   611
apply (case_tac ys, simp, force)
nipkow@13145
   612
done
wenzelm@13114
   613
nipkow@15439
   614
lemma inj_on_rev[iff]: "inj_on rev A"
nipkow@15439
   615
by(simp add:inj_on_def)
nipkow@15439
   616
wenzelm@13366
   617
lemma rev_induct [case_names Nil snoc]:
wenzelm@13366
   618
  "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs"
berghofe@15489
   619
apply(simplesubst rev_rev_ident[symmetric])
nipkow@13145
   620
apply(rule_tac list = "rev xs" in list.induct, simp_all)
nipkow@13145
   621
done
wenzelm@13114
   622
nipkow@13145
   623
ML {* val rev_induct_tac = induct_thm_tac (thm "rev_induct") *}-- "compatibility"
wenzelm@13114
   624
wenzelm@13366
   625
lemma rev_exhaust [case_names Nil snoc]:
wenzelm@13366
   626
  "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P"
nipkow@13145
   627
by (induct xs rule: rev_induct) auto
wenzelm@13114
   628
wenzelm@13366
   629
lemmas rev_cases = rev_exhaust
wenzelm@13366
   630
wenzelm@13114
   631
nipkow@15392
   632
subsubsection {* @{text set} *}
wenzelm@13114
   633
wenzelm@13142
   634
lemma finite_set [iff]: "finite (set xs)"
nipkow@13145
   635
by (induct xs) auto
wenzelm@13114
   636
wenzelm@13142
   637
lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)"
nipkow@13145
   638
by (induct xs) auto
wenzelm@13114
   639
oheimb@14099
   640
lemma hd_in_set: "l = x#xs \<Longrightarrow> x\<in>set l"
paulson@14208
   641
by (case_tac l, auto)
oheimb@14099
   642
wenzelm@13142
   643
lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)"
nipkow@13145
   644
by auto
wenzelm@13114
   645
oheimb@14099
   646
lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" 
oheimb@14099
   647
by auto
oheimb@14099
   648
wenzelm@13142
   649
lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
nipkow@13145
   650
by (induct xs) auto
wenzelm@13114
   651
nipkow@15245
   652
lemma set_empty2[iff]: "({} = set xs) = (xs = [])"
nipkow@15245
   653
by(induct xs) auto
nipkow@15245
   654
wenzelm@13142
   655
lemma set_rev [simp]: "set (rev xs) = set xs"
nipkow@13145
   656
by (induct xs) auto
wenzelm@13114
   657
wenzelm@13142
   658
lemma set_map [simp]: "set (map f xs) = f`(set xs)"
nipkow@13145
   659
by (induct xs) auto
wenzelm@13114
   660
wenzelm@13142
   661
lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
nipkow@13145
   662
by (induct xs) auto
wenzelm@13114
   663
nipkow@15425
   664
lemma set_upt [simp]: "set[i..<j] = {k. i \<le> k \<and> k < j}"
paulson@14208
   665
apply (induct j, simp_all)
paulson@14208
   666
apply (erule ssubst, auto)
nipkow@13145
   667
done
wenzelm@13114
   668
wenzelm@13142
   669
lemma in_set_conv_decomp: "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs)"
paulson@15113
   670
proof (induct xs)
paulson@15113
   671
  case Nil show ?case by simp
paulson@15113
   672
  case (Cons a xs)
paulson@15113
   673
  show ?case
paulson@15113
   674
  proof 
paulson@15113
   675
    assume "x \<in> set (a # xs)"
paulson@15113
   676
    with prems show "\<exists>ys zs. a # xs = ys @ x # zs"
paulson@15113
   677
      by (simp, blast intro: Cons_eq_appendI)
paulson@15113
   678
  next
paulson@15113
   679
    assume "\<exists>ys zs. a # xs = ys @ x # zs"
paulson@15113
   680
    then obtain ys zs where eq: "a # xs = ys @ x # zs" by blast
paulson@15113
   681
    show "x \<in> set (a # xs)" 
paulson@15113
   682
      by (cases ys, auto simp add: eq)
paulson@15113
   683
  qed
paulson@15113
   684
qed
wenzelm@13142
   685
paulson@13508
   686
lemma finite_list: "finite A ==> EX l. set l = A"
paulson@13508
   687
apply (erule finite_induct, auto)
paulson@13508
   688
apply (rule_tac x="x#l" in exI, auto)
paulson@13508
   689
done
paulson@13508
   690
kleing@14388
   691
lemma card_length: "card (set xs) \<le> length xs"
kleing@14388
   692
by (induct xs) (auto simp add: card_insert_if)
wenzelm@13114
   693
paulson@15168
   694
nipkow@15392
   695
subsubsection {* @{text filter} *}
wenzelm@13114
   696
wenzelm@13142
   697
lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys"
nipkow@13145
   698
by (induct xs) auto
wenzelm@13114
   699
nipkow@15305
   700
lemma rev_filter: "rev (filter P xs) = filter P (rev xs)"
nipkow@15305
   701
by (induct xs) simp_all
nipkow@15305
   702
wenzelm@13142
   703
lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs"
nipkow@13145
   704
by (induct xs) auto
wenzelm@13114
   705
nipkow@16998
   706
lemma length_filter_le [simp]: "length (filter P xs) \<le> length xs"
nipkow@16998
   707
by (induct xs) (auto simp add: le_SucI)
nipkow@16998
   708
wenzelm@13142
   709
lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs"
nipkow@13145
   710
by (induct xs) auto
wenzelm@13114
   711
wenzelm@13142
   712
lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []"
nipkow@13145
   713
by (induct xs) auto
wenzelm@13114
   714
nipkow@16998
   715
lemma filter_empty_conv: "(filter P xs = []) = (\<forall>x\<in>set xs. \<not> P x)" 
nipkow@16998
   716
  by (induct xs) simp_all
nipkow@16998
   717
nipkow@16998
   718
lemma filter_id_conv: "(filter P xs = xs) = (\<forall>x\<in>set xs. P x)"
nipkow@16998
   719
apply (induct xs)
nipkow@16998
   720
 apply auto
nipkow@16998
   721
apply(cut_tac P=P and xs=xs in length_filter_le)
nipkow@16998
   722
apply simp
nipkow@16998
   723
done
wenzelm@13114
   724
nipkow@16965
   725
lemma filter_map:
nipkow@16965
   726
  "filter P (map f xs) = map f (filter (P o f) xs)"
nipkow@16965
   727
by (induct xs) simp_all
nipkow@16965
   728
nipkow@16965
   729
lemma length_filter_map[simp]:
nipkow@16965
   730
  "length (filter P (map f xs)) = length(filter (P o f) xs)"
nipkow@16965
   731
by (simp add:filter_map)
nipkow@16965
   732
wenzelm@13142
   733
lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs"
nipkow@13145
   734
by auto
wenzelm@13114
   735
nipkow@15246
   736
lemma length_filter_less:
nipkow@15246
   737
  "\<lbrakk> x : set xs; ~ P x \<rbrakk> \<Longrightarrow> length(filter P xs) < length xs"
nipkow@15246
   738
proof (induct xs)
nipkow@15246
   739
  case Nil thus ?case by simp
nipkow@15246
   740
next
nipkow@15246
   741
  case (Cons x xs) thus ?case
nipkow@15246
   742
    apply (auto split:split_if_asm)
nipkow@15246
   743
    using length_filter_le[of P xs] apply arith
nipkow@15246
   744
  done
nipkow@15246
   745
qed
wenzelm@13114
   746
nipkow@15281
   747
lemma length_filter_conv_card:
nipkow@15281
   748
 "length(filter p xs) = card{i. i < length xs & p(xs!i)}"
nipkow@15281
   749
proof (induct xs)
nipkow@15281
   750
  case Nil thus ?case by simp
nipkow@15281
   751
next
nipkow@15281
   752
  case (Cons x xs)
nipkow@15281
   753
  let ?S = "{i. i < length xs & p(xs!i)}"
nipkow@15281
   754
  have fin: "finite ?S" by(fast intro: bounded_nat_set_is_finite)
nipkow@15281
   755
  show ?case (is "?l = card ?S'")
nipkow@15281
   756
  proof (cases)
nipkow@15281
   757
    assume "p x"
nipkow@15281
   758
    hence eq: "?S' = insert 0 (Suc ` ?S)"
nipkow@15281
   759
      by(auto simp add: nth_Cons image_def split:nat.split elim:lessE)
nipkow@15281
   760
    have "length (filter p (x # xs)) = Suc(card ?S)"
nipkow@15281
   761
      using Cons by simp
nipkow@15281
   762
    also have "\<dots> = Suc(card(Suc ` ?S))" using fin
nipkow@15281
   763
      by (simp add: card_image inj_Suc)
nipkow@15281
   764
    also have "\<dots> = card ?S'" using eq fin
nipkow@15281
   765
      by (simp add:card_insert_if) (simp add:image_def)
nipkow@15281
   766
    finally show ?thesis .
nipkow@15281
   767
  next
nipkow@15281
   768
    assume "\<not> p x"
nipkow@15281
   769
    hence eq: "?S' = Suc ` ?S"
nipkow@15281
   770
      by(auto simp add: nth_Cons image_def split:nat.split elim:lessE)
nipkow@15281
   771
    have "length (filter p (x # xs)) = card ?S"
nipkow@15281
   772
      using Cons by simp
nipkow@15281
   773
    also have "\<dots> = card(Suc ` ?S)" using fin
nipkow@15281
   774
      by (simp add: card_image inj_Suc)
nipkow@15281
   775
    also have "\<dots> = card ?S'" using eq fin
nipkow@15281
   776
      by (simp add:card_insert_if)
nipkow@15281
   777
    finally show ?thesis .
nipkow@15281
   778
  qed
nipkow@15281
   779
qed
nipkow@15281
   780
nipkow@17501
   781
lemma filter_cong:
nipkow@17501
   782
 "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> P x = Q x) \<Longrightarrow> filter P xs = filter Q ys"
nipkow@17501
   783
apply simp
nipkow@17501
   784
apply(erule thin_rl)
nipkow@17501
   785
by (induct ys) simp_all
nipkow@17501
   786
nipkow@15281
   787
nipkow@15392
   788
subsubsection {* @{text concat} *}
wenzelm@13114
   789
wenzelm@13142
   790
lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys"
nipkow@13145
   791
by (induct xs) auto
wenzelm@13114
   792
wenzelm@13142
   793
lemma concat_eq_Nil_conv [iff]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   794
by (induct xss) auto
wenzelm@13114
   795
wenzelm@13142
   796
lemma Nil_eq_concat_conv [iff]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   797
by (induct xss) auto
wenzelm@13114
   798
wenzelm@13142
   799
lemma set_concat [simp]: "set (concat xs) = \<Union>(set ` set xs)"
nipkow@13145
   800
by (induct xs) auto
wenzelm@13114
   801
wenzelm@13142
   802
lemma map_concat: "map f (concat xs) = concat (map (map f) xs)"
nipkow@13145
   803
by (induct xs) auto
wenzelm@13114
   804
wenzelm@13142
   805
lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)"
nipkow@13145
   806
by (induct xs) auto
wenzelm@13114
   807
wenzelm@13142
   808
lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))"
nipkow@13145
   809
by (induct xs) auto
wenzelm@13114
   810
wenzelm@13114
   811
nipkow@15392
   812
subsubsection {* @{text nth} *}
wenzelm@13114
   813
wenzelm@13142
   814
lemma nth_Cons_0 [simp]: "(x # xs)!0 = x"
nipkow@13145
   815
by auto
wenzelm@13114
   816
wenzelm@13142
   817
lemma nth_Cons_Suc [simp]: "(x # xs)!(Suc n) = xs!n"
nipkow@13145
   818
by auto
wenzelm@13114
   819
wenzelm@13142
   820
declare nth.simps [simp del]
wenzelm@13114
   821
wenzelm@13114
   822
lemma nth_append:
nipkow@13145
   823
"!!n. (xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))"
paulson@14208
   824
apply (induct "xs", simp)
paulson@14208
   825
apply (case_tac n, auto)
nipkow@13145
   826
done
wenzelm@13114
   827
nipkow@14402
   828
lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x"
nipkow@14402
   829
by (induct "xs") auto
nipkow@14402
   830
nipkow@14402
   831
lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n"
nipkow@14402
   832
by (induct "xs") auto
nipkow@14402
   833
wenzelm@13142
   834
lemma nth_map [simp]: "!!n. n < length xs ==> (map f xs)!n = f(xs!n)"
paulson@14208
   835
apply (induct xs, simp)
paulson@14208
   836
apply (case_tac n, auto)
nipkow@13145
   837
done
wenzelm@13114
   838
wenzelm@13142
   839
lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
paulson@15251
   840
apply (induct xs, simp, simp)
nipkow@13145
   841
apply safe
paulson@14208
   842
apply (rule_tac x = 0 in exI, simp)
paulson@14208
   843
 apply (rule_tac x = "Suc i" in exI, simp)
paulson@14208
   844
apply (case_tac i, simp)
nipkow@13145
   845
apply (rename_tac j)
paulson@14208
   846
apply (rule_tac x = j in exI, simp)
nipkow@13145
   847
done
wenzelm@13114
   848
nipkow@17501
   849
lemma in_set_conv_nth: "(x \<in> set xs) = (\<exists>i < length xs. xs!i = x)"
nipkow@17501
   850
by(auto simp:set_conv_nth)
nipkow@17501
   851
nipkow@13145
   852
lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)"
nipkow@13145
   853
by (auto simp add: set_conv_nth)
wenzelm@13114
   854
wenzelm@13142
   855
lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs"
nipkow@13145
   856
by (auto simp add: set_conv_nth)
wenzelm@13114
   857
wenzelm@13114
   858
lemma all_nth_imp_all_set:
nipkow@13145
   859
"[| !i < length xs. P(xs!i); x : set xs|] ==> P x"
nipkow@13145
   860
by (auto simp add: set_conv_nth)
wenzelm@13114
   861
wenzelm@13114
   862
lemma all_set_conv_all_nth:
nipkow@13145
   863
"(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))"
nipkow@13145
   864
by (auto simp add: set_conv_nth)
wenzelm@13114
   865
wenzelm@13114
   866
nipkow@15392
   867
subsubsection {* @{text list_update} *}
wenzelm@13114
   868
wenzelm@13142
   869
lemma length_list_update [simp]: "!!i. length(xs[i:=x]) = length xs"
nipkow@13145
   870
by (induct xs) (auto split: nat.split)
wenzelm@13114
   871
wenzelm@13114
   872
lemma nth_list_update:
nipkow@13145
   873
"!!i j. i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)"
nipkow@13145
   874
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
   875
wenzelm@13142
   876
lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x"
nipkow@13145
   877
by (simp add: nth_list_update)
wenzelm@13114
   878
wenzelm@13142
   879
lemma nth_list_update_neq [simp]: "!!i j. i \<noteq> j ==> xs[i:=x]!j = xs!j"
nipkow@13145
   880
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
   881
wenzelm@13142
   882
lemma list_update_overwrite [simp]:
nipkow@13145
   883
"!!i. i < size xs ==> xs[i:=x, i:=y] = xs[i:=y]"
nipkow@13145
   884
by (induct xs) (auto split: nat.split)
wenzelm@13114
   885
nipkow@14402
   886
lemma list_update_id[simp]: "!!i. i < length xs ==> xs[i := xs!i] = xs"
paulson@14208
   887
apply (induct xs, simp)
nipkow@14187
   888
apply(simp split:nat.splits)
nipkow@14187
   889
done
nipkow@14187
   890
nipkow@17501
   891
lemma list_update_beyond[simp]: "\<And>i. length xs \<le> i \<Longrightarrow> xs[i:=x] = xs"
nipkow@17501
   892
apply (induct xs)
nipkow@17501
   893
 apply simp
nipkow@17501
   894
apply (case_tac i)
nipkow@17501
   895
apply simp_all
nipkow@17501
   896
done
nipkow@17501
   897
wenzelm@13114
   898
lemma list_update_same_conv:
nipkow@13145
   899
"!!i. i < length xs ==> (xs[i := x] = xs) = (xs!i = x)"
nipkow@13145
   900
by (induct xs) (auto split: nat.split)
wenzelm@13114
   901
nipkow@14187
   902
lemma list_update_append1:
nipkow@14187
   903
 "!!i. i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys"
paulson@14208
   904
apply (induct xs, simp)
nipkow@14187
   905
apply(simp split:nat.split)
nipkow@14187
   906
done
nipkow@14187
   907
kleing@15868
   908
lemma list_update_append:
kleing@15868
   909
  "!!n. (xs @ ys) [n:= x] = 
kleing@15868
   910
  (if n < length xs then xs[n:= x] @ ys else xs @ (ys [n-length xs:= x]))"
kleing@15868
   911
by (induct xs) (auto split:nat.splits)
kleing@15868
   912
nipkow@14402
   913
lemma list_update_length [simp]:
nipkow@14402
   914
 "(xs @ x # ys)[length xs := y] = (xs @ y # ys)"
nipkow@14402
   915
by (induct xs, auto)
nipkow@14402
   916
wenzelm@13114
   917
lemma update_zip:
nipkow@13145
   918
"!!i xy xs. length xs = length ys ==>
nipkow@13145
   919
(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])"
nipkow@13145
   920
by (induct ys) (auto, case_tac xs, auto split: nat.split)
wenzelm@13114
   921
wenzelm@13114
   922
lemma set_update_subset_insert: "!!i. set(xs[i:=x]) <= insert x (set xs)"
nipkow@13145
   923
by (induct xs) (auto split: nat.split)
wenzelm@13114
   924
wenzelm@13114
   925
lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A"
nipkow@13145
   926
by (blast dest!: set_update_subset_insert [THEN subsetD])
wenzelm@13114
   927
kleing@15868
   928
lemma set_update_memI: "!!n. n < length xs \<Longrightarrow> x \<in> set (xs[n := x])"
kleing@15868
   929
by (induct xs) (auto split:nat.splits)
kleing@15868
   930
wenzelm@13114
   931
nipkow@15392
   932
subsubsection {* @{text last} and @{text butlast} *}
wenzelm@13114
   933
wenzelm@13142
   934
lemma last_snoc [simp]: "last (xs @ [x]) = x"
nipkow@13145
   935
by (induct xs) auto
wenzelm@13114
   936
wenzelm@13142
   937
lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs"
nipkow@13145
   938
by (induct xs) auto
wenzelm@13114
   939
nipkow@14302
   940
lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x"
nipkow@14302
   941
by(simp add:last.simps)
nipkow@14302
   942
nipkow@14302
   943
lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs"
nipkow@14302
   944
by(simp add:last.simps)
nipkow@14302
   945
nipkow@14302
   946
lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)"
nipkow@14302
   947
by (induct xs) (auto)
nipkow@14302
   948
nipkow@14302
   949
lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs"
nipkow@14302
   950
by(simp add:last_append)
nipkow@14302
   951
nipkow@14302
   952
lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys"
nipkow@14302
   953
by(simp add:last_append)
nipkow@14302
   954
nipkow@14302
   955
wenzelm@13142
   956
lemma length_butlast [simp]: "length (butlast xs) = length xs - 1"
nipkow@13145
   957
by (induct xs rule: rev_induct) auto
wenzelm@13114
   958
wenzelm@13114
   959
lemma butlast_append:
nipkow@13145
   960
"!!ys. butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)"
nipkow@13145
   961
by (induct xs) auto
wenzelm@13114
   962
wenzelm@13142
   963
lemma append_butlast_last_id [simp]:
nipkow@13145
   964
"xs \<noteq> [] ==> butlast xs @ [last xs] = xs"
nipkow@13145
   965
by (induct xs) auto
wenzelm@13114
   966
wenzelm@13142
   967
lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs"
nipkow@13145
   968
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
   969
wenzelm@13114
   970
lemma in_set_butlast_appendI:
nipkow@13145
   971
"x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))"
nipkow@13145
   972
by (auto dest: in_set_butlastD simp add: butlast_append)
wenzelm@13114
   973
nipkow@17501
   974
lemma last_drop[simp]: "!!n. n < length xs \<Longrightarrow> last (drop n xs) = last xs"
nipkow@17501
   975
apply (induct xs)
nipkow@17501
   976
 apply simp
nipkow@17501
   977
apply (auto split:nat.split)
nipkow@17501
   978
done
nipkow@17501
   979
nipkow@17589
   980
lemma last_conv_nth: "xs\<noteq>[] \<Longrightarrow> last xs = xs!(length xs - 1)"
nipkow@17589
   981
by(induct xs)(auto simp:neq_Nil_conv)
nipkow@17589
   982
wenzelm@13142
   983
nipkow@15392
   984
subsubsection {* @{text take} and @{text drop} *}
wenzelm@13114
   985
wenzelm@13142
   986
lemma take_0 [simp]: "take 0 xs = []"
nipkow@13145
   987
by (induct xs) auto
wenzelm@13114
   988
wenzelm@13142
   989
lemma drop_0 [simp]: "drop 0 xs = xs"
nipkow@13145
   990
by (induct xs) auto
wenzelm@13114
   991
wenzelm@13142
   992
lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs"
nipkow@13145
   993
by simp
wenzelm@13114
   994
wenzelm@13142
   995
lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs"
nipkow@13145
   996
by simp
wenzelm@13114
   997
wenzelm@13142
   998
declare take_Cons [simp del] and drop_Cons [simp del]
wenzelm@13114
   999
nipkow@15110
  1000
lemma take_Suc: "xs ~= [] ==> take (Suc n) xs = hd xs # take n (tl xs)"
nipkow@15110
  1001
by(clarsimp simp add:neq_Nil_conv)
nipkow@15110
  1002
nipkow@14187
  1003
lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)"
nipkow@14187
  1004
by(cases xs, simp_all)
nipkow@14187
  1005
nipkow@14187
  1006
lemma drop_tl: "!!n. drop n (tl xs) = tl(drop n xs)"
nipkow@14187
  1007
by(induct xs, simp_all add:drop_Cons drop_Suc split:nat.split)
nipkow@14187
  1008
nipkow@14187
  1009
lemma nth_via_drop: "!!n. drop n xs = y#ys \<Longrightarrow> xs!n = y"
paulson@14208
  1010
apply (induct xs, simp)
nipkow@14187
  1011
apply(simp add:drop_Cons nth_Cons split:nat.splits)
nipkow@14187
  1012
done
nipkow@14187
  1013
nipkow@13913
  1014
lemma take_Suc_conv_app_nth:
nipkow@13913
  1015
 "!!i. i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]"
paulson@14208
  1016
apply (induct xs, simp)
paulson@14208
  1017
apply (case_tac i, auto)
nipkow@13913
  1018
done
nipkow@13913
  1019
mehta@14591
  1020
lemma drop_Suc_conv_tl:
mehta@14591
  1021
  "!!i. i < length xs \<Longrightarrow> (xs!i) # (drop (Suc i) xs) = drop i xs"
mehta@14591
  1022
apply (induct xs, simp)
mehta@14591
  1023
apply (case_tac i, auto)
mehta@14591
  1024
done
mehta@14591
  1025
wenzelm@13142
  1026
lemma length_take [simp]: "!!xs. length (take n xs) = min (length xs) n"
nipkow@13145
  1027
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1028
wenzelm@13142
  1029
lemma length_drop [simp]: "!!xs. length (drop n xs) = (length xs - n)"
nipkow@13145
  1030
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1031
wenzelm@13142
  1032
lemma take_all [simp]: "!!xs. length xs <= n ==> take n xs = xs"
nipkow@13145
  1033
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1034
wenzelm@13142
  1035
lemma drop_all [simp]: "!!xs. length xs <= n ==> drop n xs = []"
nipkow@13145
  1036
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1037
wenzelm@13142
  1038
lemma take_append [simp]:
nipkow@13145
  1039
"!!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)"
nipkow@13145
  1040
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1041
wenzelm@13142
  1042
lemma drop_append [simp]:
nipkow@13145
  1043
"!!xs. drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys"
nipkow@13145
  1044
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1045
wenzelm@13142
  1046
lemma take_take [simp]: "!!xs n. take n (take m xs) = take (min n m) xs"
paulson@14208
  1047
apply (induct m, auto)
paulson@14208
  1048
apply (case_tac xs, auto)
nipkow@15236
  1049
apply (case_tac n, auto)
nipkow@13145
  1050
done
wenzelm@13114
  1051
wenzelm@13142
  1052
lemma drop_drop [simp]: "!!xs. drop n (drop m xs) = drop (n + m) xs"
paulson@14208
  1053
apply (induct m, auto)
paulson@14208
  1054
apply (case_tac xs, auto)
nipkow@13145
  1055
done
wenzelm@13114
  1056
wenzelm@13114
  1057
lemma take_drop: "!!xs n. take n (drop m xs) = drop m (take (n + m) xs)"
paulson@14208
  1058
apply (induct m, auto)
paulson@14208
  1059
apply (case_tac xs, auto)
nipkow@13145
  1060
done
wenzelm@13114
  1061
nipkow@14802
  1062
lemma drop_take: "!!m n. drop n (take m xs) = take (m-n) (drop n xs)"
nipkow@14802
  1063
apply(induct xs)
nipkow@14802
  1064
 apply simp
nipkow@14802
  1065
apply(simp add: take_Cons drop_Cons split:nat.split)
nipkow@14802
  1066
done
nipkow@14802
  1067
wenzelm@13142
  1068
lemma append_take_drop_id [simp]: "!!xs. take n xs @ drop n xs = xs"
paulson@14208
  1069
apply (induct n, auto)
paulson@14208
  1070
apply (case_tac xs, auto)
nipkow@13145
  1071
done
wenzelm@13114
  1072
nipkow@15110
  1073
lemma take_eq_Nil[simp]: "!!n. (take n xs = []) = (n = 0 \<or> xs = [])"
nipkow@15110
  1074
apply(induct xs)
nipkow@15110
  1075
 apply simp
nipkow@15110
  1076
apply(simp add:take_Cons split:nat.split)
nipkow@15110
  1077
done
nipkow@15110
  1078
nipkow@15110
  1079
lemma drop_eq_Nil[simp]: "!!n. (drop n xs = []) = (length xs <= n)"
nipkow@15110
  1080
apply(induct xs)
nipkow@15110
  1081
apply simp
nipkow@15110
  1082
apply(simp add:drop_Cons split:nat.split)
nipkow@15110
  1083
done
nipkow@15110
  1084
wenzelm@13114
  1085
lemma take_map: "!!xs. take n (map f xs) = map f (take n xs)"
paulson@14208
  1086
apply (induct n, auto)
paulson@14208
  1087
apply (case_tac xs, auto)
nipkow@13145
  1088
done
wenzelm@13114
  1089
wenzelm@13142
  1090
lemma drop_map: "!!xs. drop n (map f xs) = map f (drop n xs)"
paulson@14208
  1091
apply (induct n, auto)
paulson@14208
  1092
apply (case_tac xs, auto)
nipkow@13145
  1093
done
wenzelm@13114
  1094
wenzelm@13114
  1095
lemma rev_take: "!!i. rev (take i xs) = drop (length xs - i) (rev xs)"
paulson@14208
  1096
apply (induct xs, auto)
paulson@14208
  1097
apply (case_tac i, auto)
nipkow@13145
  1098
done
wenzelm@13114
  1099
wenzelm@13114
  1100
lemma rev_drop: "!!i. rev (drop i xs) = take (length xs - i) (rev xs)"
paulson@14208
  1101
apply (induct xs, auto)
paulson@14208
  1102
apply (case_tac i, auto)
nipkow@13145
  1103
done
wenzelm@13114
  1104
wenzelm@13142
  1105
lemma nth_take [simp]: "!!n i. i < n ==> (take n xs)!i = xs!i"
paulson@14208
  1106
apply (induct xs, auto)
paulson@14208
  1107
apply (case_tac n, blast)
paulson@14208
  1108
apply (case_tac i, auto)
nipkow@13145
  1109
done
wenzelm@13114
  1110
wenzelm@13142
  1111
lemma nth_drop [simp]:
nipkow@13145
  1112
"!!xs i. n + i <= length xs ==> (drop n xs)!i = xs!(n + i)"
paulson@14208
  1113
apply (induct n, auto)
paulson@14208
  1114
apply (case_tac xs, auto)
nipkow@13145
  1115
done
nipkow@3507
  1116
nipkow@14025
  1117
lemma set_take_subset: "\<And>n. set(take n xs) \<subseteq> set xs"
nipkow@14025
  1118
by(induct xs)(auto simp:take_Cons split:nat.split)
nipkow@14025
  1119
nipkow@14025
  1120
lemma set_drop_subset: "\<And>n. set(drop n xs) \<subseteq> set xs"
nipkow@14025
  1121
by(induct xs)(auto simp:drop_Cons split:nat.split)
nipkow@14025
  1122
nipkow@14187
  1123
lemma in_set_takeD: "x : set(take n xs) \<Longrightarrow> x : set xs"
nipkow@14187
  1124
using set_take_subset by fast
nipkow@14187
  1125
nipkow@14187
  1126
lemma in_set_dropD: "x : set(drop n xs) \<Longrightarrow> x : set xs"
nipkow@14187
  1127
using set_drop_subset by fast
nipkow@14187
  1128
wenzelm@13114
  1129
lemma append_eq_conv_conj:
nipkow@13145
  1130
"!!zs. (xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)"
paulson@14208
  1131
apply (induct xs, simp, clarsimp)
paulson@14208
  1132
apply (case_tac zs, auto)
nipkow@13145
  1133
done
wenzelm@13142
  1134
paulson@14050
  1135
lemma take_add [rule_format]: 
paulson@14050
  1136
    "\<forall>i. i+j \<le> length(xs) --> take (i+j) xs = take i xs @ take j (drop i xs)"
paulson@14050
  1137
apply (induct xs, auto) 
paulson@14050
  1138
apply (case_tac i, simp_all) 
paulson@14050
  1139
done
paulson@14050
  1140
nipkow@14300
  1141
lemma append_eq_append_conv_if:
nipkow@14300
  1142
 "!! ys\<^isub>1. (xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>1 @ ys\<^isub>2) =
nipkow@14300
  1143
  (if size xs\<^isub>1 \<le> size ys\<^isub>1
nipkow@14300
  1144
   then xs\<^isub>1 = take (size xs\<^isub>1) ys\<^isub>1 \<and> xs\<^isub>2 = drop (size xs\<^isub>1) ys\<^isub>1 @ ys\<^isub>2
nipkow@14300
  1145
   else take (size ys\<^isub>1) xs\<^isub>1 = ys\<^isub>1 \<and> drop (size ys\<^isub>1) xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>2)"
nipkow@14300
  1146
apply(induct xs\<^isub>1)
nipkow@14300
  1147
 apply simp
nipkow@14300
  1148
apply(case_tac ys\<^isub>1)
nipkow@14300
  1149
apply simp_all
nipkow@14300
  1150
done
nipkow@14300
  1151
nipkow@15110
  1152
lemma take_hd_drop:
nipkow@15110
  1153
  "!!n. n < length xs \<Longrightarrow> take n xs @ [hd (drop n xs)] = take (n+1) xs"
nipkow@15110
  1154
apply(induct xs)
nipkow@15110
  1155
apply simp
nipkow@15110
  1156
apply(simp add:drop_Cons split:nat.split)
nipkow@15110
  1157
done
nipkow@15110
  1158
nipkow@17501
  1159
lemma id_take_nth_drop:
nipkow@17501
  1160
 "i < length xs \<Longrightarrow> xs = take i xs @ xs!i # drop (Suc i) xs" 
nipkow@17501
  1161
proof -
nipkow@17501
  1162
  assume si: "i < length xs"
nipkow@17501
  1163
  hence "xs = take (Suc i) xs @ drop (Suc i) xs" by auto
nipkow@17501
  1164
  moreover
nipkow@17501
  1165
  from si have "take (Suc i) xs = take i xs @ [xs!i]"
nipkow@17501
  1166
    apply (rule_tac take_Suc_conv_app_nth) by arith
nipkow@17501
  1167
  ultimately show ?thesis by auto
nipkow@17501
  1168
qed
nipkow@17501
  1169
  
nipkow@17501
  1170
lemma upd_conv_take_nth_drop:
nipkow@17501
  1171
 "i < length xs \<Longrightarrow> xs[i:=a] = take i xs @ a # drop (Suc i) xs"
nipkow@17501
  1172
proof -
nipkow@17501
  1173
  assume i: "i < length xs"
nipkow@17501
  1174
  have "xs[i:=a] = (take i xs @ xs!i # drop (Suc i) xs)[i:=a]"
nipkow@17501
  1175
    by(rule arg_cong[OF id_take_nth_drop[OF i]])
nipkow@17501
  1176
  also have "\<dots> = take i xs @ a # drop (Suc i) xs"
nipkow@17501
  1177
    using i by (simp add: list_update_append)
nipkow@17501
  1178
  finally show ?thesis .
nipkow@17501
  1179
qed
nipkow@17501
  1180
wenzelm@13114
  1181
nipkow@15392
  1182
subsubsection {* @{text takeWhile} and @{text dropWhile} *}
wenzelm@13114
  1183
wenzelm@13142
  1184
lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs"
nipkow@13145
  1185
by (induct xs) auto
wenzelm@13114
  1186
wenzelm@13142
  1187
lemma takeWhile_append1 [simp]:
nipkow@13145
  1188
"[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs"
nipkow@13145
  1189
by (induct xs) auto
wenzelm@13114
  1190
wenzelm@13142
  1191
lemma takeWhile_append2 [simp]:
nipkow@13145
  1192
"(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys"
nipkow@13145
  1193
by (induct xs) auto
wenzelm@13114
  1194
wenzelm@13142
  1195
lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs"
nipkow@13145
  1196
by (induct xs) auto
wenzelm@13114
  1197
wenzelm@13142
  1198
lemma dropWhile_append1 [simp]:
nipkow@13145
  1199
"[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys"
nipkow@13145
  1200
by (induct xs) auto
wenzelm@13114
  1201
wenzelm@13142
  1202
lemma dropWhile_append2 [simp]:
nipkow@13145
  1203
"(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys"
nipkow@13145
  1204
by (induct xs) auto
wenzelm@13114
  1205
wenzelm@13142
  1206
lemma set_take_whileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x"
nipkow@13145
  1207
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
  1208
nipkow@13913
  1209
lemma takeWhile_eq_all_conv[simp]:
nipkow@13913
  1210
 "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
  1211
by(induct xs, auto)
nipkow@13913
  1212
nipkow@13913
  1213
lemma dropWhile_eq_Nil_conv[simp]:
nipkow@13913
  1214
 "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
  1215
by(induct xs, auto)
nipkow@13913
  1216
nipkow@13913
  1217
lemma dropWhile_eq_Cons_conv:
nipkow@13913
  1218
 "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys & \<not> P y)"
nipkow@13913
  1219
by(induct xs, auto)
nipkow@13913
  1220
nipkow@17501
  1221
text{* The following two lemmmas could be generalized to an arbitrary
nipkow@17501
  1222
property. *}
nipkow@17501
  1223
nipkow@17501
  1224
lemma takeWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow>
nipkow@17501
  1225
 takeWhile (\<lambda>y. y \<noteq> x) (rev xs) = rev (tl (dropWhile (\<lambda>y. y \<noteq> x) xs))"
nipkow@17501
  1226
by(induct xs) (auto simp: takeWhile_tail[where l="[]"])
nipkow@17501
  1227
nipkow@17501
  1228
lemma dropWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow>
nipkow@17501
  1229
  dropWhile (\<lambda>y. y \<noteq> x) (rev xs) = x # rev (takeWhile (\<lambda>y. y \<noteq> x) xs)"
nipkow@17501
  1230
apply(induct xs)
nipkow@17501
  1231
 apply simp
nipkow@17501
  1232
apply auto
nipkow@17501
  1233
apply(subst dropWhile_append2)
nipkow@17501
  1234
apply auto
nipkow@17501
  1235
done
nipkow@17501
  1236
wenzelm@13114
  1237
nipkow@15392
  1238
subsubsection {* @{text zip} *}
wenzelm@13114
  1239
wenzelm@13142
  1240
lemma zip_Nil [simp]: "zip [] ys = []"
nipkow@13145
  1241
by (induct ys) auto
wenzelm@13114
  1242
wenzelm@13142
  1243
lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys"
nipkow@13145
  1244
by simp
wenzelm@13114
  1245
wenzelm@13142
  1246
declare zip_Cons [simp del]
wenzelm@13114
  1247
nipkow@15281
  1248
lemma zip_Cons1:
nipkow@15281
  1249
 "zip (x#xs) ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x,y)#zip xs ys)"
nipkow@15281
  1250
by(auto split:list.split)
nipkow@15281
  1251
wenzelm@13142
  1252
lemma length_zip [simp]:
nipkow@13145
  1253
"!!xs. length (zip xs ys) = min (length xs) (length ys)"
paulson@14208
  1254
apply (induct ys, simp)
paulson@14208
  1255
apply (case_tac xs, auto)
nipkow@13145
  1256
done
wenzelm@13114
  1257
wenzelm@13114
  1258
lemma zip_append1:
nipkow@13145
  1259
"!!xs. zip (xs @ ys) zs =
nipkow@13145
  1260
zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)"
paulson@14208
  1261
apply (induct zs, simp)
paulson@14208
  1262
apply (case_tac xs, simp_all)
nipkow@13145
  1263
done
wenzelm@13114
  1264
wenzelm@13114
  1265
lemma zip_append2:
nipkow@13145
  1266
"!!ys. zip xs (ys @ zs) =
nipkow@13145
  1267
zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs"
paulson@14208
  1268
apply (induct xs, simp)
paulson@14208
  1269
apply (case_tac ys, simp_all)
nipkow@13145
  1270
done
wenzelm@13114
  1271
wenzelm@13142
  1272
lemma zip_append [simp]:
wenzelm@13142
  1273
 "[| length xs = length us; length ys = length vs |] ==>
nipkow@13145
  1274
zip (xs@ys) (us@vs) = zip xs us @ zip ys vs"
nipkow@13145
  1275
by (simp add: zip_append1)
wenzelm@13114
  1276
wenzelm@13114
  1277
lemma zip_rev:
nipkow@14247
  1278
"length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)"
nipkow@14247
  1279
by (induct rule:list_induct2, simp_all)
wenzelm@13114
  1280
wenzelm@13142
  1281
lemma nth_zip [simp]:
nipkow@13145
  1282
"!!i xs. [| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)"
paulson@14208
  1283
apply (induct ys, simp)
nipkow@13145
  1284
apply (case_tac xs)
nipkow@13145
  1285
 apply (simp_all add: nth.simps split: nat.split)
nipkow@13145
  1286
done
wenzelm@13114
  1287
wenzelm@13114
  1288
lemma set_zip:
nipkow@13145
  1289
"set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
nipkow@13145
  1290
by (simp add: set_conv_nth cong: rev_conj_cong)
wenzelm@13114
  1291
wenzelm@13114
  1292
lemma zip_update:
nipkow@13145
  1293
"length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]"
nipkow@13145
  1294
by (rule sym, simp add: update_zip)
wenzelm@13114
  1295
wenzelm@13142
  1296
lemma zip_replicate [simp]:
nipkow@13145
  1297
"!!j. zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)"
paulson@14208
  1298
apply (induct i, auto)
paulson@14208
  1299
apply (case_tac j, auto)
nipkow@13145
  1300
done
wenzelm@13114
  1301
wenzelm@13142
  1302
nipkow@15392
  1303
subsubsection {* @{text list_all2} *}
wenzelm@13114
  1304
kleing@14316
  1305
lemma list_all2_lengthD [intro?]: 
kleing@14316
  1306
  "list_all2 P xs ys ==> length xs = length ys"
nipkow@13145
  1307
by (simp add: list_all2_def)
wenzelm@13114
  1308
nipkow@17090
  1309
lemma list_all2_Nil [iff,code]: "list_all2 P [] ys = (ys = [])"
nipkow@13145
  1310
by (simp add: list_all2_def)
wenzelm@13114
  1311
wenzelm@13142
  1312
lemma list_all2_Nil2[iff]: "list_all2 P xs [] = (xs = [])"
nipkow@13145
  1313
by (simp add: list_all2_def)
wenzelm@13114
  1314
nipkow@17090
  1315
lemma list_all2_Cons [iff,code]:
nipkow@13145
  1316
"list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)"
nipkow@13145
  1317
by (auto simp add: list_all2_def)
wenzelm@13114
  1318
wenzelm@13114
  1319
lemma list_all2_Cons1:
nipkow@13145
  1320
"list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)"
nipkow@13145
  1321
by (cases ys) auto
wenzelm@13114
  1322
wenzelm@13114
  1323
lemma list_all2_Cons2:
nipkow@13145
  1324
"list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)"
nipkow@13145
  1325
by (cases xs) auto
wenzelm@13114
  1326
wenzelm@13142
  1327
lemma list_all2_rev [iff]:
nipkow@13145
  1328
"list_all2 P (rev xs) (rev ys) = list_all2 P xs ys"
nipkow@13145
  1329
by (simp add: list_all2_def zip_rev cong: conj_cong)
wenzelm@13114
  1330
kleing@13863
  1331
lemma list_all2_rev1:
kleing@13863
  1332
"list_all2 P (rev xs) ys = list_all2 P xs (rev ys)"
kleing@13863
  1333
by (subst list_all2_rev [symmetric]) simp
kleing@13863
  1334
wenzelm@13114
  1335
lemma list_all2_append1:
nipkow@13145
  1336
"list_all2 P (xs @ ys) zs =
nipkow@13145
  1337
(EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and>
nipkow@13145
  1338
list_all2 P xs us \<and> list_all2 P ys vs)"
nipkow@13145
  1339
apply (simp add: list_all2_def zip_append1)
nipkow@13145
  1340
apply (rule iffI)
nipkow@13145
  1341
 apply (rule_tac x = "take (length xs) zs" in exI)
nipkow@13145
  1342
 apply (rule_tac x = "drop (length xs) zs" in exI)
paulson@14208
  1343
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1344
apply (simp add: ball_Un)
nipkow@13145
  1345
done
wenzelm@13114
  1346
wenzelm@13114
  1347
lemma list_all2_append2:
nipkow@13145
  1348
"list_all2 P xs (ys @ zs) =
nipkow@13145
  1349
(EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and>
nipkow@13145
  1350
list_all2 P us ys \<and> list_all2 P vs zs)"
nipkow@13145
  1351
apply (simp add: list_all2_def zip_append2)
nipkow@13145
  1352
apply (rule iffI)
nipkow@13145
  1353
 apply (rule_tac x = "take (length ys) xs" in exI)
nipkow@13145
  1354
 apply (rule_tac x = "drop (length ys) xs" in exI)
paulson@14208
  1355
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1356
apply (simp add: ball_Un)
nipkow@13145
  1357
done
wenzelm@13114
  1358
kleing@13863
  1359
lemma list_all2_append:
nipkow@14247
  1360
  "length xs = length ys \<Longrightarrow>
nipkow@14247
  1361
  list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)"
nipkow@14247
  1362
by (induct rule:list_induct2, simp_all)
kleing@13863
  1363
kleing@13863
  1364
lemma list_all2_appendI [intro?, trans]:
kleing@13863
  1365
  "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)"
kleing@13863
  1366
  by (simp add: list_all2_append list_all2_lengthD)
kleing@13863
  1367
wenzelm@13114
  1368
lemma list_all2_conv_all_nth:
nipkow@13145
  1369
"list_all2 P xs ys =
nipkow@13145
  1370
(length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))"
nipkow@13145
  1371
by (force simp add: list_all2_def set_zip)
wenzelm@13114
  1372
berghofe@13883
  1373
lemma list_all2_trans:
berghofe@13883
  1374
  assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c"
berghofe@13883
  1375
  shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs"
berghofe@13883
  1376
        (is "!!bs cs. PROP ?Q as bs cs")
berghofe@13883
  1377
proof (induct as)
berghofe@13883
  1378
  fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs"
berghofe@13883
  1379
  show "!!cs. PROP ?Q (x # xs) bs cs"
berghofe@13883
  1380
  proof (induct bs)
berghofe@13883
  1381
    fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs"
berghofe@13883
  1382
    show "PROP ?Q (x # xs) (y # ys) cs"
berghofe@13883
  1383
      by (induct cs) (auto intro: tr I1 I2)
berghofe@13883
  1384
  qed simp
berghofe@13883
  1385
qed simp
berghofe@13883
  1386
kleing@13863
  1387
lemma list_all2_all_nthI [intro?]:
kleing@13863
  1388
  "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b"
kleing@13863
  1389
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1390
paulson@14395
  1391
lemma list_all2I:
paulson@14395
  1392
  "\<forall>x \<in> set (zip a b). split P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b"
paulson@14395
  1393
  by (simp add: list_all2_def)
paulson@14395
  1394
kleing@14328
  1395
lemma list_all2_nthD:
kleing@13863
  1396
  "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
kleing@13863
  1397
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1398
nipkow@14302
  1399
lemma list_all2_nthD2:
nipkow@14302
  1400
  "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
nipkow@14302
  1401
  by (frule list_all2_lengthD) (auto intro: list_all2_nthD)
nipkow@14302
  1402
kleing@13863
  1403
lemma list_all2_map1: 
kleing@13863
  1404
  "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs"
kleing@13863
  1405
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1406
kleing@13863
  1407
lemma list_all2_map2: 
kleing@13863
  1408
  "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs"
kleing@13863
  1409
  by (auto simp add: list_all2_conv_all_nth)
kleing@13863
  1410
kleing@14316
  1411
lemma list_all2_refl [intro?]:
kleing@13863
  1412
  "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs"
kleing@13863
  1413
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1414
kleing@13863
  1415
lemma list_all2_update_cong:
kleing@13863
  1416
  "\<lbrakk> i<size xs; list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1417
  by (simp add: list_all2_conv_all_nth nth_list_update)
kleing@13863
  1418
kleing@13863
  1419
lemma list_all2_update_cong2:
kleing@13863
  1420
  "\<lbrakk>list_all2 P xs ys; P x y; i < length ys\<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1421
  by (simp add: list_all2_lengthD list_all2_update_cong)
kleing@13863
  1422
nipkow@14302
  1423
lemma list_all2_takeI [simp,intro?]:
nipkow@14302
  1424
  "\<And>n ys. list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)"
nipkow@14302
  1425
  apply (induct xs)
nipkow@14302
  1426
   apply simp
nipkow@14302
  1427
  apply (clarsimp simp add: list_all2_Cons1)
nipkow@14302
  1428
  apply (case_tac n)
nipkow@14302
  1429
  apply auto
nipkow@14302
  1430
  done
nipkow@14302
  1431
nipkow@14302
  1432
lemma list_all2_dropI [simp,intro?]:
kleing@13863
  1433
  "\<And>n bs. list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)"
paulson@14208
  1434
  apply (induct as, simp)
kleing@13863
  1435
  apply (clarsimp simp add: list_all2_Cons1)
paulson@14208
  1436
  apply (case_tac n, simp, simp)
kleing@13863
  1437
  done
kleing@13863
  1438
kleing@14327
  1439
lemma list_all2_mono [intro?]:
kleing@13863
  1440
  "\<And>y. list_all2 P x y \<Longrightarrow> (\<And>x y. P x y \<Longrightarrow> Q x y) \<Longrightarrow> list_all2 Q x y"
paulson@14208
  1441
  apply (induct x, simp)
paulson@14208
  1442
  apply (case_tac y, auto)
kleing@13863
  1443
  done
kleing@13863
  1444
wenzelm@13142
  1445
nipkow@15392
  1446
subsubsection {* @{text foldl} and @{text foldr} *}
wenzelm@13142
  1447
wenzelm@13142
  1448
lemma foldl_append [simp]:
nipkow@13145
  1449
"!!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys"
nipkow@13145
  1450
by (induct xs) auto
wenzelm@13142
  1451
nipkow@14402
  1452
lemma foldr_append[simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)"
nipkow@14402
  1453
by (induct xs) auto
nipkow@14402
  1454
nipkow@14402
  1455
lemma foldr_foldl: "foldr f xs a = foldl (%x y. f y x) a (rev xs)"
nipkow@14402
  1456
by (induct xs) auto
nipkow@14402
  1457
nipkow@14402
  1458
lemma foldl_foldr: "foldl f a xs = foldr (%x y. f y x) (rev xs) a"
nipkow@14402
  1459
by (simp add: foldr_foldl [of "%x y. f y x" "rev xs"])
nipkow@14402
  1460
wenzelm@13142
  1461
text {*
nipkow@13145
  1462
Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
nipkow@13145
  1463
difficult to use because it requires an additional transitivity step.
wenzelm@13142
  1464
*}
wenzelm@13142
  1465
wenzelm@13142
  1466
lemma start_le_sum: "!!n::nat. m <= n ==> m <= foldl (op +) n ns"
nipkow@13145
  1467
by (induct ns) auto
wenzelm@13142
  1468
wenzelm@13142
  1469
lemma elem_le_sum: "!!n::nat. n : set ns ==> n <= foldl (op +) 0 ns"
nipkow@13145
  1470
by (force intro: start_le_sum simp add: in_set_conv_decomp)
wenzelm@13142
  1471
wenzelm@13142
  1472
lemma sum_eq_0_conv [iff]:
nipkow@13145
  1473
"!!m::nat. (foldl (op +) m ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))"
nipkow@13145
  1474
by (induct ns) auto
wenzelm@13114
  1475
wenzelm@13114
  1476
nipkow@15392
  1477
subsubsection {* @{text upto} *}
wenzelm@13114
  1478
nipkow@17090
  1479
lemma upt_rec[code]: "[i..<j] = (if i<j then i#[Suc i..<j] else [])"
nipkow@17090
  1480
-- {* simp does not terminate! *}
nipkow@13145
  1481
by (induct j) auto
wenzelm@13142
  1482
nipkow@15425
  1483
lemma upt_conv_Nil [simp]: "j <= i ==> [i..<j] = []"
nipkow@13145
  1484
by (subst upt_rec) simp
wenzelm@13114
  1485
nipkow@15425
  1486
lemma upt_eq_Nil_conv[simp]: "([i..<j] = []) = (j = 0 \<or> j <= i)"
nipkow@15281
  1487
by(induct j)simp_all
nipkow@15281
  1488
nipkow@15281
  1489
lemma upt_eq_Cons_conv:
nipkow@15425
  1490
 "!!x xs. ([i..<j] = x#xs) = (i < j & i = x & [i+1..<j] = xs)"
nipkow@15281
  1491
apply(induct j)
nipkow@15281
  1492
 apply simp
nipkow@15281
  1493
apply(clarsimp simp add: append_eq_Cons_conv)
nipkow@15281
  1494
apply arith
nipkow@15281
  1495
done
nipkow@15281
  1496
nipkow@15425
  1497
lemma upt_Suc_append: "i <= j ==> [i..<(Suc j)] = [i..<j]@[j]"
nipkow@13145
  1498
-- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
nipkow@13145
  1499
by simp
wenzelm@13114
  1500
nipkow@15425
  1501
lemma upt_conv_Cons: "i < j ==> [i..<j] = i # [Suc i..<j]"
nipkow@13145
  1502
apply(rule trans)
nipkow@13145
  1503
apply(subst upt_rec)
paulson@14208
  1504
 prefer 2 apply (rule refl, simp)
nipkow@13145
  1505
done
wenzelm@13114
  1506
nipkow@15425
  1507
lemma upt_add_eq_append: "i<=j ==> [i..<j+k] = [i..<j]@[j..<j+k]"
nipkow@13145
  1508
-- {* LOOPS as a simprule, since @{text "j <= j"}. *}
nipkow@13145
  1509
by (induct k) auto
wenzelm@13114
  1510
nipkow@15425
  1511
lemma length_upt [simp]: "length [i..<j] = j - i"
nipkow@13145
  1512
by (induct j) (auto simp add: Suc_diff_le)
wenzelm@13114
  1513
nipkow@15425
  1514
lemma nth_upt [simp]: "i + k < j ==> [i..<j] ! k = i + k"
nipkow@13145
  1515
apply (induct j)
nipkow@13145
  1516
apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split)
nipkow@13145
  1517
done
wenzelm@13114
  1518
nipkow@15425
  1519
lemma take_upt [simp]: "!!i. i+m <= n ==> take m [i..<n] = [i..<i+m]"
paulson@14208
  1520
apply (induct m, simp)
nipkow@13145
  1521
apply (subst upt_rec)
nipkow@13145
  1522
apply (rule sym)
nipkow@13145
  1523
apply (subst upt_rec)
nipkow@13145
  1524
apply (simp del: upt.simps)
nipkow@13145
  1525
done
nipkow@3507
  1526
nipkow@17501
  1527
lemma drop_upt[simp]: "drop m [i..<j] = [i+m..<j]"
nipkow@17501
  1528
apply(induct j)
nipkow@17501
  1529
apply auto
nipkow@17501
  1530
apply arith
nipkow@17501
  1531
done
nipkow@17501
  1532
nipkow@15425
  1533
lemma map_Suc_upt: "map Suc [m..<n] = [Suc m..n]"
nipkow@13145
  1534
by (induct n) auto
wenzelm@13114
  1535
nipkow@15425
  1536
lemma nth_map_upt: "!!i. i < n-m ==> (map f [m..<n]) ! i = f(m+i)"
nipkow@13145
  1537
apply (induct n m rule: diff_induct)
nipkow@13145
  1538
prefer 3 apply (subst map_Suc_upt[symmetric])
nipkow@13145
  1539
apply (auto simp add: less_diff_conv nth_upt)
nipkow@13145
  1540
done
wenzelm@13114
  1541
berghofe@13883
  1542
lemma nth_take_lemma:
berghofe@13883
  1543
  "!!xs ys. k <= length xs ==> k <= length ys ==>
berghofe@13883
  1544
     (!!i. i < k --> xs!i = ys!i) ==> take k xs = take k ys"
berghofe@13883
  1545
apply (atomize, induct k)
paulson@14208
  1546
apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify)
nipkow@13145
  1547
txt {* Both lists must be non-empty *}
paulson@14208
  1548
apply (case_tac xs, simp)
paulson@14208
  1549
apply (case_tac ys, clarify)
nipkow@13145
  1550
 apply (simp (no_asm_use))
nipkow@13145
  1551
apply clarify
nipkow@13145
  1552
txt {* prenexing's needed, not miniscoping *}
nipkow@13145
  1553
apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps)
nipkow@13145
  1554
apply blast
nipkow@13145
  1555
done
wenzelm@13114
  1556
wenzelm@13114
  1557
lemma nth_equalityI:
wenzelm@13114
  1558
 "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys"
nipkow@13145
  1559
apply (frule nth_take_lemma [OF le_refl eq_imp_le])
nipkow@13145
  1560
apply (simp_all add: take_all)
nipkow@13145
  1561
done
wenzelm@13142
  1562
kleing@13863
  1563
(* needs nth_equalityI *)
kleing@13863
  1564
lemma list_all2_antisym:
kleing@13863
  1565
  "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk> 
kleing@13863
  1566
  \<Longrightarrow> xs = ys"
kleing@13863
  1567
  apply (simp add: list_all2_conv_all_nth) 
paulson@14208
  1568
  apply (rule nth_equalityI, blast, simp)
kleing@13863
  1569
  done
kleing@13863
  1570
wenzelm@13142
  1571
lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys"
nipkow@13145
  1572
-- {* The famous take-lemma. *}
nipkow@13145
  1573
apply (drule_tac x = "max (length xs) (length ys)" in spec)
nipkow@13145
  1574
apply (simp add: le_max_iff_disj take_all)
nipkow@13145
  1575
done
wenzelm@13142
  1576
wenzelm@13142
  1577
nipkow@15302
  1578
lemma take_Cons':
nipkow@15302
  1579
     "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)"
nipkow@15302
  1580
by (cases n) simp_all
nipkow@15302
  1581
nipkow@15302
  1582
lemma drop_Cons':
nipkow@15302
  1583
     "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)"
nipkow@15302
  1584
by (cases n) simp_all
nipkow@15302
  1585
nipkow@15302
  1586
lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))"
nipkow@15302
  1587
by (cases n) simp_all
nipkow@15302
  1588
nipkow@15302
  1589
lemmas [simp] = take_Cons'[of "number_of v",standard]
nipkow@15302
  1590
                drop_Cons'[of "number_of v",standard]
nipkow@15302
  1591
                nth_Cons'[of _ _ "number_of v",standard]
nipkow@15302
  1592
nipkow@15302
  1593
nipkow@15392
  1594
subsubsection {* @{text "distinct"} and @{text remdups} *}
wenzelm@13142
  1595
wenzelm@13142
  1596
lemma distinct_append [simp]:
nipkow@13145
  1597
"distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
nipkow@13145
  1598
by (induct xs) auto
wenzelm@13142
  1599
nipkow@15305
  1600
lemma distinct_rev[simp]: "distinct(rev xs) = distinct xs"
nipkow@15305
  1601
by(induct xs) auto
nipkow@15305
  1602
wenzelm@13142
  1603
lemma set_remdups [simp]: "set (remdups xs) = set xs"
nipkow@13145
  1604
by (induct xs) (auto simp add: insert_absorb)
wenzelm@13142
  1605
wenzelm@13142
  1606
lemma distinct_remdups [iff]: "distinct (remdups xs)"
nipkow@13145
  1607
by (induct xs) auto
wenzelm@13142
  1608
paulson@15072
  1609
lemma remdups_eq_nil_iff [simp]: "(remdups x = []) = (x = [])"
paulson@15251
  1610
  by (induct x, auto) 
paulson@15072
  1611
paulson@15072
  1612
lemma remdups_eq_nil_right_iff [simp]: "([] = remdups x) = (x = [])"
paulson@15251
  1613
  by (induct x, auto)
paulson@15072
  1614
nipkow@15245
  1615
lemma length_remdups_leq[iff]: "length(remdups xs) <= length xs"
nipkow@15245
  1616
by (induct xs) auto
nipkow@15245
  1617
nipkow@15245
  1618
lemma length_remdups_eq[iff]:
nipkow@15245
  1619
  "(length (remdups xs) = length xs) = (remdups xs = xs)"
nipkow@15245
  1620
apply(induct xs)
nipkow@15245
  1621
 apply auto
nipkow@15245
  1622
apply(subgoal_tac "length (remdups xs) <= length xs")
nipkow@15245
  1623
 apply arith
nipkow@15245
  1624
apply(rule length_remdups_leq)
nipkow@15245
  1625
done
nipkow@15245
  1626
wenzelm@13142
  1627
lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)"
nipkow@13145
  1628
by (induct xs) auto
wenzelm@13114
  1629
nipkow@15304
  1630
lemma distinct_map_filterI:
nipkow@15304
  1631
 "distinct(map f xs) \<Longrightarrow> distinct(map f (filter P xs))"
nipkow@15304
  1632
apply(induct xs)
nipkow@15304
  1633
 apply simp
nipkow@15304
  1634
apply force
nipkow@15304
  1635
done
nipkow@15304
  1636
nipkow@17501
  1637
lemma distinct_upt[simp]: "distinct[i..<j]"
nipkow@17501
  1638
by (induct j) auto
nipkow@17501
  1639
nipkow@17501
  1640
lemma distinct_take[simp]: "\<And>i. distinct xs \<Longrightarrow> distinct (take i xs)"
nipkow@17501
  1641
apply(induct xs)
nipkow@17501
  1642
 apply simp
nipkow@17501
  1643
apply (case_tac i)
nipkow@17501
  1644
 apply simp_all
nipkow@17501
  1645
apply(blast dest:in_set_takeD)
nipkow@17501
  1646
done
nipkow@17501
  1647
nipkow@17501
  1648
lemma distinct_drop[simp]: "\<And>i. distinct xs \<Longrightarrow> distinct (drop i xs)"
nipkow@17501
  1649
apply(induct xs)
nipkow@17501
  1650
 apply simp
nipkow@17501
  1651
apply (case_tac i)
nipkow@17501
  1652
 apply simp_all
nipkow@17501
  1653
done
nipkow@17501
  1654
nipkow@17501
  1655
lemma distinct_list_update:
nipkow@17501
  1656
assumes d: "distinct xs" and a: "a \<notin> set xs - {xs!i}"
nipkow@17501
  1657
shows "distinct (xs[i:=a])"
nipkow@17501
  1658
proof (cases "i < length xs")
nipkow@17501
  1659
  case True
nipkow@17501
  1660
  with a have "a \<notin> set (take i xs @ xs ! i # drop (Suc i) xs) - {xs!i}"
nipkow@17501
  1661
    apply (drule_tac id_take_nth_drop) by simp
nipkow@17501
  1662
  with d True show ?thesis
nipkow@17501
  1663
    apply (simp add: upd_conv_take_nth_drop)
nipkow@17501
  1664
    apply (drule subst [OF id_take_nth_drop]) apply assumption
nipkow@17501
  1665
    apply simp apply (cases "a = xs!i") apply simp by blast
nipkow@17501
  1666
next
nipkow@17501
  1667
  case False with d show ?thesis by auto
nipkow@17501
  1668
qed
nipkow@17501
  1669
nipkow@17501
  1670
nipkow@17501
  1671
text {* It is best to avoid this indexed version of distinct, but
nipkow@17501
  1672
sometimes it is useful. *}
nipkow@17501
  1673
wenzelm@13142
  1674
lemma distinct_conv_nth:
nipkow@17501
  1675
"distinct xs = (\<forall>i < size xs. \<forall>j < size xs. i \<noteq> j --> xs!i \<noteq> xs!j)"
paulson@15251
  1676
apply (induct xs, simp, simp)
paulson@14208
  1677
apply (rule iffI, clarsimp)
nipkow@13145
  1678
 apply (case_tac i)
paulson@14208
  1679
apply (case_tac j, simp)
nipkow@13145
  1680
apply (simp add: set_conv_nth)
nipkow@13145
  1681
 apply (case_tac j)
paulson@14208
  1682
apply (clarsimp simp add: set_conv_nth, simp)
nipkow@13145
  1683
apply (rule conjI)
nipkow@13145
  1684
 apply (clarsimp simp add: set_conv_nth)
nipkow@17501
  1685
 apply (erule_tac x = 0 in allE, simp)
paulson@14208
  1686
 apply (erule_tac x = "Suc i" in allE, simp, clarsimp)
nipkow@17501
  1687
apply (erule_tac x = "Suc i" in allE, simp)
paulson@14208
  1688
apply (erule_tac x = "Suc j" in allE, simp)
nipkow@13145
  1689
done
wenzelm@13114
  1690
nipkow@15110
  1691
lemma distinct_card: "distinct xs ==> card (set xs) = size xs"
kleing@14388
  1692
  by (induct xs) auto
kleing@14388
  1693
nipkow@15110
  1694
lemma card_distinct: "card (set xs) = size xs ==> distinct xs"
kleing@14388
  1695
proof (induct xs)
kleing@14388
  1696
  case Nil thus ?case by simp
kleing@14388
  1697
next
kleing@14388
  1698
  case (Cons x xs)
kleing@14388
  1699
  show ?case
kleing@14388
  1700
  proof (cases "x \<in> set xs")
kleing@14388
  1701
    case False with Cons show ?thesis by simp
kleing@14388
  1702
  next
kleing@14388
  1703
    case True with Cons.prems
kleing@14388
  1704
    have "card (set xs) = Suc (length xs)" 
kleing@14388
  1705
      by (simp add: card_insert_if split: split_if_asm)
kleing@14388
  1706
    moreover have "card (set xs) \<le> length xs" by (rule card_length)
kleing@14388
  1707
    ultimately have False by simp
kleing@14388
  1708
    thus ?thesis ..
kleing@14388
  1709
  qed
kleing@14388
  1710
qed
kleing@14388
  1711
nipkow@15110
  1712
lemma inj_on_setI: "distinct(map f xs) ==> inj_on f (set xs)"
nipkow@15110
  1713
apply(induct xs)
nipkow@15110
  1714
 apply simp
nipkow@15110
  1715
apply fastsimp
nipkow@15110
  1716
done
nipkow@15110
  1717
nipkow@15110
  1718
lemma inj_on_set_conv:
nipkow@15110
  1719
 "distinct xs \<Longrightarrow> inj_on f (set xs) = distinct(map f xs)"
nipkow@15110
  1720
apply(induct xs)
nipkow@15110
  1721
 apply simp
nipkow@15110
  1722
apply fastsimp
nipkow@15110
  1723
done
nipkow@15110
  1724
nipkow@15110
  1725
nipkow@15392
  1726
subsubsection {* @{text remove1} *}
nipkow@15110
  1727
nipkow@15110
  1728
lemma set_remove1_subset: "set(remove1 x xs) <= set xs"
nipkow@15110
  1729
apply(induct xs)
nipkow@15110
  1730
 apply simp
nipkow@15110
  1731
apply simp
nipkow@15110
  1732
apply blast
nipkow@15110
  1733
done
nipkow@15110
  1734
nipkow@15110
  1735
lemma [simp]: "distinct xs ==> set(remove1 x xs) = set xs - {x}"
nipkow@15110
  1736
apply(induct xs)
nipkow@15110
  1737
 apply simp
nipkow@15110
  1738
apply simp
nipkow@15110
  1739
apply blast
nipkow@15110
  1740
done
nipkow@15110
  1741
nipkow@15110
  1742
lemma notin_set_remove1[simp]: "x ~: set xs ==> x ~: set(remove1 y xs)"
nipkow@15110
  1743
apply(insert set_remove1_subset)
nipkow@15110
  1744
apply fast
nipkow@15110
  1745
done
nipkow@15110
  1746
nipkow@15110
  1747
lemma distinct_remove1[simp]: "distinct xs ==> distinct(remove1 x xs)"
nipkow@15110
  1748
by (induct xs) simp_all
nipkow@15110
  1749
wenzelm@13114
  1750
nipkow@15392
  1751
subsubsection {* @{text replicate} *}
wenzelm@13114
  1752
wenzelm@13142
  1753
lemma length_replicate [simp]: "length (replicate n x) = n"
nipkow@13145
  1754
by (induct n) auto
nipkow@13124
  1755
wenzelm@13142
  1756
lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)"
nipkow@13145
  1757
by (induct n) auto
wenzelm@13114
  1758
wenzelm@13114
  1759
lemma replicate_app_Cons_same:
nipkow@13145
  1760
"(replicate n x) @ (x # xs) = x # replicate n x @ xs"
nipkow@13145
  1761
by (induct n) auto
wenzelm@13114
  1762
wenzelm@13142
  1763
lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x"
paulson@14208
  1764
apply (induct n, simp)
nipkow@13145
  1765
apply (simp add: replicate_app_Cons_same)
nipkow@13145
  1766
done
wenzelm@13114
  1767
wenzelm@13142
  1768
lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x"
nipkow@13145
  1769
by (induct n) auto
wenzelm@13114
  1770
nipkow@16397
  1771
text{* Courtesy of Matthias Daum: *}
nipkow@16397
  1772
lemma append_replicate_commute:
nipkow@16397
  1773
  "replicate n x @ replicate k x = replicate k x @ replicate n x"
nipkow@16397
  1774
apply (simp add: replicate_add [THEN sym])
nipkow@16397
  1775
apply (simp add: add_commute)
nipkow@16397
  1776
done
nipkow@16397
  1777
wenzelm@13142
  1778
lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x"
nipkow@13145
  1779
by (induct n) auto
wenzelm@13114
  1780
wenzelm@13142
  1781
lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x"
nipkow@13145
  1782
by (induct n) auto
wenzelm@13114
  1783
wenzelm@13142
  1784
lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x"
nipkow@13145
  1785
by (atomize (full), induct n) auto
wenzelm@13114
  1786
wenzelm@13142
  1787
lemma nth_replicate[simp]: "!!i. i < n ==> (replicate n x)!i = x"
paulson@14208
  1788
apply (induct n, simp)
nipkow@13145
  1789
apply (simp add: nth_Cons split: nat.split)
nipkow@13145
  1790
done
wenzelm@13114
  1791
nipkow@16397
  1792
text{* Courtesy of Matthias Daum (2 lemmas): *}
nipkow@16397
  1793
lemma take_replicate[simp]: "take i (replicate k x) = replicate (min i k) x"
nipkow@16397
  1794
apply (case_tac "k \<le> i")
nipkow@16397
  1795
 apply  (simp add: min_def)
nipkow@16397
  1796
apply (drule not_leE)
nipkow@16397
  1797
apply (simp add: min_def)
nipkow@16397
  1798
apply (subgoal_tac "replicate k x = replicate i x @ replicate (k - i) x")
nipkow@16397
  1799
 apply  simp
nipkow@16397
  1800
apply (simp add: replicate_add [symmetric])
nipkow@16397
  1801
done
nipkow@16397
  1802
nipkow@16397
  1803
lemma drop_replicate[simp]: "!!i. drop i (replicate k x) = replicate (k-i) x"
nipkow@16397
  1804
apply (induct k)
nipkow@16397
  1805
 apply simp
nipkow@16397
  1806
apply clarsimp
nipkow@16397
  1807
apply (case_tac i)
nipkow@16397
  1808
 apply simp
nipkow@16397
  1809
apply clarsimp
nipkow@16397
  1810
done
nipkow@16397
  1811
nipkow@16397
  1812
wenzelm@13142
  1813
lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
nipkow@13145
  1814
by (induct n) auto
wenzelm@13114
  1815
wenzelm@13142
  1816
lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
nipkow@13145
  1817
by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc)
wenzelm@13114
  1818
wenzelm@13142
  1819
lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
nipkow@13145
  1820
by auto
wenzelm@13114
  1821
wenzelm@13142
  1822
lemma in_set_replicateD: "x : set (replicate n y) ==> x = y"
nipkow@13145
  1823
by (simp add: set_replicate_conv_if split: split_if_asm)
wenzelm@13114
  1824
wenzelm@13114
  1825
nipkow@15392
  1826
subsubsection{*@{text rotate1} and @{text rotate}*}
nipkow@15302
  1827
nipkow@15302
  1828
lemma rotate_simps[simp]: "rotate1 [] = [] \<and> rotate1 (x#xs) = xs @ [x]"
nipkow@15302
  1829
by(simp add:rotate1_def)
nipkow@15302
  1830
nipkow@15302
  1831
lemma rotate0[simp]: "rotate 0 = id"
nipkow@15302
  1832
by(simp add:rotate_def)
nipkow@15302
  1833
nipkow@15302
  1834
lemma rotate_Suc[simp]: "rotate (Suc n) xs = rotate1(rotate n xs)"
nipkow@15302
  1835
by(simp add:rotate_def)
nipkow@15302
  1836
nipkow@15302
  1837
lemma rotate_add:
nipkow@15302
  1838
  "rotate (m+n) = rotate m o rotate n"
nipkow@15302
  1839
by(simp add:rotate_def funpow_add)
nipkow@15302
  1840
nipkow@15302
  1841
lemma rotate_rotate: "rotate m (rotate n xs) = rotate (m+n) xs"
nipkow@15302
  1842
by(simp add:rotate_add)
nipkow@15302
  1843
nipkow@15302
  1844
lemma rotate1_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate1 xs = xs"
nipkow@15302
  1845
by(cases xs) simp_all
nipkow@15302
  1846
nipkow@15302
  1847
lemma rotate_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate n xs = xs"
nipkow@15302
  1848
apply(induct n)
nipkow@15302
  1849
 apply simp
nipkow@15302
  1850
apply (simp add:rotate_def)
nipkow@13145
  1851
done
wenzelm@13114
  1852
nipkow@15302
  1853
lemma rotate1_hd_tl: "xs \<noteq> [] \<Longrightarrow> rotate1 xs = tl xs @ [hd xs]"
nipkow@15302
  1854
by(simp add:rotate1_def split:list.split)
nipkow@15302
  1855
nipkow@15302
  1856
lemma rotate_drop_take:
nipkow@15302
  1857
  "rotate n xs = drop (n mod length xs) xs @ take (n mod length xs) xs"
nipkow@15302
  1858
apply(induct n)
nipkow@15302
  1859
 apply simp
nipkow@15302
  1860
apply(simp add:rotate_def)
nipkow@15302
  1861
apply(cases "xs = []")
nipkow@15302
  1862
 apply (simp)
nipkow@15302
  1863
apply(case_tac "n mod length xs = 0")
nipkow@15302
  1864
 apply(simp add:mod_Suc)
nipkow@15302
  1865
 apply(simp add: rotate1_hd_tl drop_Suc take_Suc)
nipkow@15302
  1866
apply(simp add:mod_Suc rotate1_hd_tl drop_Suc[symmetric] drop_tl[symmetric]
nipkow@15302
  1867
                take_hd_drop linorder_not_le)
nipkow@13145
  1868
done
wenzelm@13114
  1869
nipkow@15302
  1870
lemma rotate_conv_mod: "rotate n xs = rotate (n mod length xs) xs"
nipkow@15302
  1871
by(simp add:rotate_drop_take)
nipkow@15302
  1872
nipkow@15302
  1873
lemma rotate_id[simp]: "n mod length xs = 0 \<Longrightarrow> rotate n xs = xs"
nipkow@15302
  1874
by(simp add:rotate_drop_take)
nipkow@15302
  1875
nipkow@15302
  1876
lemma length_rotate1[simp]: "length(rotate1 xs) = length xs"
nipkow@15302
  1877
by(simp add:rotate1_def split:list.split)
nipkow@15302
  1878
nipkow@15302
  1879
lemma length_rotate[simp]: "!!xs. length(rotate n xs) = length xs"
nipkow@15302
  1880
by (induct n) (simp_all add:rotate_def)
nipkow@15302
  1881
nipkow@15302
  1882
lemma distinct1_rotate[simp]: "distinct(rotate1 xs) = distinct xs"
nipkow@15302
  1883
by(simp add:rotate1_def split:list.split) blast
nipkow@15302
  1884
nipkow@15302
  1885
lemma distinct_rotate[simp]: "distinct(rotate n xs) = distinct xs"
nipkow@15302
  1886
by (induct n) (simp_all add:rotate_def)
nipkow@15302
  1887
nipkow@15302
  1888
lemma rotate_map: "rotate n (map f xs) = map f (rotate n xs)"
nipkow@15302
  1889
by(simp add:rotate_drop_take take_map drop_map)
nipkow@15302
  1890
nipkow@15302
  1891
lemma set_rotate1[simp]: "set(rotate1 xs) = set xs"
nipkow@15302
  1892
by(simp add:rotate1_def split:list.split)
nipkow@15302
  1893
nipkow@15302
  1894
lemma set_rotate[simp]: "set(rotate n xs) = set xs"
nipkow@15302
  1895
by (induct n) (simp_all add:rotate_def)
nipkow@15302
  1896
nipkow@15302
  1897
lemma rotate1_is_Nil_conv[simp]: "(rotate1 xs = []) = (xs = [])"
nipkow@15302
  1898
by(simp add:rotate1_def split:list.split)
nipkow@15302
  1899
nipkow@15302
  1900
lemma rotate_is_Nil_conv[simp]: "(rotate n xs = []) = (xs = [])"
nipkow@15302
  1901
by (induct n) (simp_all add:rotate_def)
wenzelm@13114
  1902
nipkow@15439
  1903
lemma rotate_rev:
nipkow@15439
  1904
  "rotate n (rev xs) = rev(rotate (length xs - (n mod length xs)) xs)"
nipkow@15439
  1905
apply(simp add:rotate_drop_take rev_drop rev_take)
nipkow@15439
  1906
apply(cases "length xs = 0")
nipkow@15439
  1907
 apply simp
nipkow@15439
  1908
apply(cases "n mod length xs = 0")
nipkow@15439
  1909
 apply simp
nipkow@15439
  1910
apply(simp add:rotate_drop_take rev_drop rev_take)
nipkow@15439
  1911
done
nipkow@15439
  1912
wenzelm@13114
  1913
nipkow@15392
  1914
subsubsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
wenzelm@13114
  1915
wenzelm@13142
  1916
lemma sublist_empty [simp]: "sublist xs {} = []"
nipkow@13145
  1917
by (auto simp add: sublist_def)
wenzelm@13114
  1918
wenzelm@13142
  1919
lemma sublist_nil [simp]: "sublist [] A = []"
nipkow@13145
  1920
by (auto simp add: sublist_def)
wenzelm@13114
  1921
nipkow@15281
  1922
lemma length_sublist:
nipkow@15281
  1923
  "length(sublist xs I) = card{i. i < length xs \<and> i : I}"
nipkow@15281
  1924
by(simp add: sublist_def length_filter_conv_card cong:conj_cong)
nipkow@15281
  1925
nipkow@15281
  1926
lemma sublist_shift_lemma_Suc:
nipkow@15281
  1927
  "!!is. map fst (filter (%p. P(Suc(snd p))) (zip xs is)) =
nipkow@15281
  1928
         map fst (filter (%p. P(snd p)) (zip xs (map Suc is)))"
nipkow@15281
  1929
apply(induct xs)
nipkow@15281
  1930
 apply simp
nipkow@15281
  1931
apply (case_tac "is")
nipkow@15281
  1932
 apply simp
nipkow@15281
  1933
apply simp
nipkow@15281
  1934
done
nipkow@15281
  1935
wenzelm@13114
  1936
lemma sublist_shift_lemma:
nipkow@15425
  1937
     "map fst [p:zip xs [i..<i + length xs] . snd p : A] =
nipkow@15425
  1938
      map fst [p:zip xs [0..<length xs] . snd p + i : A]"
nipkow@13145
  1939
by (induct xs rule: rev_induct) (simp_all add: add_commute)
wenzelm@13114
  1940
wenzelm@13114
  1941
lemma sublist_append:
paulson@15168
  1942
     "sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
nipkow@13145
  1943
apply (unfold sublist_def)
paulson@14208
  1944
apply (induct l' rule: rev_induct, simp)
nipkow@13145
  1945
apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma)
nipkow@13145
  1946
apply (simp add: add_commute)
nipkow@13145
  1947
done
wenzelm@13114
  1948
wenzelm@13114
  1949
lemma sublist_Cons:
nipkow@13145
  1950
"sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
nipkow@13145
  1951
apply (induct l rule: rev_induct)
nipkow@13145
  1952
 apply (simp add: sublist_def)
nipkow@13145
  1953
apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append)
nipkow@13145
  1954
done
wenzelm@13114
  1955
nipkow@15281
  1956
lemma set_sublist: "!!I. set(sublist xs I) = {xs!i|i. i<size xs \<and> i \<in> I}"
nipkow@15281
  1957
apply(induct xs)
nipkow@15281
  1958
 apply simp
nipkow@15281
  1959
apply(auto simp add:sublist_Cons nth_Cons split:nat.split elim: lessE)
nipkow@15281
  1960
 apply(erule lessE)
nipkow@15281
  1961
  apply auto
nipkow@15281
  1962
apply(erule lessE)
nipkow@15281
  1963
apply auto
nipkow@15281
  1964
done
nipkow@15281
  1965
nipkow@15281
  1966
lemma set_sublist_subset: "set(sublist xs I) \<subseteq> set xs"
nipkow@15281
  1967
by(auto simp add:set_sublist)
nipkow@15281
  1968
nipkow@15281
  1969
lemma notin_set_sublistI[simp]: "x \<notin> set xs \<Longrightarrow> x \<notin> set(sublist xs I)"
nipkow@15281
  1970
by(auto simp add:set_sublist)
nipkow@15281
  1971
nipkow@15281
  1972
lemma in_set_sublistD: "x \<in> set(sublist xs I) \<Longrightarrow> x \<in> set xs"
nipkow@15281
  1973
by(auto simp add:set_sublist)
nipkow@15281
  1974
wenzelm@13142
  1975
lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])"
nipkow@13145
  1976
by (simp add: sublist_Cons)
wenzelm@13114
  1977
nipkow@15281
  1978
nipkow@15281
  1979
lemma distinct_sublistI[simp]: "!!I. distinct xs \<Longrightarrow> distinct(sublist xs I)"
nipkow@15281
  1980
apply(induct xs)
nipkow@15281
  1981
 apply simp
nipkow@15281
  1982
apply(auto simp add:sublist_Cons)
nipkow@15281
  1983
done
nipkow@15281
  1984
nipkow@15281
  1985
nipkow@15045
  1986
lemma sublist_upt_eq_take [simp]: "sublist l {..<n} = take n l"
paulson@14208
  1987
apply (induct l rule: rev_induct, simp)
nipkow@13145
  1988
apply (simp split: nat_diff_split add: sublist_append)
nipkow@13145
  1989
done
wenzelm@13114
  1990
nipkow@17501
  1991
lemma filter_in_sublist: "\<And>s. distinct xs \<Longrightarrow>
nipkow@17501
  1992
  filter (%x. x \<in> set(sublist xs s)) xs = sublist xs s"
nipkow@17501
  1993
proof (induct xs)
nipkow@17501
  1994
  case Nil thus ?case by simp
nipkow@17501
  1995
next
nipkow@17501
  1996
  case (Cons a xs)
nipkow@17501
  1997
  moreover hence "!x. x: set xs \<longrightarrow> x \<noteq> a" by auto
nipkow@17501
  1998
  ultimately show ?case by(simp add: sublist_Cons cong:filter_cong)
nipkow@17501
  1999
qed
nipkow@17501
  2000
wenzelm@13114
  2001
nipkow@15392
  2002
subsubsection{*Sets of Lists*}
nipkow@15392
  2003
nipkow@15392
  2004
subsubsection {* @{text lists}: the list-forming operator over sets *}
nipkow@15302
  2005
nipkow@15302
  2006
consts lists :: "'a set => 'a list set"
nipkow@15302
  2007
inductive "lists A"
nipkow@15302
  2008
 intros
nipkow@15302
  2009
  Nil [intro!]: "[]: lists A"
nipkow@15302
  2010
  Cons [intro!]: "[| a: A;l: lists A|] ==> a#l : lists A"
nipkow@15302
  2011
nipkow@15302
  2012
inductive_cases listsE [elim!]: "x#l : lists A"
nipkow@15302
  2013
nipkow@15302
  2014
lemma lists_mono [mono]: "A \<subseteq> B ==> lists A \<subseteq> lists B"
nipkow@15302
  2015
by (unfold lists.defs) (blast intro!: lfp_mono)
nipkow@15302
  2016
nipkow@15302
  2017
lemma lists_IntI:
nipkow@15302
  2018
  assumes l: "l: lists A" shows "l: lists B ==> l: lists (A Int B)" using l
nipkow@15302
  2019
  by induct blast+
nipkow@15302
  2020
nipkow@15302
  2021
lemma lists_Int_eq [simp]: "lists (A \<inter> B) = lists A \<inter> lists B"
nipkow@15302
  2022
proof (rule mono_Int [THEN equalityI])
nipkow@15302
  2023
  show "mono lists" by (simp add: mono_def lists_mono)
nipkow@15302
  2024
  show "lists A \<inter> lists B \<subseteq> lists (A \<inter> B)" by (blast intro: lists_IntI)
kleing@14388
  2025
qed
kleing@14388
  2026
nipkow@15302
  2027
lemma append_in_lists_conv [iff]:
nipkow@15302
  2028
     "(xs @ ys : lists A) = (xs : lists A \<and> ys : lists A)"
nipkow@15302
  2029
by (induct xs) auto
nipkow@15302
  2030
nipkow@15302
  2031
lemma in_lists_conv_set: "(xs : lists A) = (\<forall>x \<in> set xs. x : A)"
nipkow@15302
  2032
-- {* eliminate @{text lists} in favour of @{text set} *}
nipkow@15302
  2033
by (induct xs) auto
nipkow@15302
  2034
nipkow@15302
  2035
lemma in_listsD [dest!]: "xs \<in> lists A ==> \<forall>x\<in>set xs. x \<in> A"
nipkow@15302
  2036
by (rule in_lists_conv_set [THEN iffD1])
nipkow@15302
  2037
nipkow@15302
  2038
lemma in_listsI [intro!]: "\<forall>x\<in>set xs. x \<in> A ==> xs \<in> lists A"
nipkow@15302
  2039
by (rule in_lists_conv_set [THEN iffD2])
nipkow@15302
  2040
nipkow@15302
  2041
lemma lists_UNIV [simp]: "lists UNIV = UNIV"
nipkow@15302
  2042
by auto
nipkow@15302
  2043
nipkow@17086
  2044
subsubsection {* For efficiency *}
nipkow@17086
  2045
nipkow@17086
  2046
text{* Only use @{text mem} for generating executable code.  Otherwise
nipkow@17086
  2047
use @{prop"x : set xs"} instead --- it is much easier to reason about.
nipkow@17086
  2048
The same is true for @{const list_all} and @{const list_ex}: write
nipkow@17086
  2049
@{text"\<forall>x\<in>set xs"} and @{text"\<exists>x\<in>set xs"} instead because the HOL
nipkow@17090
  2050
quantifiers are aleady known to the automatic provers. In fact, the declarations in the Code subsection make sure that @{text"\<in>"}, @{text"\<forall>x\<in>set xs"}
nipkow@17090
  2051
and @{text"\<exists>x\<in>set xs"} are implemented efficiently.
nipkow@17086
  2052
nipkow@17086
  2053
The functions @{const itrev}, @{const filtermap} and @{const
nipkow@17086
  2054
map_filter} are just there to generate efficient code. Do not use them
nipkow@17086
  2055
for modelling and proving. *}
nipkow@17086
  2056
nipkow@17086
  2057
lemma mem_iff: "(x mem xs) = (x : set xs)"
nipkow@17086
  2058
by (induct xs) auto
nipkow@17086
  2059
nipkow@17086
  2060
lemma list_inter_conv: "set(list_inter xs ys) = set xs \<inter> set ys"
nipkow@17086
  2061
by (induct xs) auto
nipkow@17086
  2062
nipkow@17086
  2063
lemma list_all_iff: "list_all P xs = (\<forall>x \<in> set xs. P x)"
nipkow@17086
  2064
by (induct xs) auto
nipkow@17086
  2065
nipkow@17086
  2066
lemma list_all_append [simp]:
nipkow@17086
  2067
"list_all P (xs @ ys) = (list_all P xs \<and> list_all P ys)"
nipkow@17086
  2068
by (induct xs) auto
nipkow@17086
  2069
nipkow@17086
  2070
lemma list_all_rev [simp]: "list_all P (rev xs) = list_all P xs"
nipkow@17086
  2071
by (simp add: list_all_iff)
nipkow@17086
  2072
nipkow@17086
  2073
lemma list_ex_iff: "list_ex P xs = (\<exists>x \<in> set xs. P x)"
nipkow@17086
  2074
by (induct xs) simp_all
nipkow@17086
  2075
nipkow@17086
  2076
lemma itrev[simp]: "ALL ys. itrev xs ys = rev xs @ ys"
nipkow@17086
  2077
by (induct xs) simp_all
nipkow@17086
  2078
nipkow@17086
  2079
lemma filtermap_conv:
nipkow@17086
  2080
 "filtermap f xs = map (%x. the(f x)) (filter (%x. f x \<noteq> None) xs)"
nipkow@17086
  2081
by (induct xs) auto
nipkow@17086
  2082
nipkow@17086
  2083
lemma map_filter_conv[simp]: "map_filter f P xs = map f (filter P xs)"
nipkow@17086
  2084
by (induct xs) auto
nipkow@17086
  2085
nipkow@17086
  2086
nipkow@17086
  2087
subsubsection {* Code generation *}
nipkow@17086
  2088
nipkow@17086
  2089
text{* Defaults for generating efficient code for some standard functions. *}
nipkow@17086
  2090
nipkow@17090
  2091
lemmas in_set_code[code unfold] = mem_iff[symmetric, THEN eq_reflection]
nipkow@17090
  2092
nipkow@17090
  2093
lemma rev_code[code unfold]: "rev xs == itrev xs []"
nipkow@17086
  2094
by simp
nipkow@17086
  2095
nipkow@17090
  2096
lemma distinct_Cons_mem[code]: "distinct (x#xs) = (~(x mem xs) \<and> distinct xs)"
nipkow@17086
  2097
by (simp add:mem_iff)
nipkow@17086
  2098
nipkow@17090
  2099
lemma remdups_Cons_mem[code]:
nipkow@17086
  2100
 "remdups (x#xs) = (if x mem xs then remdups xs else x # remdups xs)"
nipkow@17086
  2101
by (simp add:mem_iff)
nipkow@17086
  2102
nipkow@17090
  2103
lemma list_inter_Cons_mem[code]:  "list_inter (a#as) bs =
nipkow@17086
  2104
  (if a mem bs then a#(list_inter as bs) else list_inter as bs)"
nipkow@17086
  2105
by(simp add:mem_iff)
nipkow@17086
  2106
nipkow@17090
  2107
text{* For implementing bounded quantifiers over lists by
nipkow@17090
  2108
@{const list_ex}/@{const list_all}: *}
nipkow@17090
  2109
nipkow@17090
  2110
lemmas list_bex_code[code unfold] = list_ex_iff[symmetric, THEN eq_reflection]
nipkow@17090
  2111
lemmas list_ball_code[code unfold] = list_all_iff[symmetric, THEN eq_reflection]
nipkow@17086
  2112
nipkow@17086
  2113
nipkow@17086
  2114
subsubsection{* Inductive definition for membership *}
nipkow@17086
  2115
nipkow@17086
  2116
consts ListMem :: "('a \<times> 'a list)set"
nipkow@17086
  2117
inductive ListMem
nipkow@17086
  2118
intros
nipkow@17086
  2119
 elem:  "(x,x#xs) \<in> ListMem"
nipkow@17086
  2120
 insert:  "(x,xs) \<in> ListMem \<Longrightarrow> (x,y#xs) \<in> ListMem"
nipkow@17086
  2121
nipkow@17086
  2122
lemma ListMem_iff: "((x,xs) \<in> ListMem) = (x \<in> set xs)"
nipkow@17086
  2123
apply (rule iffI)
nipkow@17086
  2124
 apply (induct set: ListMem)
nipkow@17086
  2125
  apply auto
nipkow@17086
  2126
apply (induct xs)
nipkow@17086
  2127
 apply (auto intro: ListMem.intros)
nipkow@17086
  2128
done
nipkow@17086
  2129
nipkow@17086
  2130
nipkow@17086
  2131
nipkow@15392
  2132
subsubsection{*Lists as Cartesian products*}
nipkow@15302
  2133
nipkow@15302
  2134
text{*@{text"set_Cons A Xs"}: the set of lists with head drawn from
nipkow@15302
  2135
@{term A} and tail drawn from @{term Xs}.*}
nipkow@15302
  2136
nipkow@15302
  2137
constdefs
nipkow@15302
  2138
  set_Cons :: "'a set \<Rightarrow> 'a list set \<Rightarrow> 'a list set"
nipkow@15302
  2139
  "set_Cons A XS == {z. \<exists>x xs. z = x#xs & x \<in> A & xs \<in> XS}"
nipkow@15302
  2140
nipkow@15302
  2141
lemma [simp]: "set_Cons A {[]} = (%x. [x])`A"
nipkow@15302
  2142
by (auto simp add: set_Cons_def)
nipkow@15302
  2143
nipkow@15302
  2144
text{*Yields the set of lists, all of the same length as the argument and
nipkow@15302
  2145
with elements drawn from the corresponding element of the argument.*}
nipkow@15302
  2146
nipkow@15302
  2147
consts  listset :: "'a set list \<Rightarrow> 'a list set"
nipkow@15302
  2148
primrec
nipkow@15302
  2149
   "listset []    = {[]}"
nipkow@15302
  2150
   "listset(A#As) = set_Cons A (listset As)"
nipkow@15302
  2151
nipkow@15302
  2152
paulson@15656
  2153
subsection{*Relations on Lists*}
paulson@15656
  2154
paulson@15656
  2155
subsubsection {* Length Lexicographic Ordering *}
paulson@15656
  2156
paulson@15656
  2157
text{*These orderings preserve well-foundedness: shorter lists 
paulson@15656
  2158
  precede longer lists. These ordering are not used in dictionaries.*}
paulson@15656
  2159
paulson@15656
  2160
consts lexn :: "('a * 'a)set => nat => ('a list * 'a list)set"
paulson@15656
  2161
        --{*The lexicographic ordering for lists of the specified length*}
nipkow@15302
  2162
primrec
paulson@15656
  2163
  "lexn r 0 = {}"
paulson@15656
  2164
  "lexn r (Suc n) =
paulson@15656
  2165
    (prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int
paulson@15656
  2166
    {(xs,ys). length xs = Suc n \<and> length ys = Suc n}"
nipkow@15302
  2167
nipkow@15302
  2168
constdefs
paulson@15656
  2169
  lex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
paulson@15656
  2170
    "lex r == \<Union>n. lexn r n"
paulson@15656
  2171
        --{*Holds only between lists of the same length*}
paulson@15656
  2172
nipkow@15693
  2173
  lenlex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
nipkow@15693
  2174
    "lenlex r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))"
paulson@15656
  2175
        --{*Compares lists by their length and then lexicographically*}
nipkow@15302
  2176
nipkow@15302
  2177
nipkow@15302
  2178
lemma wf_lexn: "wf r ==> wf (lexn r n)"
nipkow@15302
  2179
apply (induct n, simp, simp)
nipkow@15302
  2180
apply(rule wf_subset)
nipkow@15302
  2181
 prefer 2 apply (rule Int_lower1)
nipkow@15302
  2182
apply(rule wf_prod_fun_image)
nipkow@15302
  2183
 prefer 2 apply (rule inj_onI, auto)
nipkow@15302
  2184
done
nipkow@15302
  2185
nipkow@15302
  2186
lemma lexn_length:
nipkow@15302
  2187
     "!!xs ys. (xs, ys) : lexn r n ==> length xs = n \<and> length ys = n"
nipkow@15302
  2188
by (induct n) auto
nipkow@15302
  2189
nipkow@15302
  2190
lemma wf_lex [intro!]: "wf r ==> wf (lex r)"
nipkow@15302
  2191
apply (unfold lex_def)
nipkow@15302
  2192
apply (rule wf_UN)
nipkow@15302
  2193
apply (blast intro: wf_lexn, clarify)
nipkow@15302
  2194
apply (rename_tac m n)
nipkow@15302
  2195
apply (subgoal_tac "m \<noteq> n")
nipkow@15302
  2196
 prefer 2 apply blast
nipkow@15302
  2197
apply (blast dest: lexn_length not_sym)
nipkow@15302
  2198
done
nipkow@15302
  2199
nipkow@15302
  2200
lemma lexn_conv:
paulson@15656
  2201
  "lexn r n =
paulson@15656
  2202
    {(xs,ys). length xs = n \<and> length ys = n \<and>
paulson@15656
  2203
    (\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}"
nipkow@15302
  2204
apply (induct n, simp, blast)
nipkow@15302
  2205
apply (simp add: image_Collect lex_prod_def, safe, blast)
nipkow@15302
  2206
 apply (rule_tac x = "ab # xys" in exI, simp)
nipkow@15302
  2207
apply (case_tac xys, simp_all, blast)
nipkow@15302
  2208
done
nipkow@15302
  2209
nipkow@15302
  2210
lemma lex_conv:
paulson@15656
  2211
  "lex r =
paulson@15656
  2212
    {(xs,ys). length xs = length ys \<and>
paulson@15656
  2213
    (\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}"
nipkow@15302
  2214
by (force simp add: lex_def lexn_conv)
nipkow@15302
  2215
nipkow@15693
  2216
lemma wf_lenlex [intro!]: "wf r ==> wf (lenlex r)"
nipkow@15693
  2217
by (unfold lenlex_def) blast
nipkow@15693
  2218
nipkow@15693
  2219
lemma lenlex_conv:
nipkow@15693
  2220
    "lenlex r = {(xs,ys). length xs < length ys |
paulson@15656
  2221
                 length xs = length ys \<and> (xs, ys) : lex r}"
nipkow@15693
  2222
by (simp add: lenlex_def diag_def lex_prod_def measure_def inv_image_def)
nipkow@15302
  2223
nipkow@15302
  2224
lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r"
nipkow@15302
  2225
by (simp add: lex_conv)
nipkow@15302
  2226
nipkow@15302
  2227
lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r"
nipkow@15302
  2228
by (simp add:lex_conv)
nipkow@15302
  2229
nipkow@15302
  2230
lemma Cons_in_lex [iff]:
paulson@15656
  2231
    "((x # xs, y # ys) : lex r) =
paulson@15656
  2232
      ((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)"
nipkow@15302
  2233
apply (simp add: lex_conv)
nipkow@15302
  2234
apply (rule iffI)
nipkow@15302
  2235
 prefer 2 apply (blast intro: Cons_eq_appendI, clarify)
nipkow@15302
  2236
apply (case_tac xys, simp, simp)
nipkow@15302
  2237
apply blast
nipkow@15302
  2238
done
nipkow@15302
  2239
nipkow@15302
  2240
paulson@15656
  2241
subsubsection {* Lexicographic Ordering *}
paulson@15656
  2242
paulson@15656
  2243
text {* Classical lexicographic ordering on lists, ie. "a" < "ab" < "b".
paulson@15656
  2244
    This ordering does \emph{not} preserve well-foundedness.
nipkow@17090
  2245
     Author: N. Voelker, March 2005. *} 
paulson@15656
  2246
paulson@15656
  2247
constdefs 
paulson@15656
  2248
  lexord :: "('a * 'a)set \<Rightarrow> ('a list * 'a list) set" 
paulson@15656
  2249
  "lexord  r == {(x,y). \<exists> a v. y = x @ a # v \<or> 
paulson@15656
  2250
            (\<exists> u a b v w. (a,b) \<in> r \<and> x = u @ (a # v) \<and> y = u @ (b # w))}"
paulson@15656
  2251
paulson@15656
  2252
lemma lexord_Nil_left[simp]:  "([],y) \<in> lexord r = (\<exists> a x. y = a # x)"
paulson@15656
  2253
  by (unfold lexord_def, induct_tac y, auto) 
paulson@15656
  2254
paulson@15656
  2255
lemma lexord_Nil_right[simp]: "(x,[]) \<notin> lexord r"
paulson@15656
  2256
  by (unfold lexord_def, induct_tac x, auto)
paulson@15656
  2257
paulson@15656
  2258
lemma lexord_cons_cons[simp]:
paulson@15656
  2259
     "((a # x, b # y) \<in> lexord r) = ((a,b)\<in> r | (a = b & (x,y)\<in> lexord r))"
paulson@15656
  2260
  apply (unfold lexord_def, safe, simp_all)
paulson@15656
  2261
  apply (case_tac u, simp, simp)
paulson@15656
  2262
  apply (case_tac u, simp, clarsimp, blast, blast, clarsimp)
paulson@15656
  2263
  apply (erule_tac x="b # u" in allE)
paulson@15656
  2264
  by force
paulson@15656
  2265
paulson@15656
  2266
lemmas lexord_simps = lexord_Nil_left lexord_Nil_right lexord_cons_cons
paulson@15656
  2267
paulson@15656
  2268
lemma lexord_append_rightI: "\<exists> b z. y = b # z \<Longrightarrow> (x, x @ y) \<in> lexord r"
paulson@15656
  2269
  by (induct_tac x, auto)  
paulson@15656
  2270
paulson@15656
  2271
lemma lexord_append_left_rightI:
paulson@15656
  2272
     "(a,b) \<in> r \<Longrightarrow> (u @ a # x, u @ b # y) \<in> lexord r"
paulson@15656
  2273
  by (induct_tac u, auto)
paulson@15656
  2274
paulson@15656
  2275
lemma lexord_append_leftI: " (u,v) \<in> lexord r \<Longrightarrow> (x @ u, x @ v) \<in> lexord r"
paulson@15656
  2276
  by (induct x, auto)
paulson@15656
  2277
paulson@15656
  2278
lemma lexord_append_leftD:
paulson@15656
  2279
     "\<lbrakk> (x @ u, x @ v) \<in> lexord r; (! a. (a,a) \<notin> r) \<rbrakk> \<Longrightarrow> (u,v) \<in> lexord r"
paulson@15656
  2280
  by (erule rev_mp, induct_tac x, auto)
paulson@15656
  2281
paulson@15656
  2282
lemma lexord_take_index_conv: 
paulson@15656
  2283
   "((x,y) : lexord r) = 
paulson@15656
  2284
    ((length x < length y \<and> take (length x) y = x) \<or> 
paulson@15656
  2285
     (\<exists>i. i < min(length x)(length y) & take i x = take i y & (x!i,y!i) \<in> r))"
paulson@15656
  2286
  apply (unfold lexord_def Let_def, clarsimp) 
paulson@15656
  2287
  apply (rule_tac f = "(% a b. a \<or> b)" in arg_cong2)
paulson@15656
  2288
  apply auto 
paulson@15656
  2289
  apply (rule_tac x="hd (drop (length x) y)" in exI)
paulson@15656
  2290
  apply (rule_tac x="tl (drop (length x) y)" in exI)
paulson@15656
  2291
  apply (erule subst, simp add: min_def) 
paulson@15656
  2292
  apply (rule_tac x ="length u" in exI, simp) 
paulson@15656
  2293
  apply (rule_tac x ="take i x" in exI) 
paulson@15656
  2294
  apply (rule_tac x ="x ! i" in exI) 
paulson@15656
  2295
  apply (rule_tac x ="y ! i" in exI, safe) 
paulson@15656
  2296
  apply (rule_tac x="drop (Suc i) x" in exI)
paulson@15656
  2297
  apply (drule sym, simp add: drop_Suc_conv_tl) 
paulson@15656
  2298
  apply (rule_tac x="drop (Suc i) y" in exI)
paulson@15656
  2299
  by (simp add: drop_Suc_conv_tl) 
paulson@15656
  2300
paulson@15656
  2301
-- {* lexord is extension of partial ordering List.lex *} 
paulson@15656
  2302
lemma lexord_lex: " (x,y) \<in> lex r = ((x,y) \<in> lexord r \<and> length x = length y)"
paulson@15656
  2303
  apply (rule_tac x = y in spec) 
paulson@15656
  2304
  apply (induct_tac x, clarsimp) 
paulson@15656
  2305
  by (clarify, case_tac x, simp, force)
paulson@15656
  2306
paulson@15656
  2307
lemma lexord_irreflexive: "(! x. (x,x) \<notin> r) \<Longrightarrow> (y,y) \<notin> lexord r"
paulson@15656
  2308
  by (induct y, auto)
paulson@15656
  2309
paulson@15656
  2310
lemma lexord_trans: 
paulson@15656
  2311
    "\<lbrakk> (x, y) \<in> lexord r; (y, z) \<in> lexord r; trans r \<rbrakk> \<Longrightarrow> (x, z) \<in> lexord r"
paulson@15656
  2312
   apply (erule rev_mp)+
paulson@15656
  2313
   apply (rule_tac x = x in spec) 
paulson@15656
  2314
  apply (rule_tac x = z in spec) 
paulson@15656
  2315
  apply ( induct_tac y, simp, clarify)
paulson@15656
  2316
  apply (case_tac xa, erule ssubst) 
paulson@15656
  2317
  apply (erule allE, erule allE) -- {* avoid simp recursion *} 
paulson@15656
  2318
  apply (case_tac x, simp, simp) 
paulson@15656
  2319
  apply (case_tac x, erule allE, erule allE, simp) 
paulson@15656
  2320
  apply (erule_tac x = listb in allE) 
paulson@15656
  2321
  apply (erule_tac x = lista in allE, simp)
paulson@15656
  2322
  apply (unfold trans_def)
paulson@15656
  2323
  by blast
paulson@15656
  2324
paulson@15656
  2325
lemma lexord_transI:  "trans r \<Longrightarrow> trans (lexord r)"
paulson@15656
  2326
  by (rule transI, drule lexord_trans, blast) 
paulson@15656
  2327
paulson@15656
  2328
lemma lexord_linear: "(! a b. (a,b)\<in> r | a = b | (b,a) \<in> r) \<Longrightarrow> (x,y) : lexord r | x = y | (y,x) : lexord r"
paulson@15656
  2329
  apply (rule_tac x = y in spec) 
paulson@15656
  2330
  apply (induct_tac x, rule allI) 
paulson@15656
  2331
  apply (case_tac x, simp, simp) 
paulson@15656
  2332
  apply (rule allI, case_tac x, simp, simp) 
paulson@15656
  2333
  by blast
paulson@15656
  2334
paulson@15656
  2335
nipkow@15392
  2336
subsubsection{*Lifting a Relation on List Elements to the Lists*}
nipkow@15302
  2337
nipkow@15302
  2338
consts  listrel :: "('a * 'a)set => ('a list * 'a list)set"
nipkow@15302
  2339
nipkow@15302
  2340
inductive "listrel(r)"
nipkow@15302
  2341
 intros
nipkow@15302
  2342
   Nil:  "([],[]) \<in> listrel r"
nipkow@15302
  2343
   Cons: "[| (x,y) \<in> r; (xs,ys) \<in> listrel r |] ==> (x#xs, y#ys) \<in> listrel r"
nipkow@15302
  2344
nipkow@15302
  2345
inductive_cases listrel_Nil1 [elim!]: "([],xs) \<in> listrel r"
nipkow@15302
  2346
inductive_cases listrel_Nil2 [elim!]: "(xs,[]) \<in> listrel r"
nipkow@15302
  2347
inductive_cases listrel_Cons1 [elim!]: "(y#ys,xs) \<in> listrel r"
nipkow@15302
  2348
inductive_cases listrel_Cons2 [elim!]: "(xs,y#ys) \<in> listrel r"
nipkow@15302
  2349
nipkow@15302
  2350
nipkow@15302
  2351
lemma listrel_mono: "r \<subseteq> s \<Longrightarrow> listrel r \<subseteq> listrel s"
nipkow@15302
  2352
apply clarify  
nipkow@15302
  2353
apply (erule listrel.induct)
nipkow@15302
  2354
apply (blast intro: listrel.intros)+
nipkow@15302
  2355
done
nipkow@15302
  2356
nipkow@15302
  2357
lemma listrel_subset: "r \<subseteq> A \<times> A \<Longrightarrow> listrel r \<subseteq> lists A \<times> lists A"
nipkow@15302
  2358
apply clarify 
nipkow@15302
  2359
apply (erule listrel.induct, auto) 
nipkow@15302
  2360
done
nipkow@15302
  2361
nipkow@15302
  2362
lemma listrel_refl: "refl A r \<Longrightarrow> refl (lists A) (listrel r)" 
nipkow@15302
  2363
apply (simp add: refl_def listrel_subset Ball_def)
nipkow@15302
  2364
apply (rule allI) 
nipkow@15302
  2365
apply (induct_tac x) 
nipkow@15302
  2366
apply (auto intro: listrel.intros)
nipkow@15302
  2367
done
nipkow@15302
  2368
nipkow@15302
  2369
lemma listrel_sym: "sym r \<Longrightarrow> sym (listrel r)" 
nipkow@15302
  2370
apply (auto simp add: sym_def)
nipkow@15302
  2371
apply (erule listrel.induct) 
nipkow@15302
  2372
apply (blast intro: listrel.intros)+
nipkow@15302
  2373
done
nipkow@15302
  2374
nipkow@15302
  2375
lemma listrel_trans: "trans r \<Longrightarrow> trans (listrel r)" 
nipkow@15302
  2376
apply (simp add: trans_def)
nipkow@15302
  2377
apply (intro allI) 
nipkow@15302
  2378
apply (rule impI) 
nipkow@15302
  2379
apply (erule listrel.induct) 
nipkow@15302
  2380
apply (blast intro: listrel.intros)+
nipkow@15302
  2381
done
nipkow@15302
  2382
nipkow@15302
  2383
theorem equiv_listrel: "equiv A r \<Longrightarrow> equiv (lists A) (listrel r)"
nipkow@15302
  2384
by (simp add: equiv_def listrel_refl listrel_sym listrel_trans) 
nipkow@15302
  2385
nipkow@15302
  2386
lemma listrel_Nil [simp]: "listrel r `` {[]} = {[]}"
nipkow@15302
  2387
by (blast intro: listrel.intros)
nipkow@15302
  2388
nipkow@15302
  2389
lemma listrel_Cons:
nipkow@15302
  2390
     "listrel r `` {x#xs} = set_Cons (r``{x}) (listrel r `` {xs})";
nipkow@15302
  2391
by (auto simp add: set_Cons_def intro: listrel.intros) 
nipkow@15302
  2392
nipkow@15302
  2393
nipkow@15392
  2394
subsection{*Miscellany*}
nipkow@15392
  2395
nipkow@15392
  2396
subsubsection {* Characters and strings *}
wenzelm@13366
  2397
wenzelm@13366
  2398
datatype nibble =
wenzelm@13366
  2399
    Nibble0 | Nibble1 | Nibble2 | Nibble3 | Nibble4 | Nibble5 | Nibble6 | Nibble7
wenzelm@13366
  2400
  | Nibble8 | Nibble9 | NibbleA | NibbleB | NibbleC | NibbleD | NibbleE | NibbleF
wenzelm@13366
  2401
wenzelm@13366
  2402
datatype char = Char nibble nibble
wenzelm@13366
  2403
  -- "Note: canonical order of character encoding coincides with standard term ordering"
wenzelm@13366
  2404
wenzelm@13366
  2405
types string = "char list"
wenzelm@13366
  2406
wenzelm@13366
  2407
syntax
wenzelm@13366
  2408
  "_Char" :: "xstr => char"    ("CHR _")
wenzelm@13366
  2409
  "_String" :: "xstr => string"    ("_")
wenzelm@13366
  2410
wenzelm@13366
  2411
parse_ast_translation {*
wenzelm@13366
  2412
  let
wenzelm@13366
  2413
    val constants = Syntax.Appl o map Syntax.Constant;
wenzelm@13366
  2414
wenzelm@13366
  2415
    fun mk_nib n = "Nibble" ^ chr (n + (if n <= 9 then ord "0" else ord "A" - 10));
wenzelm@13366
  2416
    fun mk_char c =
wenzelm@13366
  2417
      if Symbol.is_ascii c andalso Symbol.is_printable c then
wenzelm@13366
  2418
        constants ["Char", mk_nib (ord c div 16), mk_nib (ord c mod 16)]
wenzelm@13366
  2419
      else error ("Printable ASCII character expected: " ^ quote c);
wenzelm@13366
  2420
wenzelm@13366
  2421
    fun mk_string [] = Syntax.Constant "Nil"
wenzelm@13366
  2422
      | mk_string (c :: cs) = Syntax.Appl [Syntax.Constant "Cons", mk_char c, mk_string cs];
wenzelm@13366
  2423
wenzelm@13366
  2424
    fun char_ast_tr [Syntax.Variable xstr] =
wenzelm@13366
  2425
        (case Syntax.explode_xstr xstr of
wenzelm@13366
  2426
          [c] => mk_char c
wenzelm@13366
  2427
        | _ => error ("Single character expected: " ^ xstr))
wenzelm@13366
  2428
      | char_ast_tr asts = raise AST ("char_ast_tr", asts);
wenzelm@13366
  2429
wenzelm@13366
  2430
    fun string_ast_tr [Syntax.Variable xstr] =
wenzelm@13366
  2431
        (case Syntax.explode_xstr xstr of
wenzelm@13366
  2432
          [] => constants [Syntax.constrainC, "Nil", "string"]
wenzelm@13366
  2433
        | cs => mk_string cs)
wenzelm@13366
  2434
      | string_ast_tr asts = raise AST ("string_tr", asts);
wenzelm@13366
  2435
  in [("_Char", char_ast_tr), ("_String", string_ast_tr)] end;
wenzelm@13366
  2436
*}
wenzelm@13366
  2437
berghofe@15064
  2438
ML {*
berghofe@15064
  2439
fun int_of_nibble h =
berghofe@15064
  2440
  if "0" <= h andalso h <= "9" then ord h - ord "0"
berghofe@15064
  2441
  else if "A" <= h andalso h <= "F" then ord h - ord "A" + 10
berghofe@15064
  2442
  else raise Match;
berghofe@15064
  2443
berghofe@15064
  2444
fun nibble_of_int i =
berghofe@15064
  2445
  if i <= 9 then chr (ord "0" + i) else chr (ord "A" + i - 10);
berghofe@15064
  2446
*}
berghofe@15064
  2447
wenzelm@13366
  2448
print_ast_translation {*
wenzelm@13366
  2449
  let
wenzelm@13366
  2450
    fun dest_nib (Syntax.Constant c) =
wenzelm@13366
  2451
        (case explode c of
berghofe@15064
  2452
          ["N", "i", "b", "b", "l", "e", h] => int_of_nibble h
wenzelm@13366
  2453
        | _ => raise Match)
wenzelm@13366
  2454
      | dest_nib _ = raise Match;
wenzelm@13366
  2455
wenzelm@13366
  2456
    fun dest_chr c1 c2 =
wenzelm@13366
  2457
      let val c = chr (dest_nib c1 * 16 + dest_nib c2)
wenzelm@13366
  2458
      in if Symbol.is_printable c then c else raise Match end;
wenzelm@13366
  2459
wenzelm@13366
  2460
    fun dest_char (Syntax.Appl [Syntax.Constant "Char", c1, c2]) = dest_chr c1 c2
wenzelm@13366
  2461
      | dest_char _ = raise Match;
wenzelm@13366
  2462
wenzelm@13366
  2463
    fun xstr cs = Syntax.Appl [Syntax.Constant "_xstr", Syntax.Variable (Syntax.implode_xstr cs)];
wenzelm@13366
  2464
wenzelm@13366
  2465
    fun char_ast_tr' [c1, c2] = Syntax.Appl [Syntax.Constant "_Char", xstr [dest_chr c1 c2]]
wenzelm@13366
  2466
      | char_ast_tr' _ = raise Match;
wenzelm@13366
  2467
wenzelm@13366
  2468
    fun list_ast_tr' [args] = Syntax.Appl [Syntax.Constant "_String",
wenzelm@13366
  2469
            xstr (map dest_char (Syntax.unfold_ast "_args" args))]
wenzelm@13366
  2470
      | list_ast_tr' ts = raise Match;
wenzelm@13366
  2471
  in [("Char", char_ast_tr'), ("@list", list_ast_tr')] end;
wenzelm@13366
  2472
*}
wenzelm@13366
  2473
nipkow@15392
  2474
subsubsection {* Code generator setup *}
berghofe@15064
  2475
berghofe@15064
  2476
ML {*
berghofe@15064
  2477
local
berghofe@15064
  2478
berghofe@16634
  2479
fun list_codegen thy defs gr dep thyname b t =
berghofe@16634
  2480
  let val (gr', ps) = foldl_map (Codegen.invoke_codegen thy defs dep thyname false)
berghofe@15064
  2481
    (gr, HOLogic.dest_list t)
skalberg@15531
  2482
  in SOME (gr', Pretty.list "[" "]" ps) end handle TERM _ => NONE;
berghofe@15064
  2483
berghofe@15064
  2484
fun dest_nibble (Const (s, _)) = int_of_nibble (unprefix "List.nibble.Nibble" s)
berghofe@15064
  2485
  | dest_nibble _ = raise Match;
berghofe@15064
  2486
berghofe@16634
  2487
fun char_codegen thy defs gr dep thyname b (Const ("List.char.Char", _) $ c1 $ c2) =
berghofe@15064
  2488
    (let val c = chr (dest_nibble c1 * 16 + dest_nibble c2)
skalberg@15531
  2489
     in if Symbol.is_printable c then SOME (gr, Pretty.quote (Pretty.str c))
skalberg@15531
  2490
       else NONE
skalberg@15570
  2491
     end handle Fail _ => NONE | Match => NONE)
berghofe@16634
  2492
  | char_codegen thy defs gr dep thyname b _ = NONE;
berghofe@15064
  2493
berghofe@15064
  2494
in
berghofe@15064
  2495
berghofe@15064
  2496
val list_codegen_setup =
berghofe@15064
  2497
  [Codegen.add_codegen "list_codegen" list_codegen,
berghofe@15064
  2498
   Codegen.add_codegen "char_codegen" char_codegen];
berghofe@15064
  2499
berghofe@15064
  2500
end;
berghofe@16770
  2501
*}
berghofe@16770
  2502
berghofe@16770
  2503
types_code
berghofe@16770
  2504
  "list" ("_ list")
berghofe@16770
  2505
attach (term_of) {*
berghofe@15064
  2506
val term_of_list = HOLogic.mk_list;
berghofe@16770
  2507
*}
berghofe@16770
  2508
attach (test) {*
berghofe@15064
  2509
fun gen_list' aG i j = frequency
berghofe@15064
  2510
  [(i, fn () => aG j :: gen_list' aG (i-1) j), (1, fn () => [])] ()
berghofe@15064
  2511
and gen_list aG i = gen_list' aG i i;
berghofe@16770
  2512
*}
berghofe@16770
  2513
  "char" ("string")
berghofe@16770
  2514
attach (term_of) {*
berghofe@15064
  2515
val nibbleT = Type ("List.nibble", []);
berghofe@15064
  2516
berghofe@15064
  2517
fun term_of_char c =
berghofe@15064
  2518
  Const ("List.char.Char", nibbleT --> nibbleT --> Type ("List.char", [])) $
berghofe@15064
  2519
    Const ("List.nibble.Nibble" ^ nibble_of_int (ord c div 16), nibbleT) $
berghofe@15064
  2520
    Const ("List.nibble.Nibble" ^ nibble_of_int (ord c mod 16), nibbleT);
berghofe@16770
  2521
*}
berghofe@16770
  2522
attach (test) {*
berghofe@15064
  2523
fun gen_char i = chr (random_range (ord "a") (Int.min (ord "a" + i, ord "z")));
berghofe@15064
  2524
*}
berghofe@15064
  2525
berghofe@15064
  2526
consts_code "Cons" ("(_ ::/ _)")
berghofe@15064
  2527
berghofe@15064
  2528
setup list_codegen_setup
berghofe@15064
  2529
wenzelm@13122
  2530
end