src/HOL/BNF_FP_Base.thy
author desharna
Tue Jun 24 13:48:14 2014 +0200 (2014-06-24)
changeset 57302 58f02fbaa764
parent 57301 7b997028aaac
child 57303 498a62e65f5f
permissions -rw-r--r--
generate 'rel_coinduct' theorem for codatatypes
blanchet@55059
     1
(*  Title:      HOL/BNF_FP_Base.thy
blanchet@53311
     2
    Author:     Lorenz Panny, TU Muenchen
blanchet@49308
     3
    Author:     Dmitriy Traytel, TU Muenchen
blanchet@49308
     4
    Author:     Jasmin Blanchette, TU Muenchen
blanchet@53311
     5
    Copyright   2012, 2013
blanchet@49308
     6
blanchet@55059
     7
Shared fixed point operations on bounded natural functors.
blanchet@49308
     8
*)
blanchet@49308
     9
blanchet@53311
    10
header {* Shared Fixed Point Operations on Bounded Natural Functors *}
blanchet@49308
    11
blanchet@53311
    12
theory BNF_FP_Base
traytel@55936
    13
imports BNF_Comp Basic_BNFs
blanchet@49308
    14
begin
blanchet@49308
    15
blanchet@49590
    16
lemma mp_conj: "(P \<longrightarrow> Q) \<and> R \<Longrightarrow> P \<Longrightarrow> R \<and> Q"
blanchet@49590
    17
by auto
blanchet@49590
    18
desharna@57302
    19
lemma predicate2D_conj: "(P \<le> Q) \<and> R \<Longrightarrow> P x y \<Longrightarrow> R \<and> Q x y"
desharna@57302
    20
  by auto
desharna@57302
    21
blanchet@49591
    22
lemma eq_sym_Unity_conv: "(x = (() = ())) = x"
blanchet@49585
    23
by blast
blanchet@49585
    24
blanchet@55414
    25
lemma case_unit_Unity: "(case u of () \<Rightarrow> f) = f"
blanchet@55642
    26
by (cases u) (hypsubst, rule unit.case)
blanchet@49312
    27
blanchet@55414
    28
lemma case_prod_Pair_iden: "(case p of (x, y) \<Rightarrow> (x, y)) = p"
blanchet@49539
    29
by simp
blanchet@49539
    30
blanchet@49335
    31
lemma unit_all_impI: "(P () \<Longrightarrow> Q ()) \<Longrightarrow> \<forall>x. P x \<longrightarrow> Q x"
blanchet@49335
    32
by simp
blanchet@49335
    33
blanchet@49683
    34
lemma pointfree_idE: "f \<circ> g = id \<Longrightarrow> f (g x) = x"
blanchet@55066
    35
unfolding comp_def fun_eq_iff by simp
blanchet@49312
    36
blanchet@49312
    37
lemma o_bij:
blanchet@49683
    38
  assumes gf: "g \<circ> f = id" and fg: "f \<circ> g = id"
blanchet@49312
    39
  shows "bij f"
blanchet@49312
    40
unfolding bij_def inj_on_def surj_def proof safe
blanchet@49312
    41
  fix a1 a2 assume "f a1 = f a2"
blanchet@49312
    42
  hence "g ( f a1) = g (f a2)" by simp
blanchet@49312
    43
  thus "a1 = a2" using gf unfolding fun_eq_iff by simp
blanchet@49312
    44
next
blanchet@49312
    45
  fix b
blanchet@49312
    46
  have "b = f (g b)"
blanchet@49312
    47
  using fg unfolding fun_eq_iff by simp
blanchet@49312
    48
  thus "EX a. b = f a" by blast
blanchet@49312
    49
qed
blanchet@49312
    50
blanchet@49312
    51
lemma ssubst_mem: "\<lbrakk>t = s; s \<in> X\<rbrakk> \<Longrightarrow> t \<in> X" by simp
blanchet@49312
    52
blanchet@55414
    53
lemma case_sum_step:
blanchet@55414
    54
"case_sum (case_sum f' g') g (Inl p) = case_sum f' g' p"
blanchet@55414
    55
"case_sum f (case_sum f' g') (Inr p) = case_sum f' g' p"
blanchet@49312
    56
by auto
blanchet@49312
    57
blanchet@49312
    58
lemma obj_one_pointE: "\<forall>x. s = x \<longrightarrow> P \<Longrightarrow> P"
blanchet@49312
    59
by blast
blanchet@49312
    60
traytel@55803
    61
lemma type_copy_obj_one_point_absE:
traytel@55811
    62
  assumes "type_definition Rep Abs UNIV" "\<forall>x. s = Abs x \<longrightarrow> P" shows P
traytel@55811
    63
  using type_definition.Rep_inverse[OF assms(1)]
traytel@55811
    64
  by (intro mp[OF spec[OF assms(2), of "Rep s"]]) simp
traytel@55803
    65
blanchet@49312
    66
lemma obj_sumE_f:
traytel@55811
    67
  assumes "\<forall>x. s = f (Inl x) \<longrightarrow> P" "\<forall>x. s = f (Inr x) \<longrightarrow> P"
traytel@55811
    68
  shows "\<forall>x. s = f x \<longrightarrow> P"
traytel@55811
    69
proof
traytel@55811
    70
  fix x from assms show "s = f x \<longrightarrow> P" by (cases x) auto
traytel@55811
    71
qed
blanchet@49312
    72
blanchet@55414
    73
lemma case_sum_if:
blanchet@55414
    74
"case_sum f g (if p then Inl x else Inr y) = (if p then f x else g y)"
blanchet@49312
    75
by simp
blanchet@49312
    76
blanchet@49429
    77
lemma prod_set_simps:
blanchet@49429
    78
"fsts (x, y) = {x}"
blanchet@49429
    79
"snds (x, y) = {y}"
blanchet@49429
    80
unfolding fsts_def snds_def by simp+
blanchet@49429
    81
blanchet@49429
    82
lemma sum_set_simps:
blanchet@49451
    83
"setl (Inl x) = {x}"
blanchet@49451
    84
"setl (Inr x) = {}"
blanchet@49451
    85
"setr (Inl x) = {}"
blanchet@49451
    86
"setr (Inr x) = {x}"
blanchet@49451
    87
unfolding sum_set_defs by simp+
blanchet@49429
    88
desharna@57301
    89
lemma Inl_Inr_False: "(Inl x = Inr y) = False"
desharna@57301
    90
  by simp
desharna@57301
    91
traytel@52505
    92
lemma spec2: "\<forall>x y. P x y \<Longrightarrow> P x y"
traytel@52505
    93
by blast
traytel@52505
    94
blanchet@56640
    95
lemma rewriteR_comp_comp: "\<lbrakk>g \<circ> h = r\<rbrakk> \<Longrightarrow> f \<circ> g \<circ> h = f \<circ> r"
blanchet@55066
    96
  unfolding comp_def fun_eq_iff by auto
traytel@52913
    97
blanchet@56640
    98
lemma rewriteR_comp_comp2: "\<lbrakk>g \<circ> h = r1 \<circ> r2; f \<circ> r1 = l\<rbrakk> \<Longrightarrow> f \<circ> g \<circ> h = l \<circ> r2"
blanchet@55066
    99
  unfolding comp_def fun_eq_iff by auto
traytel@52913
   100
blanchet@56640
   101
lemma rewriteL_comp_comp: "\<lbrakk>f \<circ> g = l\<rbrakk> \<Longrightarrow> f \<circ> (g \<circ> h) = l \<circ> h"
blanchet@55066
   102
  unfolding comp_def fun_eq_iff by auto
traytel@52913
   103
blanchet@56640
   104
lemma rewriteL_comp_comp2: "\<lbrakk>f \<circ> g = l1 \<circ> l2; l2 \<circ> h = r\<rbrakk> \<Longrightarrow> f \<circ> (g \<circ> h) = l1 \<circ> r"
blanchet@55066
   105
  unfolding comp_def fun_eq_iff by auto
traytel@52913
   106
blanchet@56640
   107
lemma convol_o: "<f, g> \<circ> h = <f \<circ> h, g \<circ> h>"
traytel@52913
   108
  unfolding convol_def by auto
traytel@52913
   109
blanchet@56640
   110
lemma map_prod_o_convol: "map_prod h1 h2 \<circ> <f, g> = <h1 \<circ> f, h2 \<circ> g>"
traytel@52913
   111
  unfolding convol_def by auto
traytel@52913
   112
blanchet@55932
   113
lemma map_prod_o_convol_id: "(map_prod f id \<circ> <id , g>) x = <id \<circ> f , g> x"
blanchet@55932
   114
  unfolding map_prod_o_convol id_comp comp_id ..
traytel@52913
   115
blanchet@56640
   116
lemma o_case_sum: "h \<circ> case_sum f g = case_sum (h \<circ> f) (h \<circ> g)"
blanchet@55066
   117
  unfolding comp_def by (auto split: sum.splits)
traytel@52913
   118
blanchet@56640
   119
lemma case_sum_o_map_sum: "case_sum f g \<circ> map_sum h1 h2 = case_sum (f \<circ> h1) (g \<circ> h2)"
blanchet@55066
   120
  unfolding comp_def by (auto split: sum.splits)
traytel@52913
   121
blanchet@56640
   122
lemma case_sum_o_map_sum_id: "(case_sum id g \<circ> map_sum f id) x = case_sum (f \<circ> id) g x"
blanchet@55931
   123
  unfolding case_sum_o_map_sum id_comp comp_id ..
traytel@52913
   124
blanchet@55945
   125
lemma rel_fun_def_butlast:
blanchet@55945
   126
  "rel_fun R (rel_fun S T) f g = (\<forall>x y. R x y \<longrightarrow> (rel_fun S T) (f x) (g y))"
blanchet@55945
   127
  unfolding rel_fun_def ..
traytel@52731
   128
traytel@53105
   129
lemma subst_eq_imp: "(\<forall>a b. a = b \<longrightarrow> P a b) \<equiv> (\<forall>a. P a a)"
traytel@53105
   130
  by auto
traytel@53105
   131
traytel@53105
   132
lemma eq_subset: "op = \<le> (\<lambda>a b. P a b \<or> a = b)"
traytel@53105
   133
  by auto
traytel@53105
   134
blanchet@53308
   135
lemma eq_le_Grp_id_iff: "(op = \<le> Grp (Collect R) id) = (All R)"
blanchet@53308
   136
  unfolding Grp_def id_apply by blast
blanchet@53308
   137
blanchet@53308
   138
lemma Grp_id_mono_subst: "(\<And>x y. Grp P id x y \<Longrightarrow> Grp Q id (f x) (f y)) \<equiv>
blanchet@53308
   139
   (\<And>x. x \<in> P \<Longrightarrow> f x \<in> Q)"
blanchet@53308
   140
  unfolding Grp_def by rule auto
blanchet@53308
   141
traytel@55803
   142
lemma vimage2p_mono: "vimage2p f g R x y \<Longrightarrow> R \<le> S \<Longrightarrow> vimage2p f g S x y"
traytel@55803
   143
  unfolding vimage2p_def by blast
traytel@55803
   144
traytel@55803
   145
lemma vimage2p_refl: "(\<And>x. R x x) \<Longrightarrow> vimage2p f f R x x"
traytel@55803
   146
  unfolding vimage2p_def by auto
traytel@55803
   147
traytel@55803
   148
lemma
traytel@55803
   149
  assumes "type_definition Rep Abs UNIV"
blanchet@56640
   150
  shows type_copy_Rep_o_Abs: "Rep \<circ> Abs = id" and type_copy_Abs_o_Rep: "Abs \<circ> Rep = id"
traytel@55803
   151
  unfolding fun_eq_iff comp_apply id_apply
traytel@55803
   152
    type_definition.Abs_inverse[OF assms UNIV_I] type_definition.Rep_inverse[OF assms] by simp_all
traytel@55803
   153
traytel@55803
   154
lemma type_copy_map_comp0_undo:
traytel@55803
   155
  assumes "type_definition Rep Abs UNIV"
traytel@55803
   156
          "type_definition Rep' Abs' UNIV"
traytel@55803
   157
          "type_definition Rep'' Abs'' UNIV"
blanchet@56640
   158
  shows "Abs' \<circ> M \<circ> Rep'' = (Abs' \<circ> M1 \<circ> Rep) \<circ> (Abs \<circ> M2 \<circ> Rep'') \<Longrightarrow> M1 \<circ> M2 = M"
traytel@55803
   159
  by (rule sym) (auto simp: fun_eq_iff type_definition.Abs_inject[OF assms(2) UNIV_I UNIV_I]
traytel@55803
   160
    type_definition.Abs_inverse[OF assms(1) UNIV_I]
traytel@55803
   161
    type_definition.Abs_inverse[OF assms(3) UNIV_I] dest: spec[of _ "Abs'' x" for x])
traytel@55803
   162
blanchet@55854
   163
lemma vimage2p_id: "vimage2p id id R = R"
blanchet@55854
   164
  unfolding vimage2p_def by auto
blanchet@55854
   165
blanchet@56640
   166
lemma vimage2p_comp: "vimage2p (f1 \<circ> f2) (g1 \<circ> g2) = vimage2p f2 g2 \<circ> vimage2p f1 g1"
traytel@55803
   167
  unfolding fun_eq_iff vimage2p_def o_apply by simp
traytel@55803
   168
blanchet@56650
   169
lemma fun_cong_unused_0: "f = (\<lambda>x. g) \<Longrightarrow> f (\<lambda>x. 0) = g"
blanchet@56650
   170
  by (erule arg_cong)
blanchet@56650
   171
blanchet@56684
   172
lemma inj_on_convol_ident: "inj_on (\<lambda>x. (x, f x)) X"
blanchet@56650
   173
  unfolding inj_on_def by simp
blanchet@56650
   174
blanchet@56650
   175
lemma case_prod_app: "case_prod f x y = case_prod (\<lambda>l r. f l r y) x"
blanchet@56650
   176
  by (case_tac x) simp
blanchet@56650
   177
blanchet@56650
   178
lemma case_sum_map_sum: "case_sum l r (map_sum f g x) = case_sum (l \<circ> f) (r \<circ> g) x"
blanchet@56650
   179
  by (case_tac x) simp+
blanchet@56650
   180
blanchet@56650
   181
lemma case_prod_map_prod: "case_prod h (map_prod f g x) = case_prod (\<lambda>l r. h (f l) (g r)) x"
blanchet@56650
   182
  by (case_tac x) simp+
blanchet@56650
   183
blanchet@56650
   184
lemma prod_inj_map: "inj f \<Longrightarrow> inj g \<Longrightarrow> inj (map_prod f g)"
blanchet@56650
   185
  by (simp add: inj_on_def)
blanchet@56650
   186
blanchet@55062
   187
ML_file "Tools/BNF/bnf_fp_util.ML"
blanchet@55062
   188
ML_file "Tools/BNF/bnf_fp_def_sugar_tactics.ML"
blanchet@56650
   189
ML_file "Tools/BNF/bnf_lfp_size.ML"
blanchet@55062
   190
ML_file "Tools/BNF/bnf_fp_def_sugar.ML"
blanchet@55062
   191
ML_file "Tools/BNF/bnf_fp_n2m_tactics.ML"
blanchet@55062
   192
ML_file "Tools/BNF/bnf_fp_n2m.ML"
blanchet@55062
   193
ML_file "Tools/BNF/bnf_fp_n2m_sugar.ML"
blanchet@55702
   194
blanchet@56650
   195
ML_file "Tools/Function/size.ML"
blanchet@56650
   196
setup Size.setup
blanchet@56650
   197
blanchet@56650
   198
lemma size_bool[code]: "size (b\<Colon>bool) = 0"
blanchet@56650
   199
  by (cases b) auto
blanchet@56650
   200
blanchet@56846
   201
lemma size_nat[simp, code]: "size (n\<Colon>nat) = n"
blanchet@56650
   202
  by (induct n) simp_all
blanchet@56650
   203
blanchet@56650
   204
declare prod.size[no_atp]
blanchet@56650
   205
blanchet@56846
   206
lemma size_sum_o_map: "size_sum g1 g2 \<circ> map_sum f1 f2 = size_sum (g1 \<circ> f1) (g2 \<circ> f2)"
blanchet@56650
   207
  by (rule ext) (case_tac x, auto)
blanchet@56650
   208
blanchet@56846
   209
lemma size_prod_o_map: "size_prod g1 g2 \<circ> map_prod f1 f2 = size_prod (g1 \<circ> f1) (g2 \<circ> f2)"
blanchet@56650
   210
  by (rule ext) auto
blanchet@56650
   211
blanchet@56650
   212
setup {*
blanchet@56846
   213
BNF_LFP_Size.register_size_global @{type_name sum} @{const_name size_sum} @{thms sum.size}
blanchet@56846
   214
  @{thms size_sum_o_map}
blanchet@56846
   215
#> BNF_LFP_Size.register_size_global @{type_name prod} @{const_name size_prod} @{thms prod.size}
blanchet@56846
   216
  @{thms size_prod_o_map}
blanchet@56650
   217
*}
blanchet@56650
   218
blanchet@49308
   219
end