src/HOLCF/Sprod.thy
author huffman
Tue Jan 01 20:35:16 2008 +0100 (2008-01-01)
changeset 25757 5957e3d72fec
parent 25135 4f8176c940cf
child 25827 c2adeb1bae5c
permissions -rw-r--r--
declare sprodE as cases rule; new induction rule sprod_induct
huffman@15600
     1
(*  Title:      HOLCF/Sprod.thy
huffman@15576
     2
    ID:         $Id$
huffman@16059
     3
    Author:     Franz Regensburger and Brian Huffman
huffman@15576
     4
huffman@15576
     5
Strict product with typedef.
huffman@15576
     6
*)
huffman@15576
     7
huffman@15576
     8
header {* The type of strict products *}
huffman@15576
     9
huffman@15577
    10
theory Sprod
huffman@16699
    11
imports Cprod
huffman@15577
    12
begin
huffman@15576
    13
huffman@16082
    14
defaultsort pcpo
huffman@16082
    15
huffman@15591
    16
subsection {* Definition of strict product type *}
huffman@15591
    17
huffman@17817
    18
pcpodef (Sprod)  ('a, 'b) "**" (infixr "**" 20) =
huffman@16059
    19
        "{p::'a \<times> 'b. p = \<bottom> \<or> (cfst\<cdot>p \<noteq> \<bottom> \<and> csnd\<cdot>p \<noteq> \<bottom>)}"
huffman@16699
    20
by simp
huffman@15576
    21
huffman@15576
    22
syntax (xsymbols)
huffman@15576
    23
  "**"		:: "[type, type] => type"	 ("(_ \<otimes>/ _)" [21,20] 20)
huffman@15576
    24
syntax (HTML output)
huffman@15576
    25
  "**"		:: "[type, type] => type"	 ("(_ \<otimes>/ _)" [21,20] 20)
huffman@15576
    26
huffman@16059
    27
lemma spair_lemma:
huffman@16059
    28
  "<strictify\<cdot>(\<Lambda> b. a)\<cdot>b, strictify\<cdot>(\<Lambda> a. b)\<cdot>a> \<in> Sprod"
huffman@16212
    29
by (simp add: Sprod_def strictify_conv_if cpair_strict)
huffman@15576
    30
huffman@16059
    31
subsection {* Definitions of constants *}
huffman@15576
    32
wenzelm@25135
    33
definition
wenzelm@25135
    34
  sfst :: "('a ** 'b) \<rightarrow> 'a" where
wenzelm@25135
    35
  "sfst = (\<Lambda> p. cfst\<cdot>(Rep_Sprod p))"
wenzelm@25135
    36
wenzelm@25135
    37
definition
wenzelm@25135
    38
  ssnd :: "('a ** 'b) \<rightarrow> 'b" where
wenzelm@25135
    39
  "ssnd = (\<Lambda> p. csnd\<cdot>(Rep_Sprod p))"
huffman@15576
    40
wenzelm@25135
    41
definition
wenzelm@25135
    42
  spair :: "'a \<rightarrow> 'b \<rightarrow> ('a ** 'b)" where
wenzelm@25135
    43
  "spair = (\<Lambda> a b. Abs_Sprod
wenzelm@25135
    44
             <strictify\<cdot>(\<Lambda> b. a)\<cdot>b, strictify\<cdot>(\<Lambda> a. b)\<cdot>a>)"
huffman@15576
    45
wenzelm@25135
    46
definition
wenzelm@25135
    47
  ssplit :: "('a \<rightarrow> 'b \<rightarrow> 'c) \<rightarrow> ('a ** 'b) \<rightarrow> 'c" where
wenzelm@25135
    48
  "ssplit = (\<Lambda> f. strictify\<cdot>(\<Lambda> p. f\<cdot>(sfst\<cdot>p)\<cdot>(ssnd\<cdot>p)))"
wenzelm@25135
    49
wenzelm@25135
    50
syntax
huffman@18078
    51
  "@stuple" :: "['a, args] => 'a ** 'b"  ("(1'(:_,/ _:'))")
huffman@15576
    52
translations
huffman@18078
    53
  "(:x, y, z:)" == "(:x, (:y, z:):)"
wenzelm@25131
    54
  "(:x, y:)"    == "CONST spair\<cdot>x\<cdot>y"
huffman@18078
    55
huffman@18078
    56
translations
wenzelm@25131
    57
  "\<Lambda>(CONST spair\<cdot>x\<cdot>y). t" == "CONST ssplit\<cdot>(\<Lambda> x y. t)"
huffman@15576
    58
wenzelm@25135
    59
huffman@16059
    60
subsection {* Case analysis *}
huffman@15576
    61
huffman@16059
    62
lemma spair_Abs_Sprod:
huffman@16059
    63
  "(:a, b:) = Abs_Sprod <strictify\<cdot>(\<Lambda> b. a)\<cdot>b, strictify\<cdot>(\<Lambda> a. b)\<cdot>a>"
huffman@16059
    64
apply (unfold spair_def)
huffman@16059
    65
apply (simp add: cont_Abs_Sprod spair_lemma)
huffman@15576
    66
done
huffman@15576
    67
huffman@16059
    68
lemma Exh_Sprod2:
huffman@16059
    69
  "z = \<bottom> \<or> (\<exists>a b. z = (:a, b:) \<and> a \<noteq> \<bottom> \<and> b \<noteq> \<bottom>)"
huffman@25757
    70
apply (cases z rule: Abs_Sprod_cases)
huffman@16059
    71
apply (simp add: Sprod_def)
huffman@16059
    72
apply (erule disjE)
huffman@16212
    73
apply (simp add: Abs_Sprod_strict)
huffman@16059
    74
apply (rule disjI2)
huffman@16059
    75
apply (rule_tac x="cfst\<cdot>y" in exI)
huffman@16059
    76
apply (rule_tac x="csnd\<cdot>y" in exI)
huffman@16059
    77
apply (simp add: spair_Abs_Sprod Abs_Sprod_inject spair_lemma)
huffman@16059
    78
apply (simp add: surjective_pairing_Cprod2)
huffman@15576
    79
done
huffman@15576
    80
huffman@25757
    81
lemma sprodE [cases type: **]:
huffman@16059
    82
  "\<lbrakk>p = \<bottom> \<Longrightarrow> Q; \<And>x y. \<lbrakk>p = (:x, y:); x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
huffman@16059
    83
by (cut_tac z=p in Exh_Sprod2, auto)
huffman@16059
    84
huffman@25757
    85
lemma sprod_induct [induct type: **]:
huffman@25757
    86
  "\<lbrakk>P \<bottom>; \<And>x y. \<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> P (:x, y:)\<rbrakk> \<Longrightarrow> P x"
huffman@25757
    87
by (cases x, simp_all)
huffman@25757
    88
huffman@16059
    89
subsection {* Properties of @{term spair} *}
huffman@16059
    90
huffman@16317
    91
lemma spair_strict1 [simp]: "(:\<bottom>, y:) = \<bottom>"
huffman@16920
    92
by (simp add: spair_Abs_Sprod strictify_conv_if cpair_strict Abs_Sprod_strict)
huffman@15576
    93
huffman@16317
    94
lemma spair_strict2 [simp]: "(:x, \<bottom>:) = \<bottom>"
huffman@16920
    95
by (simp add: spair_Abs_Sprod strictify_conv_if cpair_strict Abs_Sprod_strict)
huffman@15576
    96
huffman@16317
    97
lemma spair_strict: "x = \<bottom> \<or> y = \<bottom> \<Longrightarrow> (:x, y:) = \<bottom>"
huffman@16059
    98
by auto
huffman@16059
    99
huffman@16212
   100
lemma spair_strict_rev: "(:x, y:) \<noteq> \<bottom> \<Longrightarrow> x \<noteq> \<bottom> \<and> y \<noteq> \<bottom>"
huffman@16059
   101
by (erule contrapos_np, auto)
huffman@16059
   102
wenzelm@25135
   103
lemma spair_defined [simp]:
huffman@16317
   104
  "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> (:x, y:) \<noteq> \<bottom>"
huffman@18078
   105
by (simp add: spair_Abs_Sprod Abs_Sprod_defined Sprod_def)
huffman@15576
   106
huffman@16317
   107
lemma spair_defined_rev: "(:x, y:) = \<bottom> \<Longrightarrow> x = \<bottom> \<or> y = \<bottom>"
huffman@16059
   108
by (erule contrapos_pp, simp)
huffman@15576
   109
huffman@16317
   110
lemma spair_eq:
huffman@16317
   111
  "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> ((:x, y:) = (:a, b:)) = (x = a \<and> y = b)"
huffman@16317
   112
apply (simp add: spair_Abs_Sprod)
huffman@16317
   113
apply (simp add: Abs_Sprod_inject [OF _ spair_lemma] Sprod_def)
huffman@16317
   114
apply (simp add: strictify_conv_if)
huffman@16317
   115
done
huffman@16317
   116
huffman@16212
   117
lemma spair_inject:
huffman@16317
   118
  "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>; (:x, y:) = (:a, b:)\<rbrakk> \<Longrightarrow> x = a \<and> y = b"
huffman@16317
   119
by (rule spair_eq [THEN iffD1])
huffman@15576
   120
huffman@15576
   121
lemma inst_sprod_pcpo2: "UU = (:UU,UU:)"
huffman@16059
   122
by simp
huffman@15576
   123
huffman@17837
   124
lemma Rep_Sprod_spair:
huffman@17837
   125
  "Rep_Sprod (:a, b:) = <strictify\<cdot>(\<Lambda> b. a)\<cdot>b, strictify\<cdot>(\<Lambda> a. b)\<cdot>a>"
huffman@17837
   126
apply (unfold spair_def)
huffman@17837
   127
apply (simp add: cont_Abs_Sprod Abs_Sprod_inverse spair_lemma)
huffman@17837
   128
done
huffman@17837
   129
huffman@17837
   130
lemma compact_spair: "\<lbrakk>compact x; compact y\<rbrakk> \<Longrightarrow> compact (:x, y:)"
huffman@17837
   131
by (rule compact_Sprod, simp add: Rep_Sprod_spair strictify_conv_if)
huffman@17837
   132
huffman@16059
   133
subsection {* Properties of @{term sfst} and @{term ssnd} *}
huffman@15576
   134
huffman@16212
   135
lemma sfst_strict [simp]: "sfst\<cdot>\<bottom> = \<bottom>"
huffman@16212
   136
by (simp add: sfst_def cont_Rep_Sprod Rep_Sprod_strict)
huffman@15576
   137
huffman@16212
   138
lemma ssnd_strict [simp]: "ssnd\<cdot>\<bottom> = \<bottom>"
huffman@16212
   139
by (simp add: ssnd_def cont_Rep_Sprod Rep_Sprod_strict)
huffman@15576
   140
huffman@16212
   141
lemma sfst_spair [simp]: "y \<noteq> \<bottom> \<Longrightarrow> sfst\<cdot>(:x, y:) = x"
huffman@16059
   142
by (simp add: sfst_def cont_Rep_Sprod Rep_Sprod_spair)
huffman@15576
   143
huffman@16212
   144
lemma ssnd_spair [simp]: "x \<noteq> \<bottom> \<Longrightarrow> ssnd\<cdot>(:x, y:) = y"
huffman@16059
   145
by (simp add: ssnd_def cont_Rep_Sprod Rep_Sprod_spair)
huffman@15576
   146
huffman@16777
   147
lemma sfst_defined_iff [simp]: "(sfst\<cdot>p = \<bottom>) = (p = \<bottom>)"
huffman@25757
   148
by (cases p, simp_all)
huffman@16777
   149
huffman@16777
   150
lemma ssnd_defined_iff [simp]: "(ssnd\<cdot>p = \<bottom>) = (p = \<bottom>)"
huffman@25757
   151
by (cases p, simp_all)
huffman@16317
   152
huffman@16777
   153
lemma sfst_defined: "p \<noteq> \<bottom> \<Longrightarrow> sfst\<cdot>p \<noteq> \<bottom>"
huffman@16777
   154
by simp
huffman@16777
   155
huffman@16777
   156
lemma ssnd_defined: "p \<noteq> \<bottom> \<Longrightarrow> ssnd\<cdot>p \<noteq> \<bottom>"
huffman@16777
   157
by simp
huffman@16777
   158
huffman@16059
   159
lemma surjective_pairing_Sprod2: "(:sfst\<cdot>p, ssnd\<cdot>p:) = p"
huffman@25757
   160
by (cases p, simp_all)
huffman@15576
   161
huffman@16751
   162
lemma less_sprod: "x \<sqsubseteq> y = (sfst\<cdot>x \<sqsubseteq> sfst\<cdot>y \<and> ssnd\<cdot>x \<sqsubseteq> ssnd\<cdot>y)"
huffman@16699
   163
apply (simp add: less_Sprod_def sfst_def ssnd_def cont_Rep_Sprod)
huffman@16317
   164
apply (rule less_cprod)
huffman@16317
   165
done
huffman@16317
   166
huffman@16751
   167
lemma eq_sprod: "(x = y) = (sfst\<cdot>x = sfst\<cdot>y \<and> ssnd\<cdot>x = ssnd\<cdot>y)"
huffman@16751
   168
by (auto simp add: po_eq_conv less_sprod)
huffman@16751
   169
huffman@16317
   170
lemma spair_less:
huffman@16317
   171
  "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> (:x, y:) \<sqsubseteq> (:a, b:) = (x \<sqsubseteq> a \<and> y \<sqsubseteq> b)"
huffman@25757
   172
apply (cases "a = \<bottom>", simp)
huffman@25757
   173
apply (cases "b = \<bottom>", simp)
huffman@16317
   174
apply (simp add: less_sprod)
huffman@16317
   175
done
huffman@16317
   176
huffman@16317
   177
huffman@16059
   178
subsection {* Properties of @{term ssplit} *}
huffman@15576
   179
huffman@16059
   180
lemma ssplit1 [simp]: "ssplit\<cdot>f\<cdot>\<bottom> = \<bottom>"
huffman@15591
   181
by (simp add: ssplit_def)
huffman@15591
   182
huffman@16920
   183
lemma ssplit2 [simp]: "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> ssplit\<cdot>f\<cdot>(:x, y:) = f\<cdot>x\<cdot>y"
huffman@15591
   184
by (simp add: ssplit_def)
huffman@15591
   185
huffman@16553
   186
lemma ssplit3 [simp]: "ssplit\<cdot>spair\<cdot>z = z"
huffman@25757
   187
by (cases z, simp_all)
huffman@15576
   188
huffman@15576
   189
end