src/HOL/Induct/LList.ML
author paulson
Wed Nov 05 13:45:01 1997 +0100 (1997-11-05)
changeset 4160 59826ea67cba
parent 4089 96fba19bcbe2
child 4477 b3e5857d8d99
permissions -rw-r--r--
Adapted to removal of UN1_I, etc
paulson@3120
     1
(*  Title:      HOL/ex/LList
paulson@3120
     2
    ID:         $Id$
paulson@3120
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@3120
     4
    Copyright   1993  University of Cambridge
paulson@3120
     5
paulson@3120
     6
SHOULD LListD_Fun_CONS_I, etc., be equations (for rewriting)?
paulson@3120
     7
*)
paulson@3120
     8
paulson@3120
     9
open LList;
paulson@3120
    10
paulson@4160
    11
bind_thm ("UN1_I", UNIV_I RS UN_I);
paulson@4160
    12
paulson@3120
    13
(** Simplification **)
paulson@3120
    14
wenzelm@4089
    15
simpset_ref() := simpset() addsplits [expand_split, expand_sum_case];
paulson@3120
    16
paulson@3120
    17
(*For adding _eqI rules to a simpset; we must remove Pair_eq because
paulson@3120
    18
  it may turn an instance of reflexivity into a conjunction!*)
paulson@3120
    19
fun add_eqI ss = ss addsimps [range_eqI, image_eqI] 
paulson@3120
    20
                    delsimps [Pair_eq];
paulson@3120
    21
paulson@3120
    22
paulson@3120
    23
(*This justifies using llist in other recursive type definitions*)
paulson@3120
    24
goalw LList.thy llist.defs "!!A B. A<=B ==> llist(A) <= llist(B)";
paulson@3120
    25
by (rtac gfp_mono 1);
paulson@3120
    26
by (REPEAT (ares_tac basic_monos 1));
paulson@3120
    27
qed "llist_mono";
paulson@3120
    28
paulson@3120
    29
paulson@3120
    30
goal LList.thy "llist(A) = {Numb(0)} <+> (A <*> llist(A))";
paulson@3120
    31
let val rew = rewrite_rule [NIL_def, CONS_def] in  
wenzelm@4089
    32
by (fast_tac (claset() addSIs (map rew llist.intrs)
paulson@3120
    33
                      addEs [rew llist.elim]) 1)
paulson@3120
    34
end;
paulson@3120
    35
qed "llist_unfold";
paulson@3120
    36
paulson@3120
    37
paulson@3120
    38
(*** Type checking by coinduction, using list_Fun 
paulson@3120
    39
     THE COINDUCTIVE DEFINITION PACKAGE COULD DO THIS!
paulson@3120
    40
***)
paulson@3120
    41
paulson@3120
    42
goalw LList.thy [list_Fun_def]
paulson@3120
    43
    "!!M. [| M : X;  X <= list_Fun A (X Un llist(A)) |] ==>  M : llist(A)";
paulson@3120
    44
by (etac llist.coinduct 1);
paulson@3120
    45
by (etac (subsetD RS CollectD) 1);
paulson@3120
    46
by (assume_tac 1);
paulson@3120
    47
qed "llist_coinduct";
paulson@3120
    48
paulson@3120
    49
goalw LList.thy [list_Fun_def, NIL_def] "NIL: list_Fun A X";
paulson@3120
    50
by (Fast_tac 1);
paulson@3120
    51
qed "list_Fun_NIL_I";
paulson@3120
    52
paulson@3120
    53
goalw LList.thy [list_Fun_def,CONS_def]
paulson@3120
    54
    "!!M N. [| M: A;  N: X |] ==> CONS M N : list_Fun A X";
paulson@3120
    55
by (Fast_tac 1);
paulson@3120
    56
qed "list_Fun_CONS_I";
paulson@3120
    57
paulson@3120
    58
(*Utilise the "strong" part, i.e. gfp(f)*)
paulson@3120
    59
goalw LList.thy (llist.defs @ [list_Fun_def])
paulson@3120
    60
    "!!M N. M: llist(A) ==> M : list_Fun A (X Un llist(A))";
paulson@3120
    61
by (etac (llist.mono RS gfp_fun_UnI2) 1);
paulson@3120
    62
qed "list_Fun_llist_I";
paulson@3120
    63
paulson@3120
    64
(*** LList_corec satisfies the desired recurion equation ***)
paulson@3120
    65
paulson@3120
    66
(*A continuity result?*)
wenzelm@3842
    67
goalw LList.thy [CONS_def] "CONS M (UN x. f(x)) = (UN x. CONS M (f x))";
wenzelm@4089
    68
by (simp_tac (simpset() addsimps [In1_UN1, Scons_UN1_y]) 1);
paulson@3120
    69
qed "CONS_UN1";
paulson@3120
    70
paulson@3120
    71
(*UNUSED; obsolete?
wenzelm@3842
    72
goal Prod.thy "split p (%x y. UN z. f x y z) = (UN z. split p (%x y. f x y z))";
wenzelm@4089
    73
by (simp_tac (simpset() addsplits [expand_split]) 1);
paulson@3120
    74
qed "split_UN1";
paulson@3120
    75
wenzelm@3842
    76
goal Sum.thy "sum_case s f (%y. UN z. g y z) = (UN z. sum_case s f (%y. g y z))";
wenzelm@4089
    77
by (simp_tac (simpset() addsplits [expand_sum_case]) 1);
paulson@3120
    78
qed "sum_case2_UN1";
paulson@3120
    79
*)
paulson@3120
    80
paulson@3120
    81
val prems = goalw LList.thy [CONS_def]
paulson@3120
    82
    "[| M<=M';  N<=N' |] ==> CONS M N <= CONS M' N'";
paulson@3120
    83
by (REPEAT (resolve_tac ([In1_mono,Scons_mono]@prems) 1));
paulson@3120
    84
qed "CONS_mono";
paulson@3120
    85
paulson@3120
    86
Addsimps [LList_corec_fun_def RS def_nat_rec_0,
paulson@3120
    87
          LList_corec_fun_def RS def_nat_rec_Suc];
paulson@3120
    88
paulson@3120
    89
(** The directions of the equality are proved separately **)
paulson@3120
    90
paulson@3120
    91
goalw LList.thy [LList_corec_def]
wenzelm@3842
    92
    "LList_corec a f <= sum_case (%u. NIL) \
paulson@3120
    93
\                          (split(%z w. CONS z (LList_corec w f))) (f a)";
paulson@4160
    94
by (rtac UN_least 1);
paulson@4160
    95
by (exhaust_tac "k" 1);
paulson@4160
    96
by (ALLGOALS Asm_simp_tac);
paulson@4160
    97
by (REPEAT (resolve_tac [allI, impI, subset_refl RS CONS_mono, 
paulson@4160
    98
			 UNIV_I RS UN_upper] 1));
paulson@3120
    99
qed "LList_corec_subset1";
paulson@3120
   100
paulson@3120
   101
goalw LList.thy [LList_corec_def]
wenzelm@3842
   102
    "sum_case (%u. NIL) (split(%z w. CONS z (LList_corec w f))) (f a) <= \
paulson@3120
   103
\    LList_corec a f";
wenzelm@4089
   104
by (simp_tac (simpset() addsimps [CONS_UN1]) 1);
paulson@4160
   105
by Safe_tac;
paulson@4160
   106
by (ALLGOALS (res_inst_tac [("a","Suc(?k)")] UN_I));
paulson@4160
   107
by (ALLGOALS Asm_simp_tac);
paulson@3120
   108
qed "LList_corec_subset2";
paulson@3120
   109
paulson@3120
   110
(*the recursion equation for LList_corec -- NOT SUITABLE FOR REWRITING!*)
paulson@3120
   111
goal LList.thy
paulson@3120
   112
    "LList_corec a f = sum_case (%u. NIL) \
paulson@3120
   113
\                           (split(%z w. CONS z (LList_corec w f))) (f a)";
paulson@3120
   114
by (REPEAT (resolve_tac [equalityI, LList_corec_subset1, 
paulson@3120
   115
                         LList_corec_subset2] 1));
paulson@3120
   116
qed "LList_corec";
paulson@3120
   117
paulson@3120
   118
(*definitional version of same*)
paulson@3120
   119
val [rew] = goal LList.thy
paulson@3120
   120
    "[| !!x. h(x) == LList_corec x f |] ==>     \
wenzelm@3842
   121
\    h(a) = sum_case (%u. NIL) (split(%z w. CONS z (h w))) (f a)";
paulson@3120
   122
by (rewtac rew);
paulson@3120
   123
by (rtac LList_corec 1);
paulson@3120
   124
qed "def_LList_corec";
paulson@3120
   125
paulson@3120
   126
(*A typical use of co-induction to show membership in the gfp. 
paulson@3120
   127
  Bisimulation is  range(%x. LList_corec x f) *)
wenzelm@3842
   128
goal LList.thy "LList_corec a f : llist({u. True})";
wenzelm@3842
   129
by (res_inst_tac [("X", "range(%x. LList_corec x ?g)")] llist_coinduct 1);
paulson@3120
   130
by (rtac rangeI 1);
paulson@4160
   131
by Safe_tac;
paulson@3120
   132
by (stac LList_corec 1);
wenzelm@4089
   133
by (simp_tac (simpset() addsimps [list_Fun_NIL_I, list_Fun_CONS_I, CollectI]
paulson@3120
   134
                       |> add_eqI) 1);
paulson@3120
   135
qed "LList_corec_type";
paulson@3120
   136
paulson@3120
   137
(*Lemma for the proof of llist_corec*)
paulson@3120
   138
goal LList.thy
wenzelm@3842
   139
   "LList_corec a (%z. sum_case Inl (split(%v w. Inr((Leaf(v),w)))) (f z)) : \
paulson@3120
   140
\   llist(range Leaf)";
wenzelm@3842
   141
by (res_inst_tac [("X", "range(%x. LList_corec x ?g)")] llist_coinduct 1);
paulson@3120
   142
by (rtac rangeI 1);
paulson@4160
   143
by Safe_tac;
paulson@3120
   144
by (stac LList_corec 1);
wenzelm@4089
   145
by (asm_simp_tac (simpset() addsimps [list_Fun_NIL_I]) 1);
wenzelm@4089
   146
by (fast_tac (claset() addSIs [list_Fun_CONS_I]) 1);
paulson@3120
   147
qed "LList_corec_type2";
paulson@3120
   148
paulson@3120
   149
paulson@3120
   150
(**** llist equality as a gfp; the bisimulation principle ****)
paulson@3120
   151
paulson@3120
   152
(*This theorem is actually used, unlike the many similar ones in ZF*)
paulson@3120
   153
goal LList.thy "LListD(r) = diag({Numb(0)}) <++> (r <**> LListD(r))";
paulson@3120
   154
let val rew = rewrite_rule [NIL_def, CONS_def] in  
wenzelm@4089
   155
by (fast_tac (claset() addSIs (map rew LListD.intrs)
paulson@3120
   156
                      addEs [rew LListD.elim]) 1)
paulson@3120
   157
end;
paulson@3120
   158
qed "LListD_unfold";
paulson@3120
   159
paulson@3120
   160
goal LList.thy "!M N. (M,N) : LListD(diag(A)) --> ntrunc k M = ntrunc k N";
paulson@3120
   161
by (res_inst_tac [("n", "k")] less_induct 1);
wenzelm@4089
   162
by (safe_tac ((claset_of Fun.thy) delrules [equalityI]));
paulson@3120
   163
by (etac LListD.elim 1);
wenzelm@4089
   164
by (safe_tac (claset_of Prod.thy delrules [equalityI] addSEs [diagE]));
paulson@3120
   165
by (res_inst_tac [("n", "n")] natE 1);
wenzelm@4089
   166
by (asm_simp_tac (simpset() addsimps [ntrunc_0]) 1);
paulson@3120
   167
by (rename_tac "n'" 1);
paulson@3120
   168
by (res_inst_tac [("n", "n'")] natE 1);
wenzelm@4089
   169
by (asm_simp_tac (simpset() addsimps [CONS_def, ntrunc_one_In1]) 1);
wenzelm@4089
   170
by (asm_simp_tac (simpset() addsimps [CONS_def, ntrunc_In1, ntrunc_Scons, less_Suc_eq]) 1);
paulson@3120
   171
qed "LListD_implies_ntrunc_equality";
paulson@3120
   172
paulson@3120
   173
(*The domain of the LListD relation*)
paulson@3120
   174
goalw LList.thy (llist.defs @ [NIL_def, CONS_def])
paulson@3120
   175
    "fst``LListD(diag(A)) <= llist(A)";
paulson@3120
   176
by (rtac gfp_upperbound 1);
paulson@3120
   177
(*avoids unfolding LListD on the rhs*)
paulson@3120
   178
by (res_inst_tac [("P", "%x. fst``x <= ?B")] (LListD_unfold RS ssubst) 1);
paulson@3120
   179
by (Simp_tac 1);
paulson@3120
   180
by (Fast_tac 1);
paulson@3120
   181
qed "fst_image_LListD";
paulson@3120
   182
paulson@3120
   183
(*This inclusion justifies the use of coinduction to show M=N*)
paulson@3120
   184
goal LList.thy "LListD(diag(A)) <= diag(llist(A))";
paulson@3120
   185
by (rtac subsetI 1);
paulson@3120
   186
by (res_inst_tac [("p","x")] PairE 1);
paulson@4160
   187
by Safe_tac;
paulson@3120
   188
by (rtac diag_eqI 1);
paulson@3120
   189
by (rtac (LListD_implies_ntrunc_equality RS spec RS spec RS mp RS 
paulson@3120
   190
          ntrunc_equality) 1);
paulson@3120
   191
by (assume_tac 1);
paulson@3120
   192
by (etac (fst_imageI RS (fst_image_LListD RS subsetD)) 1);
paulson@3120
   193
qed "LListD_subset_diag";
paulson@3120
   194
paulson@3120
   195
paulson@3120
   196
(** Coinduction, using LListD_Fun
paulson@3120
   197
    THE COINDUCTIVE DEFINITION PACKAGE COULD DO THIS!
paulson@3120
   198
 **)
paulson@3120
   199
paulson@3120
   200
goalw thy [LListD_Fun_def] "!!A B. A<=B ==> LListD_Fun r A <= LListD_Fun r B";
paulson@3120
   201
by (REPEAT (ares_tac basic_monos 1));
paulson@3120
   202
qed "LListD_Fun_mono";
paulson@3120
   203
paulson@3120
   204
goalw LList.thy [LListD_Fun_def]
paulson@3120
   205
    "!!M. [| M : X;  X <= LListD_Fun r (X Un LListD(r)) |] ==>  M : LListD(r)";
paulson@3120
   206
by (etac LListD.coinduct 1);
paulson@3120
   207
by (etac (subsetD RS CollectD) 1);
paulson@3120
   208
by (assume_tac 1);
paulson@3120
   209
qed "LListD_coinduct";
paulson@3120
   210
paulson@3120
   211
goalw LList.thy [LListD_Fun_def,NIL_def] "(NIL,NIL) : LListD_Fun r s";
paulson@3120
   212
by (Fast_tac 1);
paulson@3120
   213
qed "LListD_Fun_NIL_I";
paulson@3120
   214
paulson@3120
   215
goalw LList.thy [LListD_Fun_def,CONS_def]
paulson@3120
   216
 "!!x. [| x:A;  (M,N):s |] ==> (CONS x M, CONS x N) : LListD_Fun (diag A) s";
paulson@3120
   217
by (Fast_tac 1);
paulson@3120
   218
qed "LListD_Fun_CONS_I";
paulson@3120
   219
paulson@3120
   220
(*Utilise the "strong" part, i.e. gfp(f)*)
paulson@3120
   221
goalw LList.thy (LListD.defs @ [LListD_Fun_def])
paulson@3120
   222
    "!!M N. M: LListD(r) ==> M : LListD_Fun r (X Un LListD(r))";
paulson@3120
   223
by (etac (LListD.mono RS gfp_fun_UnI2) 1);
paulson@3120
   224
qed "LListD_Fun_LListD_I";
paulson@3120
   225
paulson@3120
   226
paulson@3120
   227
(*This converse inclusion helps to strengthen LList_equalityI*)
paulson@3120
   228
goal LList.thy "diag(llist(A)) <= LListD(diag(A))";
paulson@3120
   229
by (rtac subsetI 1);
paulson@3120
   230
by (etac LListD_coinduct 1);
paulson@3120
   231
by (rtac subsetI 1);
paulson@3120
   232
by (etac diagE 1);
paulson@3120
   233
by (etac ssubst 1);
paulson@3120
   234
by (eresolve_tac [llist.elim] 1);
paulson@3120
   235
by (ALLGOALS
wenzelm@4089
   236
    (asm_simp_tac (simpset() addsimps [diagI, LListD_Fun_NIL_I,
paulson@3120
   237
                                      LListD_Fun_CONS_I])));
paulson@3120
   238
qed "diag_subset_LListD";
paulson@3120
   239
paulson@3120
   240
goal LList.thy "LListD(diag(A)) = diag(llist(A))";
paulson@3120
   241
by (REPEAT (resolve_tac [equalityI, LListD_subset_diag, 
paulson@3120
   242
                         diag_subset_LListD] 1));
paulson@3120
   243
qed "LListD_eq_diag";
paulson@3120
   244
paulson@3120
   245
goal LList.thy 
paulson@3120
   246
    "!!M N. M: llist(A) ==> (M,M) : LListD_Fun (diag A) (X Un diag(llist(A)))";
paulson@3120
   247
by (rtac (LListD_eq_diag RS subst) 1);
paulson@3120
   248
by (rtac LListD_Fun_LListD_I 1);
wenzelm@4089
   249
by (asm_simp_tac (simpset() addsimps [LListD_eq_diag, diagI]) 1);
paulson@3120
   250
qed "LListD_Fun_diag_I";
paulson@3120
   251
paulson@3120
   252
paulson@3120
   253
(** To show two LLists are equal, exhibit a bisimulation! 
paulson@3120
   254
      [also admits true equality]
paulson@3120
   255
   Replace "A" by some particular set, like {x.True}??? *)
paulson@3120
   256
goal LList.thy 
paulson@3120
   257
    "!!r. [| (M,N) : r;  r <= LListD_Fun (diag A) (r Un diag(llist(A))) \
paulson@3120
   258
\         |] ==>  M=N";
paulson@3120
   259
by (rtac (LListD_subset_diag RS subsetD RS diagE) 1);
paulson@3120
   260
by (etac LListD_coinduct 1);
wenzelm@4089
   261
by (asm_simp_tac (simpset() addsimps [LListD_eq_diag]) 1);
paulson@4160
   262
by Safe_tac;
paulson@3120
   263
qed "LList_equalityI";
paulson@3120
   264
paulson@3120
   265
paulson@3120
   266
(*** Finality of llist(A): Uniqueness of functions defined by corecursion ***)
paulson@3120
   267
paulson@3120
   268
(*abstract proof using a bisimulation*)
paulson@3120
   269
val [prem1,prem2] = goal LList.thy
wenzelm@3842
   270
 "[| !!x. h1(x) = sum_case (%u. NIL) (split(%z w. CONS z (h1 w))) (f x);  \
wenzelm@3842
   271
\    !!x. h2(x) = sum_case (%u. NIL) (split(%z w. CONS z (h2 w))) (f x) |]\
paulson@3120
   272
\ ==> h1=h2";
paulson@3120
   273
by (rtac ext 1);
paulson@3120
   274
(*next step avoids an unknown (and flexflex pair) in simplification*)
wenzelm@3842
   275
by (res_inst_tac [("A", "{u. True}"),
paulson@3120
   276
                  ("r", "range(%u. (h1(u),h2(u)))")] LList_equalityI 1);
paulson@3120
   277
by (rtac rangeI 1);
paulson@4160
   278
by Safe_tac;
paulson@3120
   279
by (stac prem1 1);
paulson@3120
   280
by (stac prem2 1);
wenzelm@4089
   281
by (simp_tac (simpset() addsimps [LListD_Fun_NIL_I,
paulson@3120
   282
                                 CollectI RS LListD_Fun_CONS_I]
paulson@3120
   283
                       |> add_eqI) 1);
paulson@3120
   284
qed "LList_corec_unique";
paulson@3120
   285
paulson@3120
   286
val [prem] = goal LList.thy
wenzelm@3842
   287
 "[| !!x. h(x) = sum_case (%u. NIL) (split(%z w. CONS z (h w))) (f x) |] \
wenzelm@3842
   288
\ ==> h = (%x. LList_corec x f)";
paulson@3120
   289
by (rtac (LList_corec RS (prem RS LList_corec_unique)) 1);
paulson@3120
   290
qed "equals_LList_corec";
paulson@3120
   291
paulson@3120
   292
paulson@3120
   293
(** Obsolete LList_corec_unique proof: complete induction, not coinduction **)
paulson@3120
   294
paulson@3120
   295
goalw LList.thy [CONS_def] "ntrunc (Suc 0) (CONS M N) = {}";
paulson@3120
   296
by (rtac ntrunc_one_In1 1);
paulson@3120
   297
qed "ntrunc_one_CONS";
paulson@3120
   298
paulson@3120
   299
goalw LList.thy [CONS_def]
paulson@3120
   300
    "ntrunc (Suc(Suc(k))) (CONS M N) = CONS (ntrunc k M) (ntrunc k N)";
wenzelm@4089
   301
by (simp_tac (simpset() addsimps [ntrunc_Scons,ntrunc_In1]) 1);
paulson@3120
   302
qed "ntrunc_CONS";
paulson@3120
   303
paulson@3120
   304
val [prem1,prem2] = goal LList.thy
wenzelm@3842
   305
 "[| !!x. h1(x) = sum_case (%u. NIL) (split(%z w. CONS z (h1 w))) (f x);  \
wenzelm@3842
   306
\    !!x. h2(x) = sum_case (%u. NIL) (split(%z w. CONS z (h2 w))) (f x) |]\
paulson@3120
   307
\ ==> h1=h2";
paulson@3120
   308
by (rtac (ntrunc_equality RS ext) 1);
paulson@3120
   309
by (rename_tac "x k" 1);
paulson@3120
   310
by (res_inst_tac [("x", "x")] spec 1);
paulson@3120
   311
by (res_inst_tac [("n", "k")] less_induct 1);
paulson@3120
   312
by (rename_tac "n" 1);
paulson@3120
   313
by (rtac allI 1);
paulson@3120
   314
by (rename_tac "y" 1);
paulson@3120
   315
by (stac prem1 1);
paulson@3120
   316
by (stac prem2 1);
wenzelm@4089
   317
by (simp_tac (simpset() addsplits [expand_sum_case]) 1);
paulson@3120
   318
by (strip_tac 1);
paulson@3120
   319
by (res_inst_tac [("n", "n")] natE 1);
paulson@3120
   320
by (rename_tac "m" 2);
paulson@3120
   321
by (res_inst_tac [("n", "m")] natE 2);
wenzelm@4089
   322
by (ALLGOALS(asm_simp_tac(simpset() addsimps
paulson@3120
   323
            [ntrunc_0,ntrunc_one_CONS,ntrunc_CONS, less_Suc_eq])));
paulson@3120
   324
result();
paulson@3120
   325
paulson@3120
   326
paulson@3120
   327
(*** Lconst -- defined directly using lfp, but equivalent to a LList_corec ***)
paulson@3120
   328
paulson@3120
   329
goal LList.thy "mono(CONS(M))";
paulson@3120
   330
by (REPEAT (ares_tac [monoI, subset_refl, CONS_mono] 1));
paulson@3120
   331
qed "Lconst_fun_mono";
paulson@3120
   332
paulson@3120
   333
(* Lconst(M) = CONS M (Lconst M) *)
paulson@3120
   334
bind_thm ("Lconst", (Lconst_fun_mono RS (Lconst_def RS def_lfp_Tarski)));
paulson@3120
   335
paulson@3120
   336
(*A typical use of co-induction to show membership in the gfp.
paulson@3120
   337
  The containing set is simply the singleton {Lconst(M)}. *)
paulson@3120
   338
goal LList.thy "!!M A. M:A ==> Lconst(M): llist(A)";
paulson@3120
   339
by (rtac (singletonI RS llist_coinduct) 1);
paulson@4160
   340
by Safe_tac;
paulson@3120
   341
by (res_inst_tac [("P", "%u. u: ?A")] (Lconst RS ssubst) 1);
paulson@3120
   342
by (REPEAT (ares_tac [list_Fun_CONS_I, singletonI, UnI1] 1));
paulson@3120
   343
qed "Lconst_type";
paulson@3120
   344
wenzelm@3842
   345
goal LList.thy "Lconst(M) = LList_corec M (%x. Inr((x,x)))";
paulson@3120
   346
by (rtac (equals_LList_corec RS fun_cong) 1);
paulson@3120
   347
by (Simp_tac 1);
paulson@3120
   348
by (rtac Lconst 1);
paulson@3120
   349
qed "Lconst_eq_LList_corec";
paulson@3120
   350
paulson@3120
   351
(*Thus we could have used gfp in the definition of Lconst*)
wenzelm@3842
   352
goal LList.thy "gfp(%N. CONS M N) = LList_corec M (%x. Inr((x,x)))";
paulson@3120
   353
by (rtac (equals_LList_corec RS fun_cong) 1);
paulson@3120
   354
by (Simp_tac 1);
paulson@3120
   355
by (rtac (Lconst_fun_mono RS gfp_Tarski) 1);
paulson@3120
   356
qed "gfp_Lconst_eq_LList_corec";
paulson@3120
   357
paulson@3120
   358
paulson@3120
   359
(*** Isomorphisms ***)
paulson@3120
   360
paulson@3120
   361
goal LList.thy "inj(Rep_llist)";
paulson@3120
   362
by (rtac inj_inverseI 1);
paulson@3120
   363
by (rtac Rep_llist_inverse 1);
paulson@3120
   364
qed "inj_Rep_llist";
paulson@3120
   365
paulson@3120
   366
goal LList.thy "inj_onto Abs_llist (llist(range Leaf))";
paulson@3120
   367
by (rtac inj_onto_inverseI 1);
paulson@3120
   368
by (etac Abs_llist_inverse 1);
paulson@3120
   369
qed "inj_onto_Abs_llist";
paulson@3120
   370
paulson@3120
   371
(** Distinctness of constructors **)
paulson@3120
   372
paulson@3120
   373
goalw LList.thy [LNil_def,LCons_def] "~ LCons x xs = LNil";
paulson@3120
   374
by (rtac (CONS_not_NIL RS (inj_onto_Abs_llist RS inj_onto_contraD)) 1);
paulson@3120
   375
by (REPEAT (resolve_tac (llist.intrs @ [rangeI, Rep_llist]) 1));
paulson@3120
   376
qed "LCons_not_LNil";
paulson@3120
   377
paulson@3120
   378
bind_thm ("LNil_not_LCons", LCons_not_LNil RS not_sym);
paulson@3120
   379
paulson@3120
   380
AddIffs [LCons_not_LNil, LNil_not_LCons];
paulson@3120
   381
paulson@3120
   382
paulson@3120
   383
(** llist constructors **)
paulson@3120
   384
paulson@3120
   385
goalw LList.thy [LNil_def]
paulson@3120
   386
    "Rep_llist(LNil) = NIL";
paulson@3120
   387
by (rtac (llist.NIL_I RS Abs_llist_inverse) 1);
paulson@3120
   388
qed "Rep_llist_LNil";
paulson@3120
   389
paulson@3120
   390
goalw LList.thy [LCons_def]
paulson@3120
   391
    "Rep_llist(LCons x l) = CONS (Leaf x) (Rep_llist l)";
paulson@3120
   392
by (REPEAT (resolve_tac [llist.CONS_I RS Abs_llist_inverse,
paulson@3120
   393
                         rangeI, Rep_llist] 1));
paulson@3120
   394
qed "Rep_llist_LCons";
paulson@3120
   395
paulson@3120
   396
(** Injectiveness of CONS and LCons **)
paulson@3120
   397
paulson@3120
   398
goalw LList.thy [CONS_def] "(CONS M N=CONS M' N') = (M=M' & N=N')";
wenzelm@4089
   399
by (fast_tac (claset() addSEs [Scons_inject]) 1);
paulson@3120
   400
qed "CONS_CONS_eq2";
paulson@3120
   401
paulson@3120
   402
bind_thm ("CONS_inject", (CONS_CONS_eq RS iffD1 RS conjE));
paulson@3120
   403
paulson@3120
   404
paulson@3120
   405
(*For reasoning about abstract llist constructors*)
paulson@3120
   406
paulson@3120
   407
AddIs ([Rep_llist]@llist.intrs);
paulson@3120
   408
AddSDs [inj_onto_Abs_llist RS inj_ontoD,
paulson@3120
   409
        inj_Rep_llist RS injD, Leaf_inject];
paulson@3120
   410
paulson@3120
   411
goalw LList.thy [LCons_def] "(LCons x xs=LCons y ys) = (x=y & xs=ys)";
paulson@3120
   412
by (Fast_tac 1);
paulson@3120
   413
qed "LCons_LCons_eq";
paulson@3120
   414
paulson@3120
   415
AddIffs [LCons_LCons_eq];
paulson@3120
   416
paulson@3120
   417
val [major] = goal LList.thy "CONS M N: llist(A) ==> M: A & N: llist(A)";
paulson@3120
   418
by (rtac (major RS llist.elim) 1);
paulson@3120
   419
by (etac CONS_neq_NIL 1);
paulson@3120
   420
by (Fast_tac 1);
paulson@3120
   421
qed "CONS_D2";
paulson@3120
   422
paulson@3120
   423
paulson@3120
   424
(****** Reasoning about llist(A) ******)
paulson@3120
   425
paulson@3120
   426
Addsimps [List_case_NIL, List_case_CONS];
paulson@3120
   427
paulson@3120
   428
(*A special case of list_equality for functions over lazy lists*)
paulson@3120
   429
val [Mlist,gMlist,NILcase,CONScase] = goal LList.thy
paulson@3120
   430
 "[| M: llist(A); g(NIL): llist(A);                             \
paulson@3120
   431
\    f(NIL)=g(NIL);                                             \
paulson@3120
   432
\    !!x l. [| x:A;  l: llist(A) |] ==>                         \
paulson@3120
   433
\           (f(CONS x l),g(CONS x l)) :                         \
paulson@3120
   434
\               LListD_Fun (diag A) ((%u.(f(u),g(u)))``llist(A) Un  \
paulson@3120
   435
\                                   diag(llist(A)))             \
paulson@3120
   436
\ |] ==> f(M) = g(M)";
paulson@3120
   437
by (rtac LList_equalityI 1);
paulson@3120
   438
by (rtac (Mlist RS imageI) 1);
paulson@3120
   439
by (rtac subsetI 1);
paulson@3120
   440
by (etac imageE 1);
paulson@3120
   441
by (etac ssubst 1);
paulson@3120
   442
by (etac llist.elim 1);
paulson@3120
   443
by (etac ssubst 1);
paulson@3120
   444
by (stac NILcase 1);
paulson@3120
   445
by (rtac (gMlist RS LListD_Fun_diag_I) 1);
paulson@3120
   446
by (etac ssubst 1);
paulson@3120
   447
by (REPEAT (ares_tac [CONScase] 1));
paulson@3120
   448
qed "LList_fun_equalityI";
paulson@3120
   449
paulson@3120
   450
paulson@3120
   451
(*** The functional "Lmap" ***)
paulson@3120
   452
paulson@3120
   453
goal LList.thy "Lmap f NIL = NIL";
paulson@3120
   454
by (rtac (Lmap_def RS def_LList_corec RS trans) 1);
paulson@3120
   455
by (Simp_tac 1);
paulson@3120
   456
qed "Lmap_NIL";
paulson@3120
   457
paulson@3120
   458
goal LList.thy "Lmap f (CONS M N) = CONS (f M) (Lmap f N)";
paulson@3120
   459
by (rtac (Lmap_def RS def_LList_corec RS trans) 1);
paulson@3120
   460
by (Simp_tac 1);
paulson@3120
   461
qed "Lmap_CONS";
paulson@3120
   462
paulson@3120
   463
(*Another type-checking proof by coinduction*)
paulson@3120
   464
val [major,minor] = goal LList.thy
paulson@3120
   465
    "[| M: llist(A);  !!x. x:A ==> f(x):B |] ==> Lmap f M: llist(B)";
paulson@3120
   466
by (rtac (major RS imageI RS llist_coinduct) 1);
paulson@4160
   467
by Safe_tac;
paulson@3120
   468
by (etac llist.elim 1);
wenzelm@4089
   469
by (ALLGOALS (asm_simp_tac (simpset() addsimps [Lmap_NIL,Lmap_CONS])));
paulson@3120
   470
by (REPEAT (ares_tac [list_Fun_NIL_I, list_Fun_CONS_I, 
paulson@3120
   471
                      minor, imageI, UnI1] 1));
paulson@3120
   472
qed "Lmap_type";
paulson@3120
   473
paulson@3120
   474
(*This type checking rule synthesises a sufficiently large set for f*)
paulson@3120
   475
val [major] = goal LList.thy  "M: llist(A) ==> Lmap f M: llist(f``A)";
paulson@3120
   476
by (rtac (major RS Lmap_type) 1);
paulson@3120
   477
by (etac imageI 1);
paulson@3120
   478
qed "Lmap_type2";
paulson@3120
   479
paulson@3120
   480
(** Two easy results about Lmap **)
paulson@3120
   481
paulson@3120
   482
val [prem] = goalw LList.thy [o_def]
paulson@3120
   483
    "M: llist(A) ==> Lmap (f o g) M = Lmap f (Lmap g M)";
paulson@3120
   484
by (rtac (prem RS imageI RS LList_equalityI) 1);
paulson@4160
   485
by Safe_tac;
paulson@3120
   486
by (etac llist.elim 1);
wenzelm@4089
   487
by (ALLGOALS (asm_simp_tac (simpset() addsimps [Lmap_NIL,Lmap_CONS])));
paulson@3120
   488
by (REPEAT (ares_tac [LListD_Fun_NIL_I, imageI, UnI1,
paulson@3120
   489
                      rangeI RS LListD_Fun_CONS_I] 1));
paulson@3120
   490
qed "Lmap_compose";
paulson@3120
   491
wenzelm@3842
   492
val [prem] = goal LList.thy "M: llist(A) ==> Lmap (%x. x) M = M";
paulson@3120
   493
by (rtac (prem RS imageI RS LList_equalityI) 1);
paulson@4160
   494
by Safe_tac;
paulson@3120
   495
by (etac llist.elim 1);
wenzelm@4089
   496
by (ALLGOALS (asm_simp_tac (simpset() addsimps [Lmap_NIL,Lmap_CONS])));
paulson@3120
   497
by (REPEAT (ares_tac [LListD_Fun_NIL_I, imageI RS UnI1,
paulson@3120
   498
                      rangeI RS LListD_Fun_CONS_I] 1));
paulson@3120
   499
qed "Lmap_ident";
paulson@3120
   500
paulson@3120
   501
paulson@3120
   502
(*** Lappend -- its two arguments cause some complications! ***)
paulson@3120
   503
paulson@3120
   504
goalw LList.thy [Lappend_def] "Lappend NIL NIL = NIL";
paulson@3120
   505
by (rtac (LList_corec RS trans) 1);
paulson@3120
   506
by (Simp_tac 1);
paulson@3120
   507
qed "Lappend_NIL_NIL";
paulson@3120
   508
paulson@3120
   509
goalw LList.thy [Lappend_def]
paulson@3120
   510
    "Lappend NIL (CONS N N') = CONS N (Lappend NIL N')";
paulson@3120
   511
by (rtac (LList_corec RS trans) 1);
paulson@3120
   512
by (Simp_tac 1);
paulson@3120
   513
qed "Lappend_NIL_CONS";
paulson@3120
   514
paulson@3120
   515
goalw LList.thy [Lappend_def]
paulson@3120
   516
    "Lappend (CONS M M') N = CONS M (Lappend M' N)";
paulson@3120
   517
by (rtac (LList_corec RS trans) 1);
paulson@3120
   518
by (Simp_tac 1);
paulson@3120
   519
qed "Lappend_CONS";
paulson@3120
   520
paulson@3120
   521
Addsimps [llist.NIL_I, Lappend_NIL_NIL, Lappend_NIL_CONS,
paulson@3120
   522
          Lappend_CONS, LListD_Fun_CONS_I, range_eqI, image_eqI];
paulson@3120
   523
Delsimps [Pair_eq];
paulson@3120
   524
paulson@3120
   525
goal LList.thy "!!M. M: llist(A) ==> Lappend NIL M = M";
paulson@3120
   526
by (etac LList_fun_equalityI 1);
paulson@3120
   527
by (ALLGOALS Asm_simp_tac);
paulson@3120
   528
qed "Lappend_NIL";
paulson@3120
   529
paulson@3120
   530
goal LList.thy "!!M. M: llist(A) ==> Lappend M NIL = M";
paulson@3120
   531
by (etac LList_fun_equalityI 1);
paulson@3120
   532
by (ALLGOALS Asm_simp_tac);
paulson@3120
   533
qed "Lappend_NIL2";
paulson@3120
   534
paulson@3120
   535
(** Alternative type-checking proofs for Lappend **)
paulson@3120
   536
paulson@3120
   537
(*weak co-induction: bisimulation and case analysis on both variables*)
paulson@3120
   538
goal LList.thy
paulson@3120
   539
    "!!M N. [| M: llist(A); N: llist(A) |] ==> Lappend M N: llist(A)";
paulson@3120
   540
by (res_inst_tac
paulson@3120
   541
    [("X", "UN u:llist(A). UN v: llist(A). {Lappend u v}")] llist_coinduct 1);
paulson@3120
   542
by (Fast_tac 1);
paulson@4160
   543
by Safe_tac;
paulson@3120
   544
by (eres_inst_tac [("a", "u")] llist.elim 1);
paulson@3120
   545
by (eres_inst_tac [("a", "v")] llist.elim 1);
paulson@3120
   546
by (ALLGOALS
paulson@3120
   547
    (Asm_simp_tac THEN'
wenzelm@4089
   548
     fast_tac (claset() addSIs [llist.NIL_I, list_Fun_NIL_I, list_Fun_CONS_I])));
paulson@3120
   549
qed "Lappend_type";
paulson@3120
   550
paulson@3120
   551
(*strong co-induction: bisimulation and case analysis on one variable*)
paulson@3120
   552
goal LList.thy
paulson@3120
   553
    "!!M N. [| M: llist(A); N: llist(A) |] ==> Lappend M N: llist(A)";
wenzelm@3842
   554
by (res_inst_tac [("X", "(%u. Lappend u N)``llist(A)")] llist_coinduct 1);
paulson@3120
   555
by (etac imageI 1);
paulson@3120
   556
by (rtac subsetI 1);
paulson@3120
   557
by (etac imageE 1);
paulson@3120
   558
by (eres_inst_tac [("a", "u")] llist.elim 1);
wenzelm@4089
   559
by (asm_simp_tac (simpset() addsimps [Lappend_NIL, list_Fun_llist_I]) 1);
paulson@3120
   560
by (Asm_simp_tac 1);
wenzelm@4089
   561
by (fast_tac (claset() addSIs [list_Fun_CONS_I]) 1);
paulson@3120
   562
qed "Lappend_type";
paulson@3120
   563
paulson@3120
   564
(**** Lazy lists as the type 'a llist -- strongly typed versions of above ****)
paulson@3120
   565
paulson@3120
   566
(** llist_case: case analysis for 'a llist **)
paulson@3120
   567
paulson@3120
   568
Addsimps ([Abs_llist_inverse, Rep_llist_inverse,
paulson@3120
   569
           Rep_llist, rangeI, inj_Leaf, inv_f_f] @ llist.intrs);
paulson@3120
   570
paulson@3120
   571
goalw LList.thy [llist_case_def,LNil_def]  "llist_case c d LNil = c";
paulson@3120
   572
by (Simp_tac 1);
paulson@3120
   573
qed "llist_case_LNil";
paulson@3120
   574
paulson@3120
   575
goalw LList.thy [llist_case_def,LCons_def]
paulson@3120
   576
    "llist_case c d (LCons M N) = d M N";
paulson@3120
   577
by (Simp_tac 1);
paulson@3120
   578
qed "llist_case_LCons";
paulson@3120
   579
paulson@3120
   580
(*Elimination is case analysis, not induction.*)
paulson@3120
   581
val [prem1,prem2] = goalw LList.thy [NIL_def,CONS_def]
paulson@3120
   582
    "[| l=LNil ==> P;  !!x l'. l=LCons x l' ==> P \
paulson@3120
   583
\    |] ==> P";
paulson@3120
   584
by (rtac (Rep_llist RS llist.elim) 1);
paulson@3120
   585
by (rtac (inj_Rep_llist RS injD RS prem1) 1);
paulson@3120
   586
by (stac Rep_llist_LNil 1);
paulson@3120
   587
by (assume_tac 1);
paulson@3120
   588
by (etac rangeE 1);
paulson@3120
   589
by (rtac (inj_Rep_llist RS injD RS prem2) 1);
wenzelm@4089
   590
by (asm_simp_tac (simpset() delsimps [CONS_CONS_eq] addsimps [Rep_llist_LCons]) 1);
paulson@3120
   591
by (etac (Abs_llist_inverse RS ssubst) 1);
paulson@3120
   592
by (rtac refl 1);
paulson@3120
   593
qed "llistE";
paulson@3120
   594
paulson@3120
   595
(** llist_corec: corecursion for 'a llist **)
paulson@3120
   596
paulson@3120
   597
goalw LList.thy [llist_corec_def,LNil_def,LCons_def]
paulson@3120
   598
    "llist_corec a f = sum_case (%u. LNil) \
paulson@3120
   599
\                           (split(%z w. LCons z (llist_corec w f))) (f a)";
paulson@3120
   600
by (stac LList_corec 1);
paulson@3120
   601
by (res_inst_tac [("s","f(a)")] sumE 1);
wenzelm@4089
   602
by (asm_simp_tac (simpset() addsimps [LList_corec_type2]) 1);
paulson@3120
   603
by (res_inst_tac [("p","y")] PairE 1);
wenzelm@4089
   604
by (asm_simp_tac (simpset() addsimps [LList_corec_type2]) 1);
paulson@3120
   605
(*FIXME: correct case splits usd to be found automatically:
wenzelm@4089
   606
by (ASM_SIMP_TAC(simpset() addsimps [LList_corec_type2]) 1);*)
paulson@3120
   607
qed "llist_corec";
paulson@3120
   608
paulson@3120
   609
(*definitional version of same*)
paulson@3120
   610
val [rew] = goal LList.thy
paulson@3120
   611
    "[| !!x. h(x) == llist_corec x f |] ==>     \
wenzelm@3842
   612
\    h(a) = sum_case (%u. LNil) (split(%z w. LCons z (h w))) (f a)";
paulson@3120
   613
by (rewtac rew);
paulson@3120
   614
by (rtac llist_corec 1);
paulson@3120
   615
qed "def_llist_corec";
paulson@3120
   616
paulson@3120
   617
(**** Proofs about type 'a llist functions ****)
paulson@3120
   618
paulson@3120
   619
(*** Deriving llist_equalityI -- llist equality is a bisimulation ***)
paulson@3120
   620
paulson@3120
   621
goalw LList.thy [LListD_Fun_def]
paulson@3120
   622
    "!!r A. r <= (llist A) Times (llist A) ==> \
paulson@3120
   623
\           LListD_Fun (diag A) r <= (llist A) Times (llist A)";
paulson@3120
   624
by (stac llist_unfold 1);
wenzelm@4089
   625
by (simp_tac (simpset() addsimps [NIL_def, CONS_def]) 1);
paulson@3120
   626
by (Fast_tac 1);
paulson@3120
   627
qed "LListD_Fun_subset_Sigma_llist";
paulson@3120
   628
paulson@3120
   629
goal LList.thy
paulson@3120
   630
    "prod_fun Rep_llist Rep_llist `` r <= \
paulson@3120
   631
\    (llist(range Leaf)) Times (llist(range Leaf))";
wenzelm@4089
   632
by (fast_tac (claset() addIs [Rep_llist]) 1);
paulson@3120
   633
qed "subset_Sigma_llist";
paulson@3120
   634
paulson@3120
   635
val [prem] = goal LList.thy
paulson@3120
   636
    "r <= (llist(range Leaf)) Times (llist(range Leaf)) ==> \
paulson@3120
   637
\    prod_fun (Rep_llist o Abs_llist) (Rep_llist o Abs_llist) `` r <= r";
paulson@4160
   638
by Safe_tac;
paulson@3120
   639
by (rtac (prem RS subsetD RS SigmaE2) 1);
paulson@3120
   640
by (assume_tac 1);
wenzelm@4089
   641
by (asm_simp_tac (simpset() addsimps [o_def,prod_fun,Abs_llist_inverse]) 1);
paulson@3120
   642
qed "prod_fun_lemma";
paulson@3120
   643
paulson@3120
   644
goal LList.thy
paulson@3120
   645
    "prod_fun Rep_llist  Rep_llist `` range(%x. (x, x)) = \
paulson@3120
   646
\    diag(llist(range Leaf))";
paulson@3120
   647
by (rtac equalityI 1);
wenzelm@4089
   648
by (fast_tac (claset() addIs [Rep_llist]) 1);
wenzelm@4089
   649
by (fast_tac (claset() addSEs [Abs_llist_inverse RS subst]) 1);
paulson@3120
   650
qed "prod_fun_range_eq_diag";
paulson@3120
   651
paulson@3120
   652
(*Surprisingly hard to prove.  Used with lfilter*)
paulson@3120
   653
goalw thy [llistD_Fun_def, prod_fun_def]
paulson@3120
   654
    "!!A B. A<=B ==> llistD_Fun A <= llistD_Fun B";
paulson@3120
   655
by (Auto_tac());
paulson@3120
   656
by (rtac image_eqI 1);
wenzelm@4089
   657
by (fast_tac (claset() addss (simpset())) 1);
wenzelm@4089
   658
by (blast_tac (claset() addIs [impOfSubs LListD_Fun_mono]) 1);
paulson@3120
   659
qed "llistD_Fun_mono";
paulson@3120
   660
paulson@3120
   661
(** To show two llists are equal, exhibit a bisimulation! 
paulson@3120
   662
      [also admits true equality] **)
paulson@3120
   663
val [prem1,prem2] = goalw LList.thy [llistD_Fun_def]
paulson@3120
   664
    "[| (l1,l2) : r;  r <= llistD_Fun(r Un range(%x.(x,x))) |] ==> l1=l2";
paulson@3120
   665
by (rtac (inj_Rep_llist RS injD) 1);
paulson@3120
   666
by (res_inst_tac [("r", "prod_fun Rep_llist Rep_llist ``r"),
paulson@3120
   667
                  ("A", "range(Leaf)")] 
paulson@3120
   668
        LList_equalityI 1);
paulson@3120
   669
by (rtac (prem1 RS prod_fun_imageI) 1);
paulson@3120
   670
by (rtac (prem2 RS image_mono RS subset_trans) 1);
paulson@3120
   671
by (rtac (image_compose RS subst) 1);
paulson@3120
   672
by (rtac (prod_fun_compose RS subst) 1);
paulson@3120
   673
by (stac image_Un 1);
paulson@3120
   674
by (stac prod_fun_range_eq_diag 1);
paulson@3120
   675
by (rtac (LListD_Fun_subset_Sigma_llist RS prod_fun_lemma) 1);
paulson@3120
   676
by (rtac (subset_Sigma_llist RS Un_least) 1);
paulson@3120
   677
by (rtac diag_subset_Sigma 1);
paulson@3120
   678
qed "llist_equalityI";
paulson@3120
   679
paulson@3120
   680
(** Rules to prove the 2nd premise of llist_equalityI **)
paulson@3120
   681
goalw LList.thy [llistD_Fun_def,LNil_def] "(LNil,LNil) : llistD_Fun(r)";
paulson@3120
   682
by (rtac (LListD_Fun_NIL_I RS prod_fun_imageI) 1);
paulson@3120
   683
qed "llistD_Fun_LNil_I";
paulson@3120
   684
paulson@3120
   685
val [prem] = goalw LList.thy [llistD_Fun_def,LCons_def]
paulson@3120
   686
    "(l1,l2):r ==> (LCons x l1, LCons x l2) : llistD_Fun(r)";
paulson@3120
   687
by (rtac (rangeI RS LListD_Fun_CONS_I RS prod_fun_imageI) 1);
paulson@3120
   688
by (rtac (prem RS prod_fun_imageI) 1);
paulson@3120
   689
qed "llistD_Fun_LCons_I";
paulson@3120
   690
paulson@3120
   691
(*Utilise the "strong" part, i.e. gfp(f)*)
paulson@3120
   692
goalw LList.thy [llistD_Fun_def]
paulson@3120
   693
     "!!l. (l,l) : llistD_Fun(r Un range(%x.(x,x)))";
paulson@3120
   694
by (rtac (Rep_llist_inverse RS subst) 1);
paulson@3120
   695
by (rtac prod_fun_imageI 1);
paulson@3120
   696
by (stac image_Un 1);
paulson@3120
   697
by (stac prod_fun_range_eq_diag 1);
paulson@3120
   698
by (rtac (Rep_llist RS LListD_Fun_diag_I) 1);
paulson@3120
   699
qed "llistD_Fun_range_I";
paulson@3120
   700
paulson@3120
   701
(*A special case of list_equality for functions over lazy lists*)
paulson@3120
   702
val [prem1,prem2] = goal LList.thy
paulson@3120
   703
    "[| f(LNil)=g(LNil);                                                \
paulson@3120
   704
\       !!x l. (f(LCons x l),g(LCons x l)) :                            \
paulson@3120
   705
\              llistD_Fun(range(%u. (f(u),g(u))) Un range(%v. (v,v)))   \
paulson@3120
   706
\    |] ==> f(l) = (g(l :: 'a llist) :: 'b llist)";
paulson@3120
   707
by (res_inst_tac [("r", "range(%u. (f(u),g(u)))")] llist_equalityI 1);
paulson@3120
   708
by (rtac rangeI 1);
paulson@3120
   709
by (rtac subsetI 1);
paulson@3120
   710
by (etac rangeE 1);
paulson@3120
   711
by (etac ssubst 1);
paulson@3120
   712
by (res_inst_tac [("l", "u")] llistE 1);
paulson@3120
   713
by (etac ssubst 1);
paulson@3120
   714
by (stac prem1 1);
paulson@3120
   715
by (rtac llistD_Fun_range_I 1);
paulson@3120
   716
by (etac ssubst 1);
paulson@3120
   717
by (rtac prem2 1);
paulson@3120
   718
qed "llist_fun_equalityI";
paulson@3120
   719
paulson@3120
   720
(*simpset for llist bisimulations*)
paulson@3120
   721
Addsimps [llist_case_LNil, llist_case_LCons, 
paulson@3120
   722
          llistD_Fun_LNil_I, llistD_Fun_LCons_I];
paulson@3120
   723
paulson@3120
   724
paulson@3120
   725
(*** The functional "lmap" ***)
paulson@3120
   726
paulson@3120
   727
goal LList.thy "lmap f LNil = LNil";
paulson@3120
   728
by (rtac (lmap_def RS def_llist_corec RS trans) 1);
paulson@3120
   729
by (Simp_tac 1);
paulson@3120
   730
qed "lmap_LNil";
paulson@3120
   731
paulson@3120
   732
goal LList.thy "lmap f (LCons M N) = LCons (f M) (lmap f N)";
paulson@3120
   733
by (rtac (lmap_def RS def_llist_corec RS trans) 1);
paulson@3120
   734
by (Simp_tac 1);
paulson@3120
   735
qed "lmap_LCons";
paulson@3120
   736
paulson@3120
   737
Addsimps [lmap_LNil, lmap_LCons];
paulson@3120
   738
paulson@3120
   739
paulson@3120
   740
(** Two easy results about lmap **)
paulson@3120
   741
paulson@3120
   742
goal LList.thy "lmap (f o g) l = lmap f (lmap g l)";
paulson@3120
   743
by (res_inst_tac [("l","l")] llist_fun_equalityI 1);
paulson@3120
   744
by (ALLGOALS Simp_tac);
paulson@3120
   745
qed "lmap_compose";
paulson@3120
   746
wenzelm@3842
   747
goal LList.thy "lmap (%x. x) l = l";
paulson@3120
   748
by (res_inst_tac [("l","l")] llist_fun_equalityI 1);
paulson@3120
   749
by (ALLGOALS Simp_tac);
paulson@3120
   750
qed "lmap_ident";
paulson@3120
   751
paulson@3120
   752
paulson@3120
   753
(*** iterates -- llist_fun_equalityI cannot be used! ***)
paulson@3120
   754
paulson@3120
   755
goal LList.thy "iterates f x = LCons x (iterates f (f x))";
paulson@3120
   756
by (rtac (iterates_def RS def_llist_corec RS trans) 1);
paulson@3120
   757
by (Simp_tac 1);
paulson@3120
   758
qed "iterates";
paulson@3120
   759
paulson@3120
   760
goal LList.thy "lmap f (iterates f x) = iterates f (f x)";
paulson@3120
   761
by (res_inst_tac [("r", "range(%u.(lmap f (iterates f u),iterates f (f u)))")] 
paulson@3120
   762
    llist_equalityI 1);
paulson@3120
   763
by (rtac rangeI 1);
paulson@4160
   764
by Safe_tac;
paulson@3120
   765
by (res_inst_tac [("x1", "f(u)")] (iterates RS ssubst) 1);
paulson@3120
   766
by (res_inst_tac [("x1", "u")] (iterates RS ssubst) 1);
paulson@3120
   767
by (Simp_tac 1);
paulson@3120
   768
qed "lmap_iterates";
paulson@3120
   769
paulson@3120
   770
goal LList.thy "iterates f x = LCons x (lmap f (iterates f x))";
paulson@3120
   771
by (stac lmap_iterates 1);
paulson@3120
   772
by (rtac iterates 1);
paulson@3120
   773
qed "iterates_lmap";
paulson@3120
   774
paulson@3120
   775
(*** A rather complex proof about iterates -- cf Andy Pitts ***)
paulson@3120
   776
paulson@3120
   777
(** Two lemmas about natrec n x (%m.g), which is essentially (g^n)(x) **)
paulson@3120
   778
paulson@3120
   779
goal LList.thy
paulson@3120
   780
    "nat_rec (LCons b l) (%m. lmap(f)) n =      \
paulson@3120
   781
\    LCons (nat_rec b (%m. f) n) (nat_rec l (%m. lmap(f)) n)";
paulson@3120
   782
by (nat_ind_tac "n" 1);
paulson@3120
   783
by (ALLGOALS Asm_simp_tac);
paulson@3120
   784
qed "fun_power_lmap";
paulson@3120
   785
paulson@3120
   786
goal Nat.thy "nat_rec (g x) (%m. g) n = nat_rec x (%m. g) (Suc n)";
paulson@3120
   787
by (nat_ind_tac "n" 1);
paulson@3120
   788
by (ALLGOALS Asm_simp_tac);
paulson@3120
   789
qed "fun_power_Suc";
paulson@3120
   790
paulson@3120
   791
val Pair_cong = read_instantiate_sg (sign_of Prod.thy)
paulson@3120
   792
 [("f","Pair")] (standard(refl RS cong RS cong));
paulson@3120
   793
paulson@3120
   794
(*The bisimulation consists of {(lmap(f)^n (h(u)), lmap(f)^n (iterates(f,u)))}
paulson@3120
   795
  for all u and all n::nat.*)
paulson@3120
   796
val [prem] = goal LList.thy
paulson@3120
   797
    "(!!x. h(x) = LCons x (lmap f (h x))) ==> h = iterates(f)";
paulson@3120
   798
by (rtac ext 1);
paulson@3120
   799
by (res_inst_tac [("r", 
wenzelm@3842
   800
   "UN u. range(%n. (nat_rec (h u) (%m y. lmap f y) n, \
wenzelm@3842
   801
\                    nat_rec (iterates f u) (%m y. lmap f y) n))")] 
paulson@3120
   802
    llist_equalityI 1);
paulson@3120
   803
by (REPEAT (resolve_tac [UN1_I, range_eqI, Pair_cong, nat_rec_0 RS sym] 1));
paulson@4160
   804
by (Clarify_tac 1);
paulson@3120
   805
by (stac iterates 1);
paulson@3120
   806
by (stac prem 1);
paulson@3120
   807
by (stac fun_power_lmap 1);
paulson@3120
   808
by (stac fun_power_lmap 1);
paulson@3120
   809
by (rtac llistD_Fun_LCons_I 1);
paulson@3120
   810
by (rtac (lmap_iterates RS subst) 1);
paulson@3120
   811
by (stac fun_power_Suc 1);
paulson@3120
   812
by (stac fun_power_Suc 1);
paulson@3120
   813
by (rtac (UN1_I RS UnI1) 1);
paulson@3120
   814
by (rtac rangeI 1);
paulson@3120
   815
qed "iterates_equality";
paulson@3120
   816
paulson@3120
   817
paulson@3120
   818
(*** lappend -- its two arguments cause some complications! ***)
paulson@3120
   819
paulson@3120
   820
goalw LList.thy [lappend_def] "lappend LNil LNil = LNil";
paulson@3120
   821
by (rtac (llist_corec RS trans) 1);
paulson@3120
   822
by (Simp_tac 1);
paulson@3120
   823
qed "lappend_LNil_LNil";
paulson@3120
   824
paulson@3120
   825
goalw LList.thy [lappend_def]
paulson@3120
   826
    "lappend LNil (LCons l l') = LCons l (lappend LNil l')";
paulson@3120
   827
by (rtac (llist_corec RS trans) 1);
paulson@3120
   828
by (Simp_tac 1);
paulson@3120
   829
qed "lappend_LNil_LCons";
paulson@3120
   830
paulson@3120
   831
goalw LList.thy [lappend_def]
paulson@3120
   832
    "lappend (LCons l l') N = LCons l (lappend l' N)";
paulson@3120
   833
by (rtac (llist_corec RS trans) 1);
paulson@3120
   834
by (Simp_tac 1);
paulson@3120
   835
qed "lappend_LCons";
paulson@3120
   836
paulson@3120
   837
Addsimps [lappend_LNil_LNil, lappend_LNil_LCons, lappend_LCons];
paulson@3120
   838
paulson@3120
   839
goal LList.thy "lappend LNil l = l";
paulson@3120
   840
by (res_inst_tac [("l","l")] llist_fun_equalityI 1);
paulson@3120
   841
by (ALLGOALS Simp_tac);
paulson@3120
   842
qed "lappend_LNil";
paulson@3120
   843
paulson@3120
   844
goal LList.thy "lappend l LNil = l";
paulson@3120
   845
by (res_inst_tac [("l","l")] llist_fun_equalityI 1);
paulson@3120
   846
by (ALLGOALS Simp_tac);
paulson@3120
   847
qed "lappend_LNil2";
paulson@3120
   848
paulson@3120
   849
Addsimps [lappend_LNil, lappend_LNil2];
paulson@3120
   850
paulson@3120
   851
(*The infinite first argument blocks the second*)
paulson@3120
   852
goal LList.thy "lappend (iterates f x) N = iterates f x";
paulson@3120
   853
by (res_inst_tac [("r", "range(%u.(lappend (iterates f u) N,iterates f u))")] 
paulson@3120
   854
    llist_equalityI 1);
paulson@3120
   855
by (rtac rangeI 1);
paulson@4160
   856
by Safe_tac;
paulson@3120
   857
by (stac iterates 1);
paulson@3120
   858
by (Simp_tac 1);
paulson@3120
   859
qed "lappend_iterates";
paulson@3120
   860
paulson@3120
   861
(** Two proofs that lmap distributes over lappend **)
paulson@3120
   862
paulson@3120
   863
(*Long proof requiring case analysis on both both arguments*)
paulson@3120
   864
goal LList.thy "lmap f (lappend l n) = lappend (lmap f l) (lmap f n)";
paulson@3120
   865
by (res_inst_tac 
paulson@3120
   866
    [("r",  
paulson@3120
   867
      "UN n. range(%l.(lmap f (lappend l n),lappend (lmap f l) (lmap f n)))")] 
paulson@3120
   868
    llist_equalityI 1);
paulson@3120
   869
by (rtac UN1_I 1);
paulson@3120
   870
by (rtac rangeI 1);
paulson@4160
   871
by Safe_tac;
paulson@3120
   872
by (res_inst_tac [("l", "l")] llistE 1);
paulson@3120
   873
by (res_inst_tac [("l", "n")] llistE 1);
paulson@3120
   874
by (ALLGOALS Asm_simp_tac);
paulson@3120
   875
by (REPEAT_SOME (ares_tac [llistD_Fun_LCons_I, UN1_I RS UnI1, rangeI]));
paulson@3120
   876
qed "lmap_lappend_distrib";
paulson@3120
   877
paulson@3120
   878
(*Shorter proof of theorem above using llist_equalityI as strong coinduction*)
paulson@3120
   879
goal LList.thy "lmap f (lappend l n) = lappend (lmap f l) (lmap f n)";
paulson@3120
   880
by (res_inst_tac [("l","l")] llist_fun_equalityI 1);
paulson@3120
   881
by (Simp_tac 1);
paulson@3120
   882
by (Simp_tac 1);
paulson@3120
   883
qed "lmap_lappend_distrib";
paulson@3120
   884
paulson@3120
   885
(*Without strong coinduction, three case analyses might be needed*)
paulson@3120
   886
goal LList.thy "lappend (lappend l1 l2) l3 = lappend l1 (lappend l2 l3)";
paulson@3120
   887
by (res_inst_tac [("l","l1")] llist_fun_equalityI 1);
paulson@3120
   888
by (Simp_tac 1);
paulson@3120
   889
by (Simp_tac 1);
paulson@3120
   890
qed "lappend_assoc";