src/HOL/UNITY/UNITY.ML
author paulson
Wed Aug 25 11:02:37 1999 +0200 (1999-08-25)
changeset 7345 59bc887290df
parent 7240 a509730e424b
child 7403 c318acb88251
permissions -rw-r--r--
tidied
paulson@4776
     1
(*  Title:      HOL/UNITY/UNITY
paulson@4776
     2
    ID:         $Id$
paulson@4776
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@4776
     4
    Copyright   1998  University of Cambridge
paulson@4776
     5
paulson@4776
     6
The basic UNITY theory (revised version, based upon the "co" operator)
paulson@4776
     7
paulson@4776
     8
From Misra, "A Logic for Concurrent Programming", 1994
paulson@4776
     9
*)
paulson@4776
    10
paulson@4776
    11
set proof_timing;
paulson@4776
    12
paulson@4776
    13
paulson@6012
    14
(*** General lemmas ***)
paulson@6012
    15
paulson@6012
    16
Goal "UNIV Times UNIV = UNIV";
paulson@6012
    17
by Auto_tac;
paulson@6012
    18
qed "UNIV_Times_UNIV"; 
paulson@6012
    19
Addsimps [UNIV_Times_UNIV];
paulson@6012
    20
paulson@6012
    21
Goal "- (UNIV Times A) = UNIV Times (-A)";
paulson@6012
    22
by Auto_tac;
paulson@6012
    23
qed "Compl_Times_UNIV1"; 
paulson@6012
    24
paulson@6012
    25
Goal "- (A Times UNIV) = (-A) Times UNIV";
paulson@6012
    26
by Auto_tac;
paulson@6012
    27
qed "Compl_Times_UNIV2"; 
paulson@6012
    28
paulson@6012
    29
Addsimps [Compl_Times_UNIV1, Compl_Times_UNIV2]; 
paulson@6012
    30
paulson@6012
    31
paulson@6535
    32
(*** The abstract type of programs ***)
paulson@6535
    33
paulson@6535
    34
val rep_ss = simpset() addsimps 
paulson@6535
    35
                [Init_def, Acts_def, mk_program_def, Program_def, Rep_Program, 
paulson@6535
    36
		 Rep_Program_inverse, Abs_Program_inverse];
paulson@6535
    37
paulson@6535
    38
paulson@6535
    39
Goal "Id : Acts F";
paulson@6535
    40
by (cut_inst_tac [("x", "F")] Rep_Program 1);
paulson@6535
    41
by (auto_tac (claset(), rep_ss));
paulson@6535
    42
qed "Id_in_Acts";
paulson@6535
    43
AddIffs [Id_in_Acts];
paulson@6535
    44
paulson@6535
    45
Goal "insert Id (Acts F) = Acts F";
paulson@6535
    46
by (simp_tac (simpset() addsimps [insert_absorb, Id_in_Acts]) 1);
paulson@6535
    47
qed "insert_Id_Acts";
paulson@6535
    48
AddIffs [insert_Id_Acts];
paulson@6535
    49
paulson@6535
    50
(** Inspectors for type "program" **)
paulson@6535
    51
paulson@6535
    52
Goal "Init (mk_program (init,acts)) = init";
paulson@6535
    53
by (auto_tac (claset(), rep_ss));
paulson@6535
    54
qed "Init_eq";
paulson@6535
    55
paulson@6535
    56
Goal "Acts (mk_program (init,acts)) = insert Id acts";
paulson@6535
    57
by (auto_tac (claset(), rep_ss));
paulson@6535
    58
qed "Acts_eq";
paulson@6535
    59
paulson@6535
    60
Addsimps [Acts_eq, Init_eq];
paulson@6535
    61
paulson@6535
    62
paulson@6535
    63
(** The notation of equality for type "program" **)
paulson@6535
    64
paulson@6535
    65
Goal "[| Init F = Init G; Acts F = Acts G |] ==> F = G";
paulson@6535
    66
by (subgoals_tac ["EX x. Rep_Program F = x",
paulson@6535
    67
		  "EX x. Rep_Program G = x"] 1);
paulson@6535
    68
by (REPEAT (Blast_tac 2));
paulson@6535
    69
by (Clarify_tac 1);
paulson@6535
    70
by (auto_tac (claset(), rep_ss));
paulson@6535
    71
by (REPEAT (dres_inst_tac [("f", "Abs_Program")] arg_cong 1));
paulson@6535
    72
by (asm_full_simp_tac rep_ss 1);
paulson@6535
    73
qed "program_equalityI";
paulson@6535
    74
paulson@6535
    75
val [major,minor] =
paulson@6535
    76
Goal "[| F = G; [| Init F = Init G; Acts F = Acts G |] ==> P |] ==> P";
paulson@6535
    77
by (rtac minor 1);
paulson@6535
    78
by (auto_tac (claset(), simpset() addsimps [major]));
paulson@6535
    79
qed "program_equalityE";
paulson@6535
    80
paulson@6535
    81
paulson@6535
    82
(*** These rules allow "lazy" definition expansion 
paulson@6535
    83
     They avoid expanding the full program, which is a large expression
paulson@6535
    84
***)
paulson@6535
    85
paulson@6535
    86
Goal "F == mk_program (init,acts) ==> Init F = init";
paulson@6535
    87
by Auto_tac;
paulson@6535
    88
qed "def_prg_Init";
paulson@6535
    89
paulson@6535
    90
(*The program is not expanded, but its Init and Acts are*)
paulson@6535
    91
val [rew] = goal thy
paulson@6535
    92
    "[| F == mk_program (init,acts) |] \
paulson@6535
    93
\    ==> Init F = init & Acts F = insert Id acts";
paulson@6535
    94
by (rewtac rew);
paulson@6535
    95
by Auto_tac;
paulson@6535
    96
qed "def_prg_simps";
paulson@6535
    97
paulson@6535
    98
(*An action is expanded only if a pair of states is being tested against it*)
paulson@6535
    99
Goal "[| act == {(s,s'). P s s'} |] ==> ((s,s') : act) = P s s'";
paulson@6535
   100
by Auto_tac;
paulson@6535
   101
qed "def_act_simp";
paulson@6535
   102
paulson@6535
   103
fun simp_of_act def = def RS def_act_simp;
paulson@6535
   104
paulson@6535
   105
(*A set is expanded only if an element is being tested against it*)
paulson@6535
   106
Goal "A == B ==> (x : A) = (x : B)";
paulson@6535
   107
by Auto_tac;
paulson@6535
   108
qed "def_set_simp";
paulson@6535
   109
paulson@6535
   110
fun simp_of_set def = def RS def_set_simp;
paulson@6535
   111
paulson@6535
   112
paulson@6536
   113
(*** co ***)
paulson@4776
   114
paulson@6536
   115
overload_1st_set "UNITY.op co";
paulson@5648
   116
overload_1st_set "UNITY.stable";
paulson@5648
   117
overload_1st_set "UNITY.unless";
paulson@5340
   118
paulson@5277
   119
val prems = Goalw [constrains_def]
paulson@5648
   120
    "(!!act s s'. [| act: Acts F;  (s,s') : act;  s: A |] ==> s': A') \
paulson@6536
   121
\    ==> F : A co A'";
paulson@4776
   122
by (blast_tac (claset() addIs prems) 1);
paulson@4776
   123
qed "constrainsI";
paulson@4776
   124
wenzelm@5069
   125
Goalw [constrains_def]
paulson@6536
   126
    "[| F : A co A'; act: Acts F;  (s,s'): act;  s: A |] ==> s': A'";
paulson@4776
   127
by (Blast_tac 1);
paulson@4776
   128
qed "constrainsD";
paulson@4776
   129
paulson@6536
   130
Goalw [constrains_def] "F : {} co B";
paulson@4776
   131
by (Blast_tac 1);
paulson@4776
   132
qed "constrains_empty";
paulson@4776
   133
paulson@6536
   134
Goalw [constrains_def] "F : A co UNIV";
paulson@4776
   135
by (Blast_tac 1);
paulson@4776
   136
qed "constrains_UNIV";
paulson@4776
   137
AddIffs [constrains_empty, constrains_UNIV];
paulson@4776
   138
paulson@5648
   139
(*monotonic in 2nd argument*)
wenzelm@5069
   140
Goalw [constrains_def]
paulson@6536
   141
    "[| F : A co A'; A'<=B' |] ==> F : A co B'";
paulson@4776
   142
by (Blast_tac 1);
paulson@4776
   143
qed "constrains_weaken_R";
paulson@4776
   144
paulson@5648
   145
(*anti-monotonic in 1st argument*)
wenzelm@5069
   146
Goalw [constrains_def]
paulson@6536
   147
    "[| F : A co A'; B<=A |] ==> F : B co A'";
paulson@4776
   148
by (Blast_tac 1);
paulson@4776
   149
qed "constrains_weaken_L";
paulson@4776
   150
wenzelm@5069
   151
Goalw [constrains_def]
paulson@6536
   152
   "[| F : A co A'; B<=A; A'<=B' |] ==> F : B co B'";
paulson@4776
   153
by (Blast_tac 1);
paulson@4776
   154
qed "constrains_weaken";
paulson@4776
   155
paulson@4776
   156
(** Union **)
paulson@4776
   157
wenzelm@5069
   158
Goalw [constrains_def]
paulson@7345
   159
    "[| F : A co A'; F : B co B' |] ==> F : (A Un B) co (A' Un B')";
paulson@4776
   160
by (Blast_tac 1);
paulson@4776
   161
qed "constrains_Un";
paulson@4776
   162
wenzelm@5069
   163
Goalw [constrains_def]
paulson@7345
   164
    "ALL i:I. F : (A i) co (A' i) ==> F : (UN i:I. A i) co (UN i:I. A' i)";
paulson@4776
   165
by (Blast_tac 1);
paulson@4776
   166
qed "ball_constrains_UN";
paulson@4776
   167
paulson@4776
   168
(** Intersection **)
paulson@4776
   169
wenzelm@5069
   170
Goalw [constrains_def]
paulson@7345
   171
    "[| F : A co A'; F : B co B' |] ==> F : (A Int B) co (A' Int B')";
paulson@4776
   172
by (Blast_tac 1);
paulson@4776
   173
qed "constrains_Int";
paulson@4776
   174
wenzelm@5069
   175
Goalw [constrains_def]
paulson@7345
   176
    "ALL i:I. F : (A i) co (A' i) ==> F : (INT i:I. A i) co (INT i:I. A' i)";
paulson@4776
   177
by (Blast_tac 1);
paulson@4776
   178
qed "ball_constrains_INT";
paulson@4776
   179
paulson@6536
   180
Goalw [constrains_def] "F : A co A' ==> A <= A'";
paulson@6295
   181
by Auto_tac;
paulson@5277
   182
qed "constrains_imp_subset";
paulson@4776
   183
paulson@6536
   184
(*The reasoning is by subsets since "co" refers to single actions
paulson@6012
   185
  only.  So this rule isn't that useful.*)
paulson@6295
   186
Goalw [constrains_def]
paulson@6536
   187
    "[| F : A co B; F : B co C |] ==> F : A co C";
paulson@6295
   188
by (Blast_tac 1);
paulson@5277
   189
qed "constrains_trans";
paulson@4776
   190
paulson@6295
   191
Goalw [constrains_def]
paulson@7345
   192
   "[| F : A co (A' Un B); F : B co B' |] ==> F : A co (A' Un B')";
paulson@6295
   193
by (Clarify_tac 1);
paulson@6295
   194
by (Blast_tac 1);
paulson@6012
   195
qed "constrains_cancel";
paulson@6012
   196
paulson@4776
   197
paulson@4776
   198
(*** stable ***)
paulson@4776
   199
paulson@6536
   200
Goalw [stable_def] "F : A co A ==> F : stable A";
paulson@4776
   201
by (assume_tac 1);
paulson@4776
   202
qed "stableI";
paulson@4776
   203
paulson@6536
   204
Goalw [stable_def] "F : stable A ==> F : A co A";
paulson@4776
   205
by (assume_tac 1);
paulson@4776
   206
qed "stableD";
paulson@4776
   207
paulson@5804
   208
(** Union **)
paulson@5804
   209
wenzelm@5069
   210
Goalw [stable_def]
paulson@5648
   211
    "[| F : stable A; F : stable A' |] ==> F : stable (A Un A')";
paulson@4776
   212
by (blast_tac (claset() addIs [constrains_Un]) 1);
paulson@4776
   213
qed "stable_Un";
paulson@4776
   214
wenzelm@5069
   215
Goalw [stable_def]
paulson@5804
   216
    "ALL i:I. F : stable (A i) ==> F : stable (UN i:I. A i)";
paulson@5804
   217
by (blast_tac (claset() addIs [ball_constrains_UN]) 1);
paulson@5804
   218
qed "ball_stable_UN";
paulson@5804
   219
paulson@5804
   220
(** Intersection **)
paulson@5804
   221
paulson@5804
   222
Goalw [stable_def]
paulson@5648
   223
    "[| F : stable A; F : stable A' |] ==> F : stable (A Int A')";
paulson@4776
   224
by (blast_tac (claset() addIs [constrains_Int]) 1);
paulson@4776
   225
qed "stable_Int";
paulson@4776
   226
paulson@5804
   227
Goalw [stable_def]
paulson@5804
   228
    "ALL i:I. F : stable (A i) ==> F : stable (INT i:I. A i)";
paulson@5804
   229
by (blast_tac (claset() addIs [ball_constrains_INT]) 1);
paulson@5804
   230
qed "ball_stable_INT";
paulson@5804
   231
paulson@5277
   232
Goalw [stable_def, constrains_def]
paulson@7345
   233
    "[| F : stable C; F : A co (C Un A') |] ==> F : (C Un A) co (C Un A')";
paulson@4776
   234
by (Blast_tac 1);
paulson@5277
   235
qed "stable_constrains_Un";
paulson@4776
   236
paulson@5277
   237
Goalw [stable_def, constrains_def]
paulson@7345
   238
  "[| F : stable C; F :  (C Int A) co  A' |] ==> F : (C Int A) co (C Int A')";
paulson@4776
   239
by (Blast_tac 1);
paulson@5277
   240
qed "stable_constrains_Int";
paulson@4776
   241
paulson@6536
   242
(*[| F : stable C; F :  co (C Int A) A |] ==> F : stable (C Int A)*)
paulson@5648
   243
bind_thm ("stable_constrains_stable", stable_constrains_Int RS stableI);
paulson@5648
   244
paulson@5648
   245
paulson@5804
   246
(*** invariant ***)
paulson@5648
   247
paulson@5648
   248
Goal "[| Init F<=A;  F: stable A |] ==> F : invariant A";
paulson@5648
   249
by (asm_simp_tac (simpset() addsimps [invariant_def]) 1);
paulson@5648
   250
qed "invariantI";
paulson@5648
   251
paulson@5648
   252
(*Could also say "invariant A Int invariant B <= invariant (A Int B)"*)
paulson@5648
   253
Goal "[| F : invariant A;  F : invariant B |] ==> F : invariant (A Int B)";
paulson@5648
   254
by (auto_tac (claset(), simpset() addsimps [invariant_def, stable_Int]));
paulson@5648
   255
qed "invariant_Int";
paulson@5648
   256
paulson@5648
   257
paulson@5648
   258
(*** increasing ***)
paulson@5648
   259
paulson@5648
   260
Goalw [increasing_def, stable_def, constrains_def]
paulson@6712
   261
     "mono g ==> increasing f <= increasing (g o f)";
paulson@5648
   262
by Auto_tac;
paulson@6712
   263
by (blast_tac (claset() addIs [monoD, order_trans]) 1);
paulson@6712
   264
qed "mono_increasing_o";
paulson@5648
   265
paulson@5648
   266
Goalw [increasing_def]
paulson@5648
   267
     "increasing f <= {F. ALL z::nat. F: stable {s. z < f s}}";
paulson@5648
   268
by (simp_tac (simpset() addsimps [Suc_le_eq RS sym]) 1);
paulson@5648
   269
by (Blast_tac 1);
paulson@5804
   270
qed "increasing_stable_less";
paulson@5648
   271
paulson@5648
   272
paulson@5648
   273
(** The Elimination Theorem.  The "free" m has become universally quantified!
paulson@5648
   274
    Should the premise be !!m instead of ALL m ?  Would make it harder to use
paulson@5648
   275
    in forward proof. **)
paulson@5648
   276
wenzelm@5069
   277
Goalw [constrains_def]
paulson@6536
   278
    "[| ALL m:M. F : {s. s x = m} co (B m) |] \
paulson@6536
   279
\    ==> F : {s. s x : M} co (UN m:M. B m)";
paulson@4776
   280
by (Blast_tac 1);
paulson@4776
   281
qed "elimination";
paulson@4776
   282
paulson@4776
   283
(*As above, but for the trivial case of a one-variable state, in which the
paulson@4776
   284
  state is identified with its one variable.*)
wenzelm@5069
   285
Goalw [constrains_def]
paulson@6536
   286
    "(ALL m:M. F : {m} co (B m)) ==> F : M co (UN m:M. B m)";
paulson@4776
   287
by (Blast_tac 1);
paulson@4776
   288
qed "elimination_sing";
paulson@4776
   289
paulson@4776
   290
paulson@4776
   291
paulson@4776
   292
(*** Theoretical Results from Section 6 ***)
paulson@4776
   293
wenzelm@5069
   294
Goalw [constrains_def, strongest_rhs_def]
paulson@6536
   295
    "F : A co (strongest_rhs F A )";
paulson@4776
   296
by (Blast_tac 1);
paulson@4776
   297
qed "constrains_strongest_rhs";
paulson@4776
   298
wenzelm@5069
   299
Goalw [constrains_def, strongest_rhs_def]
paulson@6536
   300
    "F : A co B ==> strongest_rhs F A <= B";
paulson@4776
   301
by (Blast_tac 1);
paulson@4776
   302
qed "strongest_rhs_is_strongest";