src/HOL/Library/Dlist.thy
author haftmann
Mon Sep 13 16:43:23 2010 +0200 (2010-09-13)
changeset 39380 5a2662c1e44a
parent 38857 97775f3e8722
child 39727 5dab9549c80d
permissions -rw-r--r--
established emerging canonical names *_eqI and *_eq_iff
haftmann@35303
     1
(* Author: Florian Haftmann, TU Muenchen *)
haftmann@35303
     2
haftmann@35303
     3
header {* Lists with elements distinct as canonical example for datatype invariants *}
haftmann@35303
     4
haftmann@35303
     5
theory Dlist
haftmann@37473
     6
imports Main Fset
haftmann@35303
     7
begin
haftmann@35303
     8
haftmann@35303
     9
section {* The type of distinct lists *}
haftmann@35303
    10
haftmann@35303
    11
typedef (open) 'a dlist = "{xs::'a list. distinct xs}"
haftmann@35303
    12
  morphisms list_of_dlist Abs_dlist
haftmann@35303
    13
proof
haftmann@35303
    14
  show "[] \<in> ?dlist" by simp
haftmann@35303
    15
qed
haftmann@35303
    16
haftmann@39380
    17
lemma dlist_eq_iff:
haftmann@39380
    18
  "dxs = dys \<longleftrightarrow> list_of_dlist dxs = list_of_dlist dys"
haftmann@39380
    19
  by (simp add: list_of_dlist_inject)
haftmann@36274
    20
haftmann@39380
    21
lemma dlist_eqI:
haftmann@39380
    22
  "list_of_dlist dxs = list_of_dlist dys \<Longrightarrow> dxs = dys"
haftmann@39380
    23
  by (simp add: dlist_eq_iff)
haftmann@36112
    24
haftmann@35303
    25
text {* Formal, totalized constructor for @{typ "'a dlist"}: *}
haftmann@35303
    26
haftmann@35303
    27
definition Dlist :: "'a list \<Rightarrow> 'a dlist" where
haftmann@37765
    28
  "Dlist xs = Abs_dlist (remdups xs)"
haftmann@35303
    29
haftmann@39380
    30
lemma distinct_list_of_dlist [simp, intro]:
haftmann@35303
    31
  "distinct (list_of_dlist dxs)"
haftmann@35303
    32
  using list_of_dlist [of dxs] by simp
haftmann@35303
    33
haftmann@35303
    34
lemma list_of_dlist_Dlist [simp]:
haftmann@35303
    35
  "list_of_dlist (Dlist xs) = remdups xs"
haftmann@35303
    36
  by (simp add: Dlist_def Abs_dlist_inverse)
haftmann@35303
    37
haftmann@36112
    38
lemma Dlist_list_of_dlist [simp, code abstype]:
haftmann@35303
    39
  "Dlist (list_of_dlist dxs) = dxs"
haftmann@35303
    40
  by (simp add: Dlist_def list_of_dlist_inverse distinct_remdups_id)
haftmann@35303
    41
haftmann@35303
    42
haftmann@35303
    43
text {* Fundamental operations: *}
haftmann@35303
    44
haftmann@35303
    45
definition empty :: "'a dlist" where
haftmann@35303
    46
  "empty = Dlist []"
haftmann@35303
    47
haftmann@35303
    48
definition insert :: "'a \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where
haftmann@35303
    49
  "insert x dxs = Dlist (List.insert x (list_of_dlist dxs))"
haftmann@35303
    50
haftmann@35303
    51
definition remove :: "'a \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where
haftmann@35303
    52
  "remove x dxs = Dlist (remove1 x (list_of_dlist dxs))"
haftmann@35303
    53
haftmann@35303
    54
definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b dlist" where
haftmann@35303
    55
  "map f dxs = Dlist (remdups (List.map f (list_of_dlist dxs)))"
haftmann@35303
    56
haftmann@35303
    57
definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where
haftmann@35303
    58
  "filter P dxs = Dlist (List.filter P (list_of_dlist dxs))"
haftmann@35303
    59
haftmann@35303
    60
haftmann@35303
    61
text {* Derived operations: *}
haftmann@35303
    62
haftmann@35303
    63
definition null :: "'a dlist \<Rightarrow> bool" where
haftmann@35303
    64
  "null dxs = List.null (list_of_dlist dxs)"
haftmann@35303
    65
haftmann@35303
    66
definition member :: "'a dlist \<Rightarrow> 'a \<Rightarrow> bool" where
haftmann@35303
    67
  "member dxs = List.member (list_of_dlist dxs)"
haftmann@35303
    68
haftmann@35303
    69
definition length :: "'a dlist \<Rightarrow> nat" where
haftmann@35303
    70
  "length dxs = List.length (list_of_dlist dxs)"
haftmann@35303
    71
haftmann@35303
    72
definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b \<Rightarrow> 'b" where
haftmann@37022
    73
  "fold f dxs = More_List.fold f (list_of_dlist dxs)"
haftmann@37022
    74
haftmann@37022
    75
definition foldr :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b \<Rightarrow> 'b" where
haftmann@37022
    76
  "foldr f dxs = List.foldr f (list_of_dlist dxs)"
haftmann@35303
    77
haftmann@35303
    78
haftmann@35303
    79
section {* Executable version obeying invariant *}
haftmann@35303
    80
haftmann@35303
    81
lemma list_of_dlist_empty [simp, code abstract]:
haftmann@35303
    82
  "list_of_dlist empty = []"
haftmann@35303
    83
  by (simp add: empty_def)
haftmann@35303
    84
haftmann@35303
    85
lemma list_of_dlist_insert [simp, code abstract]:
haftmann@35303
    86
  "list_of_dlist (insert x dxs) = List.insert x (list_of_dlist dxs)"
haftmann@35303
    87
  by (simp add: insert_def)
haftmann@35303
    88
haftmann@35303
    89
lemma list_of_dlist_remove [simp, code abstract]:
haftmann@35303
    90
  "list_of_dlist (remove x dxs) = remove1 x (list_of_dlist dxs)"
haftmann@35303
    91
  by (simp add: remove_def)
haftmann@35303
    92
haftmann@35303
    93
lemma list_of_dlist_map [simp, code abstract]:
haftmann@35303
    94
  "list_of_dlist (map f dxs) = remdups (List.map f (list_of_dlist dxs))"
haftmann@35303
    95
  by (simp add: map_def)
haftmann@35303
    96
haftmann@35303
    97
lemma list_of_dlist_filter [simp, code abstract]:
haftmann@35303
    98
  "list_of_dlist (filter P dxs) = List.filter P (list_of_dlist dxs)"
haftmann@35303
    99
  by (simp add: filter_def)
haftmann@35303
   100
haftmann@35303
   101
haftmann@36980
   102
text {* Explicit executable conversion *}
haftmann@36980
   103
haftmann@36980
   104
definition dlist_of_list [simp]:
haftmann@36980
   105
  "dlist_of_list = Dlist"
haftmann@36980
   106
haftmann@36980
   107
lemma [code abstract]:
haftmann@36980
   108
  "list_of_dlist (dlist_of_list xs) = remdups xs"
haftmann@36980
   109
  by simp
haftmann@36980
   110
haftmann@36980
   111
haftmann@38512
   112
text {* Equality *}
haftmann@38512
   113
haftmann@38857
   114
instantiation dlist :: (equal) equal
haftmann@38512
   115
begin
haftmann@38512
   116
haftmann@38857
   117
definition "HOL.equal dxs dys \<longleftrightarrow> HOL.equal (list_of_dlist dxs) (list_of_dlist dys)"
haftmann@38512
   118
haftmann@38512
   119
instance proof
haftmann@38857
   120
qed (simp add: equal_dlist_def equal list_of_dlist_inject)
haftmann@38512
   121
haftmann@38512
   122
end
haftmann@38512
   123
haftmann@38857
   124
lemma [code nbe]:
haftmann@38857
   125
  "HOL.equal (dxs :: 'a::equal dlist) dxs \<longleftrightarrow> True"
haftmann@38857
   126
  by (fact equal_refl)
haftmann@38857
   127
haftmann@38512
   128
haftmann@37106
   129
section {* Induction principle and case distinction *}
haftmann@37106
   130
haftmann@37106
   131
lemma dlist_induct [case_names empty insert, induct type: dlist]:
haftmann@37106
   132
  assumes empty: "P empty"
haftmann@37106
   133
  assumes insrt: "\<And>x dxs. \<not> member dxs x \<Longrightarrow> P dxs \<Longrightarrow> P (insert x dxs)"
haftmann@37106
   134
  shows "P dxs"
haftmann@37106
   135
proof (cases dxs)
haftmann@37106
   136
  case (Abs_dlist xs)
haftmann@37106
   137
  then have "distinct xs" and dxs: "dxs = Dlist xs" by (simp_all add: Dlist_def distinct_remdups_id)
haftmann@37106
   138
  from `distinct xs` have "P (Dlist xs)"
haftmann@37106
   139
  proof (induct xs rule: distinct_induct)
haftmann@37106
   140
    case Nil from empty show ?case by (simp add: empty_def)
haftmann@37106
   141
  next
haftmann@37106
   142
    case (insert x xs)
haftmann@37106
   143
    then have "\<not> member (Dlist xs) x" and "P (Dlist xs)"
haftmann@37595
   144
      by (simp_all add: member_def List.member_def)
haftmann@37106
   145
    with insrt have "P (insert x (Dlist xs))" .
haftmann@37106
   146
    with insert show ?case by (simp add: insert_def distinct_remdups_id)
haftmann@37106
   147
  qed
haftmann@37106
   148
  with dxs show "P dxs" by simp
haftmann@37106
   149
qed
haftmann@37106
   150
haftmann@37106
   151
lemma dlist_case [case_names empty insert, cases type: dlist]:
haftmann@37106
   152
  assumes empty: "dxs = empty \<Longrightarrow> P"
haftmann@37106
   153
  assumes insert: "\<And>x dys. \<not> member dys x \<Longrightarrow> dxs = insert x dys \<Longrightarrow> P"
haftmann@37106
   154
  shows P
haftmann@37106
   155
proof (cases dxs)
haftmann@37106
   156
  case (Abs_dlist xs)
haftmann@37106
   157
  then have dxs: "dxs = Dlist xs" and distinct: "distinct xs"
haftmann@37106
   158
    by (simp_all add: Dlist_def distinct_remdups_id)
haftmann@37106
   159
  show P proof (cases xs)
haftmann@37106
   160
    case Nil with dxs have "dxs = empty" by (simp add: empty_def) 
haftmann@37106
   161
    with empty show P .
haftmann@37106
   162
  next
haftmann@37106
   163
    case (Cons x xs)
haftmann@37106
   164
    with dxs distinct have "\<not> member (Dlist xs) x"
haftmann@37106
   165
      and "dxs = insert x (Dlist xs)"
haftmann@37595
   166
      by (simp_all add: member_def List.member_def insert_def distinct_remdups_id)
haftmann@37106
   167
    with insert show P .
haftmann@37106
   168
  qed
haftmann@37106
   169
qed
haftmann@37106
   170
haftmann@37106
   171
haftmann@35303
   172
section {* Implementation of sets by distinct lists -- canonical! *}
haftmann@35303
   173
haftmann@35303
   174
definition Set :: "'a dlist \<Rightarrow> 'a fset" where
haftmann@35303
   175
  "Set dxs = Fset.Set (list_of_dlist dxs)"
haftmann@35303
   176
haftmann@35303
   177
definition Coset :: "'a dlist \<Rightarrow> 'a fset" where
haftmann@35303
   178
  "Coset dxs = Fset.Coset (list_of_dlist dxs)"
haftmann@35303
   179
haftmann@35303
   180
code_datatype Set Coset
haftmann@35303
   181
haftmann@35303
   182
declare member_code [code del]
haftmann@35303
   183
declare is_empty_Set [code del]
haftmann@35303
   184
declare empty_Set [code del]
haftmann@35303
   185
declare UNIV_Set [code del]
haftmann@35303
   186
declare insert_Set [code del]
haftmann@35303
   187
declare remove_Set [code del]
haftmann@37029
   188
declare compl_Set [code del]
haftmann@37029
   189
declare compl_Coset [code del]
haftmann@35303
   190
declare map_Set [code del]
haftmann@35303
   191
declare filter_Set [code del]
haftmann@35303
   192
declare forall_Set [code del]
haftmann@35303
   193
declare exists_Set [code del]
haftmann@35303
   194
declare card_Set [code del]
haftmann@35303
   195
declare inter_project [code del]
haftmann@35303
   196
declare subtract_remove [code del]
haftmann@35303
   197
declare union_insert [code del]
haftmann@35303
   198
declare Infimum_inf [code del]
haftmann@35303
   199
declare Supremum_sup [code del]
haftmann@35303
   200
haftmann@35303
   201
lemma Set_Dlist [simp]:
haftmann@35303
   202
  "Set (Dlist xs) = Fset (set xs)"
haftmann@37473
   203
  by (rule fset_eqI) (simp add: Set_def)
haftmann@35303
   204
haftmann@35303
   205
lemma Coset_Dlist [simp]:
haftmann@35303
   206
  "Coset (Dlist xs) = Fset (- set xs)"
haftmann@37473
   207
  by (rule fset_eqI) (simp add: Coset_def)
haftmann@35303
   208
haftmann@35303
   209
lemma member_Set [simp]:
haftmann@35303
   210
  "Fset.member (Set dxs) = List.member (list_of_dlist dxs)"
haftmann@35303
   211
  by (simp add: Set_def member_set)
haftmann@35303
   212
haftmann@35303
   213
lemma member_Coset [simp]:
haftmann@35303
   214
  "Fset.member (Coset dxs) = Not \<circ> List.member (list_of_dlist dxs)"
haftmann@35303
   215
  by (simp add: Coset_def member_set not_set_compl)
haftmann@35303
   216
haftmann@36980
   217
lemma Set_dlist_of_list [code]:
haftmann@36980
   218
  "Fset.Set xs = Set (dlist_of_list xs)"
haftmann@37473
   219
  by (rule fset_eqI) simp
haftmann@36980
   220
haftmann@36980
   221
lemma Coset_dlist_of_list [code]:
haftmann@36980
   222
  "Fset.Coset xs = Coset (dlist_of_list xs)"
haftmann@37473
   223
  by (rule fset_eqI) simp
haftmann@36980
   224
haftmann@35303
   225
lemma is_empty_Set [code]:
haftmann@35303
   226
  "Fset.is_empty (Set dxs) \<longleftrightarrow> null dxs"
haftmann@37595
   227
  by (simp add: null_def List.null_def member_set)
haftmann@35303
   228
haftmann@35303
   229
lemma bot_code [code]:
haftmann@35303
   230
  "bot = Set empty"
haftmann@35303
   231
  by (simp add: empty_def)
haftmann@35303
   232
haftmann@35303
   233
lemma top_code [code]:
haftmann@35303
   234
  "top = Coset empty"
haftmann@35303
   235
  by (simp add: empty_def)
haftmann@35303
   236
haftmann@35303
   237
lemma insert_code [code]:
haftmann@35303
   238
  "Fset.insert x (Set dxs) = Set (insert x dxs)"
haftmann@35303
   239
  "Fset.insert x (Coset dxs) = Coset (remove x dxs)"
haftmann@35303
   240
  by (simp_all add: insert_def remove_def member_set not_set_compl)
haftmann@35303
   241
haftmann@35303
   242
lemma remove_code [code]:
haftmann@35303
   243
  "Fset.remove x (Set dxs) = Set (remove x dxs)"
haftmann@35303
   244
  "Fset.remove x (Coset dxs) = Coset (insert x dxs)"
haftmann@35303
   245
  by (auto simp add: insert_def remove_def member_set not_set_compl)
haftmann@35303
   246
haftmann@35303
   247
lemma member_code [code]:
haftmann@35303
   248
  "Fset.member (Set dxs) = member dxs"
haftmann@35303
   249
  "Fset.member (Coset dxs) = Not \<circ> member dxs"
haftmann@35303
   250
  by (simp_all add: member_def)
haftmann@35303
   251
haftmann@37029
   252
lemma compl_code [code]:
haftmann@37029
   253
  "- Set dxs = Coset dxs"
haftmann@37029
   254
  "- Coset dxs = Set dxs"
haftmann@37473
   255
  by (rule fset_eqI, simp add: member_set not_set_compl)+
haftmann@37029
   256
haftmann@35303
   257
lemma map_code [code]:
haftmann@35303
   258
  "Fset.map f (Set dxs) = Set (map f dxs)"
haftmann@37473
   259
  by (rule fset_eqI) (simp add: member_set)
haftmann@35303
   260
  
haftmann@35303
   261
lemma filter_code [code]:
haftmann@35303
   262
  "Fset.filter f (Set dxs) = Set (filter f dxs)"
haftmann@37473
   263
  by (rule fset_eqI) (simp add: member_set)
haftmann@35303
   264
haftmann@35303
   265
lemma forall_Set [code]:
haftmann@35303
   266
  "Fset.forall P (Set xs) \<longleftrightarrow> list_all P (list_of_dlist xs)"
haftmann@35303
   267
  by (simp add: member_set list_all_iff)
haftmann@35303
   268
haftmann@35303
   269
lemma exists_Set [code]:
haftmann@35303
   270
  "Fset.exists P (Set xs) \<longleftrightarrow> list_ex P (list_of_dlist xs)"
haftmann@35303
   271
  by (simp add: member_set list_ex_iff)
haftmann@35303
   272
haftmann@35303
   273
lemma card_code [code]:
haftmann@35303
   274
  "Fset.card (Set dxs) = length dxs"
haftmann@35303
   275
  by (simp add: length_def member_set distinct_card)
haftmann@35303
   276
haftmann@35303
   277
lemma inter_code [code]:
haftmann@35303
   278
  "inf A (Set xs) = Set (filter (Fset.member A) xs)"
haftmann@37022
   279
  "inf A (Coset xs) = foldr Fset.remove xs A"
haftmann@37022
   280
  by (simp_all only: Set_def Coset_def foldr_def inter_project list_of_dlist_filter)
haftmann@35303
   281
haftmann@35303
   282
lemma subtract_code [code]:
haftmann@37022
   283
  "A - Set xs = foldr Fset.remove xs A"
haftmann@35303
   284
  "A - Coset xs = Set (filter (Fset.member A) xs)"
haftmann@37022
   285
  by (simp_all only: Set_def Coset_def foldr_def subtract_remove list_of_dlist_filter)
haftmann@35303
   286
haftmann@35303
   287
lemma union_code [code]:
haftmann@37022
   288
  "sup (Set xs) A = foldr Fset.insert xs A"
haftmann@35303
   289
  "sup (Coset xs) A = Coset (filter (Not \<circ> Fset.member A) xs)"
haftmann@37022
   290
  by (simp_all only: Set_def Coset_def foldr_def union_insert list_of_dlist_filter)
haftmann@35303
   291
haftmann@35303
   292
context complete_lattice
haftmann@35303
   293
begin
haftmann@35303
   294
haftmann@35303
   295
lemma Infimum_code [code]:
haftmann@37022
   296
  "Infimum (Set As) = foldr inf As top"
haftmann@37022
   297
  by (simp only: Set_def Infimum_inf foldr_def inf.commute)
haftmann@35303
   298
haftmann@35303
   299
lemma Supremum_code [code]:
haftmann@37022
   300
  "Supremum (Set As) = foldr sup As bot"
haftmann@37022
   301
  by (simp only: Set_def Supremum_sup foldr_def sup.commute)
haftmann@35303
   302
haftmann@35303
   303
end
haftmann@35303
   304
haftmann@38512
   305
haftmann@37022
   306
hide_const (open) member fold foldr empty insert remove map filter null member length fold
haftmann@35303
   307
haftmann@35303
   308
end