src/ZF/Constructible/Datatype_absolute.thy
author wenzelm
Tue Nov 07 19:40:13 2006 +0100 (2006-11-07)
changeset 21233 5a5c8ea5f66a
parent 16417 9bc16273c2d4
child 21404 eb85850d3eb7
permissions -rw-r--r--
tuned specifications;
paulson@13505
     1
(*  Title:      ZF/Constructible/Datatype_absolute.thy
paulson@13505
     2
    ID: $Id$
paulson@13505
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@13505
     4
*)
paulson@13505
     5
paulson@13306
     6
header {*Absoluteness Properties for Recursive Datatypes*}
paulson@13306
     7
haftmann@16417
     8
theory Datatype_absolute imports Formula WF_absolute begin
paulson@13268
     9
paulson@13268
    10
paulson@13268
    11
subsection{*The lfp of a continuous function can be expressed as a union*}
paulson@13268
    12
wenzelm@21233
    13
definition
paulson@13385
    14
  directed :: "i=>o"
paulson@13385
    15
   "directed(A) == A\<noteq>0 & (\<forall>x\<in>A. \<forall>y\<in>A. x \<union> y \<in> A)"
paulson@13385
    16
paulson@13385
    17
  contin :: "(i=>i) => o"
paulson@13385
    18
   "contin(h) == (\<forall>A. directed(A) --> h(\<Union>A) = (\<Union>X\<in>A. h(X)))"
paulson@13268
    19
paulson@13268
    20
lemma bnd_mono_iterates_subset: "[|bnd_mono(D, h); n \<in> nat|] ==> h^n (0) <= D"
paulson@13268
    21
apply (induct_tac n) 
paulson@13268
    22
 apply (simp_all add: bnd_mono_def, blast) 
paulson@13268
    23
done
paulson@13268
    24
paulson@13385
    25
lemma bnd_mono_increasing [rule_format]:
paulson@13385
    26
     "[|i \<in> nat; j \<in> nat; bnd_mono(D,h)|] ==> i \<le> j --> h^i(0) \<subseteq> h^j(0)"
paulson@13385
    27
apply (rule_tac m=i and n=j in diff_induct, simp_all)
paulson@13385
    28
apply (blast del: subsetI
paulson@13398
    29
	     intro: bnd_mono_iterates_subset bnd_monoD2 [of concl: h]) 
paulson@13385
    30
done
paulson@13385
    31
paulson@13385
    32
lemma directed_iterates: "bnd_mono(D,h) ==> directed({h^n (0). n\<in>nat})"
paulson@13385
    33
apply (simp add: directed_def, clarify) 
paulson@13385
    34
apply (rename_tac i j)
paulson@13385
    35
apply (rule_tac x="i \<union> j" in bexI) 
paulson@13385
    36
apply (rule_tac i = i and j = j in Ord_linear_le)
paulson@13385
    37
apply (simp_all add: subset_Un_iff [THEN iffD1] le_imp_subset
paulson@13385
    38
                     subset_Un_iff2 [THEN iffD1])
paulson@13385
    39
apply (simp_all add: subset_Un_iff [THEN iff_sym] bnd_mono_increasing
paulson@13385
    40
                     subset_Un_iff2 [THEN iff_sym])
paulson@13385
    41
done
paulson@13385
    42
paulson@13268
    43
paulson@13268
    44
lemma contin_iterates_eq: 
paulson@13385
    45
    "[|bnd_mono(D, h); contin(h)|] 
paulson@13385
    46
     ==> h(\<Union>n\<in>nat. h^n (0)) = (\<Union>n\<in>nat. h^n (0))"
paulson@13385
    47
apply (simp add: contin_def directed_iterates) 
paulson@13268
    48
apply (rule trans) 
paulson@13268
    49
apply (rule equalityI) 
paulson@13385
    50
 apply (simp_all add: UN_subset_iff)
paulson@13268
    51
 apply safe
paulson@13268
    52
 apply (erule_tac [2] natE) 
paulson@13268
    53
  apply (rule_tac a="succ(x)" in UN_I) 
paulson@13268
    54
   apply simp_all 
paulson@13268
    55
apply blast 
paulson@13268
    56
done
paulson@13268
    57
paulson@13268
    58
lemma lfp_subset_Union:
paulson@13268
    59
     "[|bnd_mono(D, h); contin(h)|] ==> lfp(D,h) <= (\<Union>n\<in>nat. h^n(0))"
paulson@13268
    60
apply (rule lfp_lowerbound) 
paulson@13268
    61
 apply (simp add: contin_iterates_eq) 
paulson@13268
    62
apply (simp add: contin_def bnd_mono_iterates_subset UN_subset_iff) 
paulson@13268
    63
done
paulson@13268
    64
paulson@13268
    65
lemma Union_subset_lfp:
paulson@13268
    66
     "bnd_mono(D,h) ==> (\<Union>n\<in>nat. h^n(0)) <= lfp(D,h)"
paulson@13268
    67
apply (simp add: UN_subset_iff)
paulson@13268
    68
apply (rule ballI)  
paulson@13339
    69
apply (induct_tac n, simp_all) 
paulson@13268
    70
apply (rule subset_trans [of _ "h(lfp(D,h))"])
paulson@13398
    71
 apply (blast dest: bnd_monoD2 [OF _ _ lfp_subset])  
paulson@13268
    72
apply (erule lfp_lemma2) 
paulson@13268
    73
done
paulson@13268
    74
paulson@13268
    75
lemma lfp_eq_Union:
paulson@13268
    76
     "[|bnd_mono(D, h); contin(h)|] ==> lfp(D,h) = (\<Union>n\<in>nat. h^n(0))"
paulson@13268
    77
by (blast del: subsetI 
paulson@13268
    78
          intro: lfp_subset_Union Union_subset_lfp)
paulson@13268
    79
paulson@13268
    80
paulson@13385
    81
subsubsection{*Some Standard Datatype Constructions Preserve Continuity*}
paulson@13385
    82
paulson@13385
    83
lemma contin_imp_mono: "[|X\<subseteq>Y; contin(F)|] ==> F(X) \<subseteq> F(Y)"
paulson@13385
    84
apply (simp add: contin_def) 
paulson@13385
    85
apply (drule_tac x="{X,Y}" in spec) 
paulson@13385
    86
apply (simp add: directed_def subset_Un_iff2 Un_commute) 
paulson@13385
    87
done
paulson@13385
    88
paulson@13385
    89
lemma sum_contin: "[|contin(F); contin(G)|] ==> contin(\<lambda>X. F(X) + G(X))"
paulson@13385
    90
by (simp add: contin_def, blast)
paulson@13385
    91
paulson@13385
    92
lemma prod_contin: "[|contin(F); contin(G)|] ==> contin(\<lambda>X. F(X) * G(X))" 
paulson@13385
    93
apply (subgoal_tac "\<forall>B C. F(B) \<subseteq> F(B \<union> C)")
paulson@13385
    94
 prefer 2 apply (simp add: Un_upper1 contin_imp_mono) 
paulson@13385
    95
apply (subgoal_tac "\<forall>B C. G(C) \<subseteq> G(B \<union> C)")
paulson@13385
    96
 prefer 2 apply (simp add: Un_upper2 contin_imp_mono) 
paulson@13385
    97
apply (simp add: contin_def, clarify) 
paulson@13385
    98
apply (rule equalityI) 
paulson@13385
    99
 prefer 2 apply blast 
paulson@13385
   100
apply clarify 
paulson@13385
   101
apply (rename_tac B C) 
paulson@13385
   102
apply (rule_tac a="B \<union> C" in UN_I) 
paulson@13385
   103
 apply (simp add: directed_def, blast)  
paulson@13385
   104
done
paulson@13385
   105
paulson@13385
   106
lemma const_contin: "contin(\<lambda>X. A)"
paulson@13385
   107
by (simp add: contin_def directed_def)
paulson@13385
   108
paulson@13385
   109
lemma id_contin: "contin(\<lambda>X. X)"
paulson@13385
   110
by (simp add: contin_def)
paulson@13385
   111
paulson@13385
   112
paulson@13385
   113
paulson@13268
   114
subsection {*Absoluteness for "Iterates"*}
paulson@13268
   115
wenzelm@21233
   116
definition
paulson@13353
   117
paulson@13353
   118
  iterates_MH :: "[i=>o, [i,i]=>o, i, i, i, i] => o"
paulson@13353
   119
   "iterates_MH(M,isF,v,n,g,z) ==
paulson@13353
   120
        is_nat_case(M, v, \<lambda>m u. \<exists>gm[M]. fun_apply(M,g,m,gm) & isF(gm,u),
paulson@13353
   121
                    n, z)"
paulson@13353
   122
paulson@13687
   123
  is_iterates :: "[i=>o, [i,i]=>o, i, i, i] => o"
paulson@13687
   124
    "is_iterates(M,isF,v,n,Z) == 
paulson@13687
   125
      \<exists>sn[M]. \<exists>msn[M]. successor(M,n,sn) & membership(M,sn,msn) &
paulson@13687
   126
                       is_wfrec(M, iterates_MH(M,isF,v), msn, n, Z)"
paulson@13687
   127
paulson@13353
   128
  iterates_replacement :: "[i=>o, [i,i]=>o, i] => o"
paulson@13353
   129
   "iterates_replacement(M,isF,v) ==
paulson@13363
   130
      \<forall>n[M]. n\<in>nat --> 
paulson@13353
   131
         wfrec_replacement(M, iterates_MH(M,isF,v), Memrel(succ(n)))"
paulson@13353
   132
paulson@13564
   133
lemma (in M_basic) iterates_MH_abs:
paulson@13634
   134
  "[| relation1(M,isF,F); M(n); M(g); M(z) |] 
paulson@13353
   135
   ==> iterates_MH(M,isF,v,n,g,z) <-> z = nat_case(v, \<lambda>m. F(g`m), n)"
paulson@13363
   136
by (simp add: nat_case_abs [of _ "\<lambda>m. F(g ` m)"]
paulson@13634
   137
              relation1_def iterates_MH_def)  
paulson@13353
   138
paulson@13564
   139
lemma (in M_basic) iterates_imp_wfrec_replacement:
paulson@13634
   140
  "[|relation1(M,isF,F); n \<in> nat; iterates_replacement(M,isF,v)|] 
paulson@13353
   141
   ==> wfrec_replacement(M, \<lambda>n f z. z = nat_case(v, \<lambda>m. F(f`m), n), 
paulson@13353
   142
                       Memrel(succ(n)))" 
paulson@13353
   143
by (simp add: iterates_replacement_def iterates_MH_abs)
paulson@13353
   144
paulson@13353
   145
theorem (in M_trancl) iterates_abs:
paulson@13634
   146
  "[| iterates_replacement(M,isF,v); relation1(M,isF,F);
paulson@13353
   147
      n \<in> nat; M(v); M(z); \<forall>x[M]. M(F(x)) |] 
paulson@13655
   148
   ==> is_iterates(M,isF,v,n,z) <-> z = iterates(F,n,v)" 
paulson@13353
   149
apply (frule iterates_imp_wfrec_replacement, assumption+)
paulson@13353
   150
apply (simp add: wf_Memrel trans_Memrel relation_Memrel nat_into_M
paulson@13655
   151
                 is_iterates_def relation2_def iterates_MH_abs 
paulson@13353
   152
                 iterates_nat_def recursor_def transrec_def 
paulson@13353
   153
                 eclose_sing_Ord_eq nat_into_M
paulson@13353
   154
         trans_wfrec_abs [of _ _ _ _ "\<lambda>n g. nat_case(v, \<lambda>m. F(g`m), n)"])
paulson@13353
   155
done
paulson@13353
   156
paulson@13268
   157
paulson@13634
   158
lemma (in M_trancl) iterates_closed [intro,simp]:
paulson@13634
   159
  "[| iterates_replacement(M,isF,v); relation1(M,isF,F);
paulson@13353
   160
      n \<in> nat; M(v); \<forall>x[M]. M(F(x)) |] 
paulson@13268
   161
   ==> M(iterates(F,n,v))"
paulson@13353
   162
apply (frule iterates_imp_wfrec_replacement, assumption+)
paulson@13353
   163
apply (simp add: wf_Memrel trans_Memrel relation_Memrel nat_into_M
paulson@13634
   164
                 relation2_def iterates_MH_abs 
paulson@13353
   165
                 iterates_nat_def recursor_def transrec_def 
paulson@13353
   166
                 eclose_sing_Ord_eq nat_into_M
paulson@13353
   167
         trans_wfrec_closed [of _ _ _ "\<lambda>n g. nat_case(v, \<lambda>m. F(g`m), n)"])
paulson@13353
   168
done
paulson@13268
   169
paulson@13268
   170
paulson@13386
   171
subsection {*lists without univ*}
paulson@13386
   172
paulson@13386
   173
lemmas datatype_univs = Inl_in_univ Inr_in_univ 
paulson@13386
   174
                        Pair_in_univ nat_into_univ A_into_univ 
paulson@13386
   175
paulson@13386
   176
lemma list_fun_bnd_mono: "bnd_mono(univ(A), \<lambda>X. {0} + A*X)"
paulson@13386
   177
apply (rule bnd_monoI)
paulson@13386
   178
 apply (intro subset_refl zero_subset_univ A_subset_univ 
paulson@13386
   179
	      sum_subset_univ Sigma_subset_univ) 
paulson@13386
   180
apply (rule subset_refl sum_mono Sigma_mono | assumption)+
paulson@13386
   181
done
paulson@13386
   182
paulson@13386
   183
lemma list_fun_contin: "contin(\<lambda>X. {0} + A*X)"
paulson@13386
   184
by (intro sum_contin prod_contin id_contin const_contin) 
paulson@13386
   185
paulson@13386
   186
text{*Re-expresses lists using sum and product*}
paulson@13386
   187
lemma list_eq_lfp2: "list(A) = lfp(univ(A), \<lambda>X. {0} + A*X)"
paulson@13386
   188
apply (simp add: list_def) 
paulson@13386
   189
apply (rule equalityI) 
paulson@13386
   190
 apply (rule lfp_lowerbound) 
paulson@13386
   191
  prefer 2 apply (rule lfp_subset)
paulson@13386
   192
 apply (clarify, subst lfp_unfold [OF list_fun_bnd_mono])
paulson@13386
   193
 apply (simp add: Nil_def Cons_def)
paulson@13386
   194
 apply blast 
paulson@13386
   195
txt{*Opposite inclusion*}
paulson@13386
   196
apply (rule lfp_lowerbound) 
paulson@13386
   197
 prefer 2 apply (rule lfp_subset) 
paulson@13386
   198
apply (clarify, subst lfp_unfold [OF list.bnd_mono]) 
paulson@13386
   199
apply (simp add: Nil_def Cons_def)
paulson@13386
   200
apply (blast intro: datatype_univs
paulson@13386
   201
             dest: lfp_subset [THEN subsetD])
paulson@13386
   202
done
paulson@13386
   203
paulson@13386
   204
text{*Re-expresses lists using "iterates", no univ.*}
paulson@13386
   205
lemma list_eq_Union:
paulson@13386
   206
     "list(A) = (\<Union>n\<in>nat. (\<lambda>X. {0} + A*X) ^ n (0))"
paulson@13386
   207
by (simp add: list_eq_lfp2 lfp_eq_Union list_fun_bnd_mono list_fun_contin)
paulson@13386
   208
paulson@13386
   209
wenzelm@21233
   210
definition
paulson@13350
   211
  is_list_functor :: "[i=>o,i,i,i] => o"
paulson@13350
   212
    "is_list_functor(M,A,X,Z) == 
paulson@13350
   213
        \<exists>n1[M]. \<exists>AX[M]. 
paulson@13350
   214
         number1(M,n1) & cartprod(M,A,X,AX) & is_sum(M,n1,AX,Z)"
paulson@13350
   215
paulson@13564
   216
lemma (in M_basic) list_functor_abs [simp]: 
paulson@13350
   217
     "[| M(A); M(X); M(Z) |] ==> is_list_functor(M,A,X,Z) <-> (Z = {0} + A*X)"
paulson@13350
   218
by (simp add: is_list_functor_def singleton_0 nat_into_M)
paulson@13350
   219
paulson@13350
   220
paulson@13386
   221
subsection {*formulas without univ*}
paulson@13386
   222
paulson@13386
   223
lemma formula_fun_bnd_mono:
paulson@13398
   224
     "bnd_mono(univ(0), \<lambda>X. ((nat*nat) + (nat*nat)) + (X*X + X))"
paulson@13386
   225
apply (rule bnd_monoI)
paulson@13386
   226
 apply (intro subset_refl zero_subset_univ A_subset_univ 
paulson@13386
   227
	      sum_subset_univ Sigma_subset_univ nat_subset_univ) 
paulson@13386
   228
apply (rule subset_refl sum_mono Sigma_mono | assumption)+
paulson@13386
   229
done
paulson@13386
   230
paulson@13386
   231
lemma formula_fun_contin:
paulson@13398
   232
     "contin(\<lambda>X. ((nat*nat) + (nat*nat)) + (X*X + X))"
paulson@13386
   233
by (intro sum_contin prod_contin id_contin const_contin) 
paulson@13386
   234
paulson@13386
   235
paulson@13386
   236
text{*Re-expresses formulas using sum and product*}
paulson@13386
   237
lemma formula_eq_lfp2:
paulson@13398
   238
    "formula = lfp(univ(0), \<lambda>X. ((nat*nat) + (nat*nat)) + (X*X + X))"
paulson@13386
   239
apply (simp add: formula_def) 
paulson@13386
   240
apply (rule equalityI) 
paulson@13386
   241
 apply (rule lfp_lowerbound) 
paulson@13386
   242
  prefer 2 apply (rule lfp_subset)
paulson@13386
   243
 apply (clarify, subst lfp_unfold [OF formula_fun_bnd_mono])
paulson@13398
   244
 apply (simp add: Member_def Equal_def Nand_def Forall_def)
paulson@13386
   245
 apply blast 
paulson@13386
   246
txt{*Opposite inclusion*}
paulson@13386
   247
apply (rule lfp_lowerbound) 
paulson@13386
   248
 prefer 2 apply (rule lfp_subset, clarify) 
paulson@13386
   249
apply (subst lfp_unfold [OF formula.bnd_mono, simplified]) 
paulson@13398
   250
apply (simp add: Member_def Equal_def Nand_def Forall_def)  
paulson@13386
   251
apply (elim sumE SigmaE, simp_all) 
paulson@13386
   252
apply (blast intro: datatype_univs dest: lfp_subset [THEN subsetD])+  
paulson@13386
   253
done
paulson@13386
   254
paulson@13386
   255
text{*Re-expresses formulas using "iterates", no univ.*}
paulson@13386
   256
lemma formula_eq_Union:
paulson@13386
   257
     "formula = 
paulson@13398
   258
      (\<Union>n\<in>nat. (\<lambda>X. ((nat*nat) + (nat*nat)) + (X*X + X)) ^ n (0))"
paulson@13386
   259
by (simp add: formula_eq_lfp2 lfp_eq_Union formula_fun_bnd_mono 
paulson@13386
   260
              formula_fun_contin)
paulson@13386
   261
paulson@13386
   262
wenzelm@21233
   263
definition
paulson@13386
   264
  is_formula_functor :: "[i=>o,i,i] => o"
paulson@13386
   265
    "is_formula_functor(M,X,Z) == 
paulson@13398
   266
        \<exists>nat'[M]. \<exists>natnat[M]. \<exists>natnatsum[M]. \<exists>XX[M]. \<exists>X3[M]. 
paulson@13386
   267
          omega(M,nat') & cartprod(M,nat',nat',natnat) & 
paulson@13386
   268
          is_sum(M,natnat,natnat,natnatsum) &
paulson@13398
   269
          cartprod(M,X,X,XX) & is_sum(M,XX,X,X3) & 
paulson@13398
   270
          is_sum(M,natnatsum,X3,Z)"
paulson@13386
   271
paulson@13564
   272
lemma (in M_basic) formula_functor_abs [simp]: 
paulson@13386
   273
     "[| M(X); M(Z) |] 
paulson@13386
   274
      ==> is_formula_functor(M,X,Z) <-> 
paulson@13398
   275
          Z = ((nat*nat) + (nat*nat)) + (X*X + X)"
paulson@13386
   276
by (simp add: is_formula_functor_def) 
paulson@13386
   277
paulson@13386
   278
paulson@13386
   279
subsection{*@{term M} Contains the List and Formula Datatypes*}
paulson@13395
   280
wenzelm@21233
   281
definition
paulson@13397
   282
  list_N :: "[i,i] => i"
paulson@13397
   283
    "list_N(A,n) == (\<lambda>X. {0} + A * X)^n (0)"
paulson@13397
   284
paulson@13397
   285
lemma Nil_in_list_N [simp]: "[] \<in> list_N(A,succ(n))"
paulson@13397
   286
by (simp add: list_N_def Nil_def)
paulson@13397
   287
paulson@13397
   288
lemma Cons_in_list_N [simp]:
paulson@13397
   289
     "Cons(a,l) \<in> list_N(A,succ(n)) <-> a\<in>A & l \<in> list_N(A,n)"
paulson@13397
   290
by (simp add: list_N_def Cons_def) 
paulson@13397
   291
paulson@13397
   292
text{*These two aren't simprules because they reveal the underlying
paulson@13397
   293
list representation.*}
paulson@13397
   294
lemma list_N_0: "list_N(A,0) = 0"
paulson@13397
   295
by (simp add: list_N_def)
paulson@13397
   296
paulson@13397
   297
lemma list_N_succ: "list_N(A,succ(n)) = {0} + A * (list_N(A,n))"
paulson@13397
   298
by (simp add: list_N_def)
paulson@13397
   299
paulson@13397
   300
lemma list_N_imp_list:
paulson@13397
   301
  "[| l \<in> list_N(A,n); n \<in> nat |] ==> l \<in> list(A)"
paulson@13397
   302
by (force simp add: list_eq_Union list_N_def)
paulson@13397
   303
paulson@13397
   304
lemma list_N_imp_length_lt [rule_format]:
paulson@13397
   305
     "n \<in> nat ==> \<forall>l \<in> list_N(A,n). length(l) < n"
paulson@13397
   306
apply (induct_tac n)  
paulson@13397
   307
apply (auto simp add: list_N_0 list_N_succ 
paulson@13397
   308
                      Nil_def [symmetric] Cons_def [symmetric]) 
paulson@13397
   309
done
paulson@13397
   310
paulson@13397
   311
lemma list_imp_list_N [rule_format]:
paulson@13397
   312
     "l \<in> list(A) ==> \<forall>n\<in>nat. length(l) < n --> l \<in> list_N(A, n)"
paulson@13397
   313
apply (induct_tac l)
paulson@13397
   314
apply (force elim: natE)+
paulson@13397
   315
done
paulson@13397
   316
paulson@13397
   317
lemma list_N_imp_eq_length:
paulson@13397
   318
      "[|n \<in> nat; l \<notin> list_N(A, n); l \<in> list_N(A, succ(n))|] 
paulson@13397
   319
       ==> n = length(l)"
paulson@13397
   320
apply (rule le_anti_sym) 
paulson@13397
   321
 prefer 2 apply (simp add: list_N_imp_length_lt) 
paulson@13397
   322
apply (frule list_N_imp_list, simp)
paulson@13397
   323
apply (simp add: not_lt_iff_le [symmetric]) 
paulson@13397
   324
apply (blast intro: list_imp_list_N) 
paulson@13397
   325
done
paulson@13397
   326
  
paulson@13397
   327
text{*Express @{term list_rec} without using @{term rank} or @{term Vset},
paulson@13397
   328
neither of which is absolute.*}
paulson@13564
   329
lemma (in M_trivial) list_rec_eq:
paulson@13397
   330
  "l \<in> list(A) ==>
paulson@13397
   331
   list_rec(a,g,l) = 
paulson@13397
   332
   transrec (succ(length(l)),
paulson@13409
   333
      \<lambda>x h. Lambda (list(A),
paulson@13409
   334
                    list_case' (a, 
paulson@13409
   335
                           \<lambda>a l. g(a, l, h ` succ(length(l)) ` l)))) ` l"
paulson@13397
   336
apply (induct_tac l) 
paulson@13397
   337
apply (subst transrec, simp) 
paulson@13397
   338
apply (subst transrec) 
paulson@13397
   339
apply (simp add: list_imp_list_N) 
paulson@13397
   340
done
paulson@13397
   341
wenzelm@21233
   342
definition
paulson@13397
   343
  is_list_N :: "[i=>o,i,i,i] => o"
paulson@13397
   344
    "is_list_N(M,A,n,Z) == 
paulson@13655
   345
      \<exists>zero[M]. empty(M,zero) & 
paulson@13655
   346
                is_iterates(M, is_list_functor(M,A), zero, n, Z)"
paulson@13395
   347
  
paulson@13395
   348
  mem_list :: "[i=>o,i,i] => o"
paulson@13395
   349
    "mem_list(M,A,l) == 
paulson@13395
   350
      \<exists>n[M]. \<exists>listn[M]. 
paulson@13397
   351
       finite_ordinal(M,n) & is_list_N(M,A,n,listn) & l \<in> listn"
paulson@13395
   352
paulson@13395
   353
  is_list :: "[i=>o,i,i] => o"
paulson@13395
   354
    "is_list(M,A,Z) == \<forall>l[M]. l \<in> Z <-> mem_list(M,A,l)"
paulson@13395
   355
paulson@13493
   356
subsubsection{*Towards Absoluteness of @{term formula_rec}*}
paulson@13493
   357
paulson@13493
   358
consts   depth :: "i=>i"
paulson@13493
   359
primrec
paulson@13493
   360
  "depth(Member(x,y)) = 0"
paulson@13493
   361
  "depth(Equal(x,y))  = 0"
paulson@13493
   362
  "depth(Nand(p,q)) = succ(depth(p) \<union> depth(q))"
paulson@13493
   363
  "depth(Forall(p)) = succ(depth(p))"
paulson@13493
   364
paulson@13493
   365
lemma depth_type [TC]: "p \<in> formula ==> depth(p) \<in> nat"
paulson@13493
   366
by (induct_tac p, simp_all) 
paulson@13493
   367
paulson@13493
   368
wenzelm@21233
   369
definition
paulson@13493
   370
  formula_N :: "i => i"
paulson@13493
   371
    "formula_N(n) == (\<lambda>X. ((nat*nat) + (nat*nat)) + (X*X + X)) ^ n (0)"
paulson@13493
   372
paulson@13493
   373
lemma Member_in_formula_N [simp]:
paulson@13493
   374
     "Member(x,y) \<in> formula_N(succ(n)) <-> x \<in> nat & y \<in> nat"
paulson@13493
   375
by (simp add: formula_N_def Member_def) 
paulson@13493
   376
paulson@13493
   377
lemma Equal_in_formula_N [simp]:
paulson@13493
   378
     "Equal(x,y) \<in> formula_N(succ(n)) <-> x \<in> nat & y \<in> nat"
paulson@13493
   379
by (simp add: formula_N_def Equal_def) 
paulson@13493
   380
paulson@13493
   381
lemma Nand_in_formula_N [simp]:
paulson@13493
   382
     "Nand(x,y) \<in> formula_N(succ(n)) <-> x \<in> formula_N(n) & y \<in> formula_N(n)"
paulson@13493
   383
by (simp add: formula_N_def Nand_def) 
paulson@13493
   384
paulson@13493
   385
lemma Forall_in_formula_N [simp]:
paulson@13493
   386
     "Forall(x) \<in> formula_N(succ(n)) <-> x \<in> formula_N(n)"
paulson@13493
   387
by (simp add: formula_N_def Forall_def) 
paulson@13493
   388
paulson@13493
   389
text{*These two aren't simprules because they reveal the underlying
paulson@13493
   390
formula representation.*}
paulson@13493
   391
lemma formula_N_0: "formula_N(0) = 0"
paulson@13493
   392
by (simp add: formula_N_def)
paulson@13493
   393
paulson@13493
   394
lemma formula_N_succ:
paulson@13493
   395
     "formula_N(succ(n)) = 
paulson@13493
   396
      ((nat*nat) + (nat*nat)) + (formula_N(n) * formula_N(n) + formula_N(n))"
paulson@13493
   397
by (simp add: formula_N_def)
paulson@13493
   398
paulson@13493
   399
lemma formula_N_imp_formula:
paulson@13493
   400
  "[| p \<in> formula_N(n); n \<in> nat |] ==> p \<in> formula"
paulson@13493
   401
by (force simp add: formula_eq_Union formula_N_def)
paulson@13493
   402
paulson@13493
   403
lemma formula_N_imp_depth_lt [rule_format]:
paulson@13493
   404
     "n \<in> nat ==> \<forall>p \<in> formula_N(n). depth(p) < n"
paulson@13493
   405
apply (induct_tac n)  
paulson@13493
   406
apply (auto simp add: formula_N_0 formula_N_succ 
paulson@13493
   407
                      depth_type formula_N_imp_formula Un_least_lt_iff
paulson@13493
   408
                      Member_def [symmetric] Equal_def [symmetric]
paulson@13493
   409
                      Nand_def [symmetric] Forall_def [symmetric]) 
paulson@13493
   410
done
paulson@13493
   411
paulson@13493
   412
lemma formula_imp_formula_N [rule_format]:
paulson@13493
   413
     "p \<in> formula ==> \<forall>n\<in>nat. depth(p) < n --> p \<in> formula_N(n)"
paulson@13493
   414
apply (induct_tac p)
paulson@13493
   415
apply (simp_all add: succ_Un_distrib Un_least_lt_iff) 
paulson@13493
   416
apply (force elim: natE)+
paulson@13493
   417
done
paulson@13493
   418
paulson@13493
   419
lemma formula_N_imp_eq_depth:
paulson@13493
   420
      "[|n \<in> nat; p \<notin> formula_N(n); p \<in> formula_N(succ(n))|] 
paulson@13493
   421
       ==> n = depth(p)"
paulson@13493
   422
apply (rule le_anti_sym) 
paulson@13493
   423
 prefer 2 apply (simp add: formula_N_imp_depth_lt) 
paulson@13493
   424
apply (frule formula_N_imp_formula, simp)
paulson@13493
   425
apply (simp add: not_lt_iff_le [symmetric]) 
paulson@13493
   426
apply (blast intro: formula_imp_formula_N) 
paulson@13493
   427
done
paulson@13493
   428
paulson@13493
   429
paulson@13647
   430
text{*This result and the next are unused.*}
paulson@13493
   431
lemma formula_N_mono [rule_format]:
paulson@13493
   432
  "[| m \<in> nat; n \<in> nat |] ==> m\<le>n --> formula_N(m) \<subseteq> formula_N(n)"
paulson@13493
   433
apply (rule_tac m = m and n = n in diff_induct)
paulson@13493
   434
apply (simp_all add: formula_N_0 formula_N_succ, blast) 
paulson@13493
   435
done
paulson@13493
   436
paulson@13493
   437
lemma formula_N_distrib:
paulson@13493
   438
  "[| m \<in> nat; n \<in> nat |] ==> formula_N(m \<union> n) = formula_N(m) \<union> formula_N(n)"
paulson@13493
   439
apply (rule_tac i = m and j = n in Ord_linear_le, auto) 
paulson@13493
   440
apply (simp_all add: subset_Un_iff [THEN iffD1] subset_Un_iff2 [THEN iffD1] 
paulson@13493
   441
                     le_imp_subset formula_N_mono)
paulson@13493
   442
done
paulson@13493
   443
wenzelm@21233
   444
definition
paulson@13493
   445
  is_formula_N :: "[i=>o,i,i] => o"
paulson@13493
   446
    "is_formula_N(M,n,Z) == 
paulson@13655
   447
      \<exists>zero[M]. empty(M,zero) & 
paulson@13655
   448
                is_iterates(M, is_formula_functor(M), zero, n, Z)"
paulson@13655
   449
paulson@13493
   450
wenzelm@21233
   451
definition
paulson@13493
   452
  
paulson@13395
   453
  mem_formula :: "[i=>o,i] => o"
paulson@13395
   454
    "mem_formula(M,p) == 
paulson@13395
   455
      \<exists>n[M]. \<exists>formn[M]. 
paulson@13493
   456
       finite_ordinal(M,n) & is_formula_N(M,n,formn) & p \<in> formn"
paulson@13395
   457
paulson@13395
   458
  is_formula :: "[i=>o,i] => o"
paulson@13395
   459
    "is_formula(M,Z) == \<forall>p[M]. p \<in> Z <-> mem_formula(M,p)"
paulson@13395
   460
paulson@13634
   461
locale M_datatypes = M_trancl +
paulson@13655
   462
 assumes list_replacement1:
paulson@13363
   463
   "M(A) ==> iterates_replacement(M, is_list_functor(M,A), 0)"
paulson@13655
   464
  and list_replacement2:
paulson@13655
   465
   "M(A) ==> strong_replacement(M,
paulson@13655
   466
         \<lambda>n y. n\<in>nat & is_iterates(M, is_list_functor(M,A), 0, n, y))"
paulson@13655
   467
  and formula_replacement1:
paulson@13386
   468
   "iterates_replacement(M, is_formula_functor(M), 0)"
paulson@13655
   469
  and formula_replacement2:
paulson@13655
   470
   "strong_replacement(M,
paulson@13655
   471
         \<lambda>n y. n\<in>nat & is_iterates(M, is_formula_functor(M), 0, n, y))"
paulson@13422
   472
  and nth_replacement:
paulson@13422
   473
   "M(l) ==> iterates_replacement(M, %l t. is_tl(M,l,t), l)"
paulson@13655
   474
paulson@13395
   475
paulson@13395
   476
subsubsection{*Absoluteness of the List Construction*}
paulson@13395
   477
paulson@13655
   478
lemma (in M_datatypes) list_replacement2':
paulson@13353
   479
  "M(A) ==> strong_replacement(M, \<lambda>n y. n\<in>nat & y = (\<lambda>X. {0} + A * X)^n (0))"
paulson@13655
   480
apply (insert list_replacement2 [of A])
paulson@13655
   481
apply (rule strong_replacement_cong [THEN iffD1])
paulson@13655
   482
apply (rule conj_cong [OF iff_refl iterates_abs [of "is_list_functor(M,A)"]])
paulson@13655
   483
apply (simp_all add: list_replacement1 relation1_def)
paulson@13353
   484
done
paulson@13268
   485
paulson@13268
   486
lemma (in M_datatypes) list_closed [intro,simp]:
paulson@13268
   487
     "M(A) ==> M(list(A))"
paulson@13353
   488
apply (insert list_replacement1)
paulson@13655
   489
by  (simp add: RepFun_closed2 list_eq_Union
paulson@13634
   490
               list_replacement2' relation1_def
paulson@13353
   491
               iterates_closed [of "is_list_functor(M,A)"])
paulson@13397
   492
paulson@13423
   493
text{*WARNING: use only with @{text "dest:"} or with variables fixed!*}
paulson@13423
   494
lemmas (in M_datatypes) list_into_M = transM [OF _ list_closed]
paulson@13423
   495
paulson@13397
   496
lemma (in M_datatypes) list_N_abs [simp]:
paulson@13655
   497
     "[|M(A); n\<in>nat; M(Z)|]
paulson@13397
   498
      ==> is_list_N(M,A,n,Z) <-> Z = list_N(A,n)"
paulson@13395
   499
apply (insert list_replacement1)
paulson@13634
   500
apply (simp add: is_list_N_def list_N_def relation1_def nat_into_M
paulson@13395
   501
                 iterates_abs [of "is_list_functor(M,A)" _ "\<lambda>X. {0} + A*X"])
paulson@13395
   502
done
paulson@13268
   503
paulson@13397
   504
lemma (in M_datatypes) list_N_closed [intro,simp]:
paulson@13397
   505
     "[|M(A); n\<in>nat|] ==> M(list_N(A,n))"
paulson@13397
   506
apply (insert list_replacement1)
paulson@13634
   507
apply (simp add: is_list_N_def list_N_def relation1_def nat_into_M
paulson@13397
   508
                 iterates_closed [of "is_list_functor(M,A)"])
paulson@13397
   509
done
paulson@13397
   510
paulson@13395
   511
lemma (in M_datatypes) mem_list_abs [simp]:
paulson@13395
   512
     "M(A) ==> mem_list(M,A,l) <-> l \<in> list(A)"
paulson@13395
   513
apply (insert list_replacement1)
paulson@13634
   514
apply (simp add: mem_list_def list_N_def relation1_def list_eq_Union
paulson@13655
   515
                 iterates_closed [of "is_list_functor(M,A)"])
paulson@13395
   516
done
paulson@13395
   517
paulson@13395
   518
lemma (in M_datatypes) list_abs [simp]:
paulson@13395
   519
     "[|M(A); M(Z)|] ==> is_list(M,A,Z) <-> Z = list(A)"
paulson@13395
   520
apply (simp add: is_list_def, safe)
paulson@13395
   521
apply (rule M_equalityI, simp_all)
paulson@13395
   522
done
paulson@13395
   523
paulson@13395
   524
subsubsection{*Absoluteness of Formulas*}
paulson@13293
   525
paulson@13655
   526
lemma (in M_datatypes) formula_replacement2':
paulson@13398
   527
  "strong_replacement(M, \<lambda>n y. n\<in>nat & y = (\<lambda>X. ((nat*nat) + (nat*nat)) + (X*X + X))^n (0))"
paulson@13655
   528
apply (insert formula_replacement2)
paulson@13655
   529
apply (rule strong_replacement_cong [THEN iffD1])
paulson@13655
   530
apply (rule conj_cong [OF iff_refl iterates_abs [of "is_formula_functor(M)"]])
paulson@13655
   531
apply (simp_all add: formula_replacement1 relation1_def)
paulson@13386
   532
done
paulson@13386
   533
paulson@13386
   534
lemma (in M_datatypes) formula_closed [intro,simp]:
paulson@13386
   535
     "M(formula)"
paulson@13386
   536
apply (insert formula_replacement1)
paulson@13655
   537
apply  (simp add: RepFun_closed2 formula_eq_Union
paulson@13634
   538
                  formula_replacement2' relation1_def
paulson@13386
   539
                  iterates_closed [of "is_formula_functor(M)"])
paulson@13386
   540
done
paulson@13386
   541
paulson@13423
   542
lemmas (in M_datatypes) formula_into_M = transM [OF _ formula_closed]
paulson@13423
   543
paulson@13493
   544
lemma (in M_datatypes) formula_N_abs [simp]:
paulson@13655
   545
     "[|n\<in>nat; M(Z)|]
paulson@13493
   546
      ==> is_formula_N(M,n,Z) <-> Z = formula_N(n)"
paulson@13395
   547
apply (insert formula_replacement1)
paulson@13634
   548
apply (simp add: is_formula_N_def formula_N_def relation1_def nat_into_M
paulson@13655
   549
                 iterates_abs [of "is_formula_functor(M)" _
paulson@13493
   550
                                  "\<lambda>X. ((nat*nat) + (nat*nat)) + (X*X + X)"])
paulson@13493
   551
done
paulson@13493
   552
paulson@13493
   553
lemma (in M_datatypes) formula_N_closed [intro,simp]:
paulson@13493
   554
     "n\<in>nat ==> M(formula_N(n))"
paulson@13493
   555
apply (insert formula_replacement1)
paulson@13634
   556
apply (simp add: is_formula_N_def formula_N_def relation1_def nat_into_M
paulson@13493
   557
                 iterates_closed [of "is_formula_functor(M)"])
paulson@13395
   558
done
paulson@13395
   559
paulson@13395
   560
lemma (in M_datatypes) mem_formula_abs [simp]:
paulson@13395
   561
     "mem_formula(M,l) <-> l \<in> formula"
paulson@13395
   562
apply (insert formula_replacement1)
paulson@13634
   563
apply (simp add: mem_formula_def relation1_def formula_eq_Union formula_N_def
paulson@13655
   564
                 iterates_closed [of "is_formula_functor(M)"])
paulson@13395
   565
done
paulson@13395
   566
paulson@13395
   567
lemma (in M_datatypes) formula_abs [simp]:
paulson@13395
   568
     "[|M(Z)|] ==> is_formula(M,Z) <-> Z = formula"
paulson@13395
   569
apply (simp add: is_formula_def, safe)
paulson@13395
   570
apply (rule M_equalityI, simp_all)
paulson@13395
   571
done
paulson@13395
   572
paulson@13395
   573
paulson@13395
   574
subsection{*Absoluteness for @{text \<epsilon>}-Closure: the @{term eclose} Operator*}
paulson@13395
   575
paulson@13395
   576
text{*Re-expresses eclose using "iterates"*}
paulson@13395
   577
lemma eclose_eq_Union:
paulson@13395
   578
     "eclose(A) = (\<Union>n\<in>nat. Union^n (A))"
paulson@13655
   579
apply (simp add: eclose_def)
paulson@13655
   580
apply (rule UN_cong)
paulson@13395
   581
apply (rule refl)
paulson@13395
   582
apply (induct_tac n)
paulson@13655
   583
apply (simp add: nat_rec_0)
paulson@13655
   584
apply (simp add: nat_rec_succ)
paulson@13395
   585
done
paulson@13395
   586
wenzelm@21233
   587
definition
paulson@13395
   588
  is_eclose_n :: "[i=>o,i,i,i] => o"
paulson@13655
   589
    "is_eclose_n(M,A,n,Z) == is_iterates(M, big_union(M), A, n, Z)"
paulson@13655
   590
paulson@13395
   591
  mem_eclose :: "[i=>o,i,i] => o"
paulson@13655
   592
    "mem_eclose(M,A,l) ==
paulson@13655
   593
      \<exists>n[M]. \<exists>eclosen[M].
paulson@13395
   594
       finite_ordinal(M,n) & is_eclose_n(M,A,n,eclosen) & l \<in> eclosen"
paulson@13395
   595
paulson@13395
   596
  is_eclose :: "[i=>o,i,i] => o"
paulson@13395
   597
    "is_eclose(M,A,Z) == \<forall>u[M]. u \<in> Z <-> mem_eclose(M,A,u)"
paulson@13395
   598
paulson@13395
   599
wenzelm@13428
   600
locale M_eclose = M_datatypes +
paulson@13655
   601
 assumes eclose_replacement1:
paulson@13395
   602
   "M(A) ==> iterates_replacement(M, big_union(M), A)"
paulson@13655
   603
  and eclose_replacement2:
paulson@13655
   604
   "M(A) ==> strong_replacement(M,
paulson@13655
   605
         \<lambda>n y. n\<in>nat & is_iterates(M, big_union(M), A, n, y))"
paulson@13395
   606
paulson@13655
   607
lemma (in M_eclose) eclose_replacement2':
paulson@13395
   608
  "M(A) ==> strong_replacement(M, \<lambda>n y. n\<in>nat & y = Union^n (A))"
paulson@13655
   609
apply (insert eclose_replacement2 [of A])
paulson@13655
   610
apply (rule strong_replacement_cong [THEN iffD1])
paulson@13655
   611
apply (rule conj_cong [OF iff_refl iterates_abs [of "big_union(M)"]])
paulson@13655
   612
apply (simp_all add: eclose_replacement1 relation1_def)
paulson@13395
   613
done
paulson@13395
   614
paulson@13395
   615
lemma (in M_eclose) eclose_closed [intro,simp]:
paulson@13395
   616
     "M(A) ==> M(eclose(A))"
paulson@13395
   617
apply (insert eclose_replacement1)
paulson@13655
   618
by  (simp add: RepFun_closed2 eclose_eq_Union
paulson@13634
   619
               eclose_replacement2' relation1_def
paulson@13395
   620
               iterates_closed [of "big_union(M)"])
paulson@13395
   621
paulson@13395
   622
lemma (in M_eclose) is_eclose_n_abs [simp]:
paulson@13395
   623
     "[|M(A); n\<in>nat; M(Z)|] ==> is_eclose_n(M,A,n,Z) <-> Z = Union^n (A)"
paulson@13395
   624
apply (insert eclose_replacement1)
paulson@13634
   625
apply (simp add: is_eclose_n_def relation1_def nat_into_M
paulson@13395
   626
                 iterates_abs [of "big_union(M)" _ "Union"])
paulson@13395
   627
done
paulson@13395
   628
paulson@13395
   629
lemma (in M_eclose) mem_eclose_abs [simp]:
paulson@13395
   630
     "M(A) ==> mem_eclose(M,A,l) <-> l \<in> eclose(A)"
paulson@13395
   631
apply (insert eclose_replacement1)
paulson@13634
   632
apply (simp add: mem_eclose_def relation1_def eclose_eq_Union
paulson@13655
   633
                 iterates_closed [of "big_union(M)"])
paulson@13395
   634
done
paulson@13395
   635
paulson@13395
   636
lemma (in M_eclose) eclose_abs [simp]:
paulson@13395
   637
     "[|M(A); M(Z)|] ==> is_eclose(M,A,Z) <-> Z = eclose(A)"
paulson@13395
   638
apply (simp add: is_eclose_def, safe)
paulson@13395
   639
apply (rule M_equalityI, simp_all)
paulson@13395
   640
done
paulson@13395
   641
paulson@13395
   642
paulson@13395
   643
subsection {*Absoluteness for @{term transrec}*}
paulson@13395
   644
paulson@13395
   645
text{* @{term "transrec(a,H) \<equiv> wfrec(Memrel(eclose({a})), a, H)"} *}
wenzelm@21233
   646
definition
paulson@13395
   647
paulson@13395
   648
  is_transrec :: "[i=>o, [i,i,i]=>o, i, i] => o"
paulson@13655
   649
   "is_transrec(M,MH,a,z) ==
paulson@13655
   650
      \<exists>sa[M]. \<exists>esa[M]. \<exists>mesa[M].
paulson@13395
   651
       upair(M,a,a,sa) & is_eclose(M,sa,esa) & membership(M,esa,mesa) &
paulson@13395
   652
       is_wfrec(M,MH,mesa,a,z)"
paulson@13395
   653
paulson@13395
   654
  transrec_replacement :: "[i=>o, [i,i,i]=>o, i] => o"
paulson@13395
   655
   "transrec_replacement(M,MH,a) ==
paulson@13655
   656
      \<exists>sa[M]. \<exists>esa[M]. \<exists>mesa[M].
paulson@13395
   657
       upair(M,a,a,sa) & is_eclose(M,sa,esa) & membership(M,esa,mesa) &
paulson@13395
   658
       wfrec_replacement(M,MH,mesa)"
paulson@13395
   659
paulson@13655
   660
text{*The condition @{term "Ord(i)"} lets us use the simpler
paulson@13395
   661
  @{text "trans_wfrec_abs"} rather than @{text "trans_wfrec_abs"},
paulson@13395
   662
  which I haven't even proved yet. *}
paulson@13395
   663
theorem (in M_eclose) transrec_abs:
paulson@13634
   664
  "[|transrec_replacement(M,MH,i);  relation2(M,MH,H);
paulson@13418
   665
     Ord(i);  M(i);  M(z);
paulson@13655
   666
     \<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g))|]
paulson@13655
   667
   ==> is_transrec(M,MH,i,z) <-> z = transrec(i,H)"
paulson@13615
   668
by (simp add: trans_wfrec_abs transrec_replacement_def is_transrec_def
paulson@13395
   669
       transrec_def eclose_sing_Ord_eq wf_Memrel trans_Memrel relation_Memrel)
paulson@13395
   670
paulson@13395
   671
paulson@13395
   672
theorem (in M_eclose) transrec_closed:
paulson@13634
   673
     "[|transrec_replacement(M,MH,i);  relation2(M,MH,H);
paulson@13655
   674
	Ord(i);  M(i);
paulson@13655
   675
	\<forall>x[M]. \<forall>g[M]. function(g) --> M(H(x,g))|]
paulson@13395
   676
      ==> M(transrec(i,H))"
paulson@13615
   677
by (simp add: trans_wfrec_closed transrec_replacement_def is_transrec_def
paulson@13615
   678
        transrec_def eclose_sing_Ord_eq wf_Memrel trans_Memrel relation_Memrel)
paulson@13615
   679
paulson@13395
   680
paulson@13440
   681
text{*Helps to prove instances of @{term transrec_replacement}*}
paulson@13655
   682
lemma (in M_eclose) transrec_replacementI:
paulson@13440
   683
   "[|M(a);
paulson@13655
   684
      strong_replacement (M,
paulson@13655
   685
                  \<lambda>x z. \<exists>y[M]. pair(M, x, y, z) &
paulson@13655
   686
                               is_wfrec(M,MH,Memrel(eclose({a})),x,y))|]
paulson@13440
   687
    ==> transrec_replacement(M,MH,a)"
paulson@13655
   688
by (simp add: transrec_replacement_def wfrec_replacement_def)
paulson@13440
   689
paulson@13395
   690
paulson@13397
   691
subsection{*Absoluteness for the List Operator @{term length}*}
paulson@13647
   692
text{*But it is never used.*}
paulson@13647
   693
wenzelm@21233
   694
definition
paulson@13397
   695
  is_length :: "[i=>o,i,i,i] => o"
paulson@13655
   696
    "is_length(M,A,l,n) ==
paulson@13655
   697
       \<exists>sn[M]. \<exists>list_n[M]. \<exists>list_sn[M].
paulson@13397
   698
        is_list_N(M,A,n,list_n) & l \<notin> list_n &
paulson@13397
   699
        successor(M,n,sn) & is_list_N(M,A,sn,list_sn) & l \<in> list_sn"
paulson@13397
   700
paulson@13397
   701
paulson@13397
   702
lemma (in M_datatypes) length_abs [simp]:
paulson@13397
   703
     "[|M(A); l \<in> list(A); n \<in> nat|] ==> is_length(M,A,l,n) <-> n = length(l)"
paulson@13397
   704
apply (subgoal_tac "M(l) & M(n)")
paulson@13655
   705
 prefer 2 apply (blast dest: transM)
paulson@13397
   706
apply (simp add: is_length_def)
paulson@13397
   707
apply (blast intro: list_imp_list_N nat_into_Ord list_N_imp_eq_length
paulson@13397
   708
             dest: list_N_imp_length_lt)
paulson@13397
   709
done
paulson@13397
   710
paulson@13397
   711
text{*Proof is trivial since @{term length} returns natural numbers.*}
paulson@13564
   712
lemma (in M_trivial) length_closed [intro,simp]:
paulson@13397
   713
     "l \<in> list(A) ==> M(length(l))"
paulson@13655
   714
by (simp add: nat_into_M)
paulson@13397
   715
paulson@13397
   716
paulson@13647
   717
subsection {*Absoluteness for the List Operator @{term nth}*}
paulson@13397
   718
paulson@13397
   719
lemma nth_eq_hd_iterates_tl [rule_format]:
paulson@13397
   720
     "xs \<in> list(A) ==> \<forall>n \<in> nat. nth(n,xs) = hd' (tl'^n (xs))"
paulson@13655
   721
apply (induct_tac xs)
paulson@13655
   722
apply (simp add: iterates_tl_Nil hd'_Nil, clarify)
paulson@13397
   723
apply (erule natE)
paulson@13655
   724
apply (simp add: hd'_Cons)
paulson@13655
   725
apply (simp add: tl'_Cons iterates_commute)
paulson@13397
   726
done
paulson@13397
   727
paulson@13564
   728
lemma (in M_basic) iterates_tl'_closed:
paulson@13397
   729
     "[|n \<in> nat; M(x)|] ==> M(tl'^n (x))"
paulson@13655
   730
apply (induct_tac n, simp)
paulson@13655
   731
apply (simp add: tl'_Cons tl'_closed)
paulson@13397
   732
done
paulson@13397
   733
paulson@13397
   734
text{*Immediate by type-checking*}
paulson@13397
   735
lemma (in M_datatypes) nth_closed [intro,simp]:
paulson@13655
   736
     "[|xs \<in> list(A); n \<in> nat; M(A)|] ==> M(nth(n,xs))"
paulson@13397
   737
apply (case_tac "n < length(xs)")
paulson@13397
   738
 apply (blast intro: nth_type transM)
paulson@13397
   739
apply (simp add: not_lt_iff_le nth_eq_0)
paulson@13397
   740
done
paulson@13397
   741
wenzelm@21233
   742
definition
paulson@13397
   743
  is_nth :: "[i=>o,i,i,i] => o"
paulson@13655
   744
    "is_nth(M,n,l,Z) ==
paulson@13655
   745
      \<exists>X[M]. is_iterates(M, is_tl(M), l, n, X) & is_hd(M,X,Z)"
paulson@13655
   746
paulson@13409
   747
lemma (in M_datatypes) nth_abs [simp]:
paulson@13655
   748
     "[|M(A); n \<in> nat; l \<in> list(A); M(Z)|]
paulson@13397
   749
      ==> is_nth(M,n,l,Z) <-> Z = nth(n,l)"
paulson@13655
   750
apply (subgoal_tac "M(l)")
paulson@13397
   751
 prefer 2 apply (blast intro: transM)
paulson@13397
   752
apply (simp add: is_nth_def nth_eq_hd_iterates_tl nat_into_M
paulson@13655
   753
                 tl'_closed iterates_tl'_closed
paulson@13634
   754
                 iterates_abs [OF _ relation1_tl] nth_replacement)
paulson@13397
   755
done
paulson@13397
   756
paulson@13395
   757
paulson@13398
   758
subsection{*Relativization and Absoluteness for the @{term formula} Constructors*}
paulson@13398
   759
wenzelm@21233
   760
definition
paulson@13398
   761
  is_Member :: "[i=>o,i,i,i] => o"
paulson@13398
   762
     --{* because @{term "Member(x,y) \<equiv> Inl(Inl(\<langle>x,y\<rangle>))"}*}
paulson@13398
   763
    "is_Member(M,x,y,Z) ==
paulson@13398
   764
	\<exists>p[M]. \<exists>u[M]. pair(M,x,y,p) & is_Inl(M,p,u) & is_Inl(M,u,Z)"
paulson@13398
   765
paulson@13564
   766
lemma (in M_trivial) Member_abs [simp]:
paulson@13398
   767
     "[|M(x); M(y); M(Z)|] ==> is_Member(M,x,y,Z) <-> (Z = Member(x,y))"
paulson@13398
   768
by (simp add: is_Member_def Member_def)
paulson@13398
   769
paulson@13564
   770
lemma (in M_trivial) Member_in_M_iff [iff]:
paulson@13398
   771
     "M(Member(x,y)) <-> M(x) & M(y)"
paulson@13655
   772
by (simp add: Member_def)
paulson@13398
   773
wenzelm@21233
   774
definition
paulson@13398
   775
  is_Equal :: "[i=>o,i,i,i] => o"
paulson@13398
   776
     --{* because @{term "Equal(x,y) \<equiv> Inl(Inr(\<langle>x,y\<rangle>))"}*}
paulson@13398
   777
    "is_Equal(M,x,y,Z) ==
paulson@13398
   778
	\<exists>p[M]. \<exists>u[M]. pair(M,x,y,p) & is_Inr(M,p,u) & is_Inl(M,u,Z)"
paulson@13398
   779
paulson@13564
   780
lemma (in M_trivial) Equal_abs [simp]:
paulson@13398
   781
     "[|M(x); M(y); M(Z)|] ==> is_Equal(M,x,y,Z) <-> (Z = Equal(x,y))"
paulson@13398
   782
by (simp add: is_Equal_def Equal_def)
paulson@13398
   783
paulson@13564
   784
lemma (in M_trivial) Equal_in_M_iff [iff]: "M(Equal(x,y)) <-> M(x) & M(y)"
paulson@13655
   785
by (simp add: Equal_def)
paulson@13398
   786
wenzelm@21233
   787
definition
paulson@13398
   788
  is_Nand :: "[i=>o,i,i,i] => o"
paulson@13398
   789
     --{* because @{term "Nand(x,y) \<equiv> Inr(Inl(\<langle>x,y\<rangle>))"}*}
paulson@13398
   790
    "is_Nand(M,x,y,Z) ==
paulson@13398
   791
	\<exists>p[M]. \<exists>u[M]. pair(M,x,y,p) & is_Inl(M,p,u) & is_Inr(M,u,Z)"
paulson@13398
   792
paulson@13564
   793
lemma (in M_trivial) Nand_abs [simp]:
paulson@13398
   794
     "[|M(x); M(y); M(Z)|] ==> is_Nand(M,x,y,Z) <-> (Z = Nand(x,y))"
paulson@13398
   795
by (simp add: is_Nand_def Nand_def)
paulson@13398
   796
paulson@13564
   797
lemma (in M_trivial) Nand_in_M_iff [iff]: "M(Nand(x,y)) <-> M(x) & M(y)"
paulson@13655
   798
by (simp add: Nand_def)
paulson@13398
   799
wenzelm@21233
   800
definition
paulson@13398
   801
  is_Forall :: "[i=>o,i,i] => o"
paulson@13398
   802
     --{* because @{term "Forall(x) \<equiv> Inr(Inr(p))"}*}
paulson@13398
   803
    "is_Forall(M,p,Z) == \<exists>u[M]. is_Inr(M,p,u) & is_Inr(M,u,Z)"
paulson@13398
   804
paulson@13564
   805
lemma (in M_trivial) Forall_abs [simp]:
paulson@13398
   806
     "[|M(x); M(Z)|] ==> is_Forall(M,x,Z) <-> (Z = Forall(x))"
paulson@13398
   807
by (simp add: is_Forall_def Forall_def)
paulson@13398
   808
paulson@13564
   809
lemma (in M_trivial) Forall_in_M_iff [iff]: "M(Forall(x)) <-> M(x)"
paulson@13398
   810
by (simp add: Forall_def)
paulson@13398
   811
paulson@13398
   812
paulson@13647
   813
paulson@13398
   814
subsection {*Absoluteness for @{term formula_rec}*}
paulson@13398
   815
wenzelm@21233
   816
definition
paulson@13647
   817
paulson@13647
   818
  formula_rec_case :: "[[i,i]=>i, [i,i]=>i, [i,i,i,i]=>i, [i,i]=>i, i, i] => i"
paulson@13647
   819
    --{* the instance of @{term formula_case} in @{term formula_rec}*}
paulson@13647
   820
   "formula_rec_case(a,b,c,d,h) ==
paulson@13647
   821
        formula_case (a, b,
paulson@13655
   822
                \<lambda>u v. c(u, v, h ` succ(depth(u)) ` u,
paulson@13647
   823
                              h ` succ(depth(v)) ` v),
paulson@13647
   824
                \<lambda>u. d(u, h ` succ(depth(u)) ` u))"
paulson@13647
   825
paulson@13647
   826
text{*Unfold @{term formula_rec} to @{term formula_rec_case}.
paulson@13647
   827
     Express @{term formula_rec} without using @{term rank} or @{term Vset},
paulson@13647
   828
neither of which is absolute.*}
paulson@13647
   829
lemma (in M_trivial) formula_rec_eq:
paulson@13647
   830
  "p \<in> formula ==>
paulson@13655
   831
   formula_rec(a,b,c,d,p) =
paulson@13647
   832
   transrec (succ(depth(p)),
paulson@13647
   833
             \<lambda>x h. Lambda (formula, formula_rec_case(a,b,c,d,h))) ` p"
paulson@13647
   834
apply (simp add: formula_rec_case_def)
paulson@13647
   835
apply (induct_tac p)
paulson@13647
   836
   txt{*Base case for @{term Member}*}
paulson@13655
   837
   apply (subst transrec, simp add: formula.intros)
paulson@13647
   838
  txt{*Base case for @{term Equal}*}
paulson@13647
   839
  apply (subst transrec, simp add: formula.intros)
paulson@13647
   840
 txt{*Inductive step for @{term Nand}*}
paulson@13655
   841
 apply (subst transrec)
paulson@13647
   842
 apply (simp add: succ_Un_distrib formula.intros)
paulson@13647
   843
txt{*Inductive step for @{term Forall}*}
paulson@13655
   844
apply (subst transrec)
paulson@13655
   845
apply (simp add: formula_imp_formula_N formula.intros)
paulson@13647
   846
done
paulson@13647
   847
paulson@13647
   848
paulson@13647
   849
subsubsection{*Absoluteness for the Formula Operator @{term depth}*}
wenzelm@21233
   850
definition
paulson@13647
   851
paulson@13647
   852
  is_depth :: "[i=>o,i,i] => o"
paulson@13655
   853
    "is_depth(M,p,n) ==
paulson@13655
   854
       \<exists>sn[M]. \<exists>formula_n[M]. \<exists>formula_sn[M].
paulson@13647
   855
        is_formula_N(M,n,formula_n) & p \<notin> formula_n &
paulson@13647
   856
        successor(M,n,sn) & is_formula_N(M,sn,formula_sn) & p \<in> formula_sn"
paulson@13647
   857
paulson@13647
   858
paulson@13647
   859
lemma (in M_datatypes) depth_abs [simp]:
paulson@13647
   860
     "[|p \<in> formula; n \<in> nat|] ==> is_depth(M,p,n) <-> n = depth(p)"
paulson@13647
   861
apply (subgoal_tac "M(p) & M(n)")
paulson@13655
   862
 prefer 2 apply (blast dest: transM)
paulson@13647
   863
apply (simp add: is_depth_def)
paulson@13647
   864
apply (blast intro: formula_imp_formula_N nat_into_Ord formula_N_imp_eq_depth
paulson@13647
   865
             dest: formula_N_imp_depth_lt)
paulson@13647
   866
done
paulson@13647
   867
paulson@13647
   868
text{*Proof is trivial since @{term depth} returns natural numbers.*}
paulson@13647
   869
lemma (in M_trivial) depth_closed [intro,simp]:
paulson@13647
   870
     "p \<in> formula ==> M(depth(p))"
paulson@13655
   871
by (simp add: nat_into_M)
paulson@13647
   872
paulson@13647
   873
paulson@13423
   874
subsubsection{*@{term is_formula_case}: relativization of @{term formula_case}*}
paulson@13423
   875
wenzelm@21233
   876
definition
paulson@13423
   877
paulson@13655
   878
 is_formula_case ::
paulson@13423
   879
    "[i=>o, [i,i,i]=>o, [i,i,i]=>o, [i,i,i]=>o, [i,i]=>o, i, i] => o"
paulson@13423
   880
  --{*no constraint on non-formulas*}
paulson@13655
   881
  "is_formula_case(M, is_a, is_b, is_c, is_d, p, z) ==
paulson@13655
   882
      (\<forall>x[M]. \<forall>y[M]. finite_ordinal(M,x) --> finite_ordinal(M,y) -->
paulson@13493
   883
                      is_Member(M,x,y,p) --> is_a(x,y,z)) &
paulson@13655
   884
      (\<forall>x[M]. \<forall>y[M]. finite_ordinal(M,x) --> finite_ordinal(M,y) -->
paulson@13493
   885
                      is_Equal(M,x,y,p) --> is_b(x,y,z)) &
paulson@13655
   886
      (\<forall>x[M]. \<forall>y[M]. mem_formula(M,x) --> mem_formula(M,y) -->
paulson@13423
   887
                     is_Nand(M,x,y,p) --> is_c(x,y,z)) &
paulson@13493
   888
      (\<forall>x[M]. mem_formula(M,x) --> is_Forall(M,x,p) --> is_d(x,z))"
paulson@13423
   889
paulson@13655
   890
lemma (in M_datatypes) formula_case_abs [simp]:
paulson@13655
   891
     "[| Relation2(M,nat,nat,is_a,a); Relation2(M,nat,nat,is_b,b);
paulson@13655
   892
         Relation2(M,formula,formula,is_c,c); Relation1(M,formula,is_d,d);
paulson@13655
   893
         p \<in> formula; M(z) |]
paulson@13655
   894
      ==> is_formula_case(M,is_a,is_b,is_c,is_d,p,z) <->
paulson@13423
   895
          z = formula_case(a,b,c,d,p)"
paulson@13423
   896
apply (simp add: formula_into_M is_formula_case_def)
paulson@13655
   897
apply (erule formula.cases)
paulson@13655
   898
   apply (simp_all add: Relation1_def Relation2_def)
paulson@13423
   899
done
paulson@13423
   900
paulson@13418
   901
lemma (in M_datatypes) formula_case_closed [intro,simp]:
paulson@13655
   902
  "[|p \<in> formula;
paulson@13655
   903
     \<forall>x[M]. \<forall>y[M]. x\<in>nat --> y\<in>nat --> M(a(x,y));
paulson@13655
   904
     \<forall>x[M]. \<forall>y[M]. x\<in>nat --> y\<in>nat --> M(b(x,y));
paulson@13655
   905
     \<forall>x[M]. \<forall>y[M]. x\<in>formula --> y\<in>formula --> M(c(x,y));
paulson@13418
   906
     \<forall>x[M]. x\<in>formula --> M(d(x))|] ==> M(formula_case(a,b,c,d,p))"
paulson@13655
   907
by (erule formula.cases, simp_all)
paulson@13418
   908
paulson@13398
   909
paulson@13647
   910
subsubsection {*Absoluteness for @{term formula_rec}: Final Results*}
paulson@13557
   911
wenzelm@21233
   912
definition
paulson@13557
   913
  is_formula_rec :: "[i=>o, [i,i,i]=>o, i, i] => o"
paulson@13557
   914
    --{* predicate to relativize the functional @{term formula_rec}*}
paulson@13557
   915
   "is_formula_rec(M,MH,p,z)  ==
paulson@13655
   916
      \<exists>dp[M]. \<exists>i[M]. \<exists>f[M]. finite_ordinal(M,dp) & is_depth(M,p,dp) &
paulson@13557
   917
             successor(M,dp,i) & fun_apply(M,f,p,z) & is_transrec(M,MH,i,f)"
paulson@13557
   918
paulson@13557
   919
paulson@13647
   920
text{*Sufficient conditions to relativize the instance of @{term formula_case}
paulson@13557
   921
      in @{term formula_rec}*}
paulson@13634
   922
lemma (in M_datatypes) Relation1_formula_rec_case:
paulson@13634
   923
     "[|Relation2(M, nat, nat, is_a, a);
paulson@13634
   924
        Relation2(M, nat, nat, is_b, b);
paulson@13655
   925
        Relation2 (M, formula, formula,
paulson@13557
   926
           is_c, \<lambda>u v. c(u, v, h`succ(depth(u))`u, h`succ(depth(v))`v));
paulson@13655
   927
        Relation1(M, formula,
paulson@13557
   928
           is_d, \<lambda>u. d(u, h ` succ(depth(u)) ` u));
paulson@13655
   929
 	M(h) |]
paulson@13634
   930
      ==> Relation1(M, formula,
paulson@13557
   931
                         is_formula_case (M, is_a, is_b, is_c, is_d),
paulson@13557
   932
                         formula_rec_case(a, b, c, d, h))"
paulson@13655
   933
apply (simp (no_asm) add: formula_rec_case_def Relation1_def)
paulson@13655
   934
apply (simp add: formula_case_abs)
paulson@13557
   935
done
paulson@13557
   936
paulson@13557
   937
paulson@13557
   938
text{*This locale packages the premises of the following theorems,
paulson@13557
   939
      which is the normal purpose of locales.  It doesn't accumulate
paulson@13557
   940
      constraints on the class @{term M}, as in most of this deveopment.*}
paulson@13557
   941
locale Formula_Rec = M_eclose +
paulson@13557
   942
  fixes a and is_a and b and is_b and c and is_c and d and is_d and MH
paulson@13557
   943
  defines
paulson@13557
   944
      "MH(u::i,f,z) ==
paulson@13557
   945
	\<forall>fml[M]. is_formula(M,fml) -->
paulson@13557
   946
             is_lambda
paulson@13557
   947
	 (M, fml, is_formula_case (M, is_a, is_b, is_c(f), is_d(f)), z)"
paulson@13557
   948
paulson@13557
   949
  assumes a_closed: "[|x\<in>nat; y\<in>nat|] ==> M(a(x,y))"
paulson@13634
   950
      and a_rel:    "Relation2(M, nat, nat, is_a, a)"
paulson@13557
   951
      and b_closed: "[|x\<in>nat; y\<in>nat|] ==> M(b(x,y))"
paulson@13634
   952
      and b_rel:    "Relation2(M, nat, nat, is_b, b)"
paulson@13557
   953
      and c_closed: "[|x \<in> formula; y \<in> formula; M(gx); M(gy)|]
paulson@13557
   954
                     ==> M(c(x, y, gx, gy))"
paulson@13557
   955
      and c_rel:
paulson@13655
   956
         "M(f) ==>
paulson@13634
   957
          Relation2 (M, formula, formula, is_c(f),
paulson@13557
   958
             \<lambda>u v. c(u, v, f ` succ(depth(u)) ` u, f ` succ(depth(v)) ` v))"
paulson@13557
   959
      and d_closed: "[|x \<in> formula; M(gx)|] ==> M(d(x, gx))"
paulson@13557
   960
      and d_rel:
paulson@13655
   961
         "M(f) ==>
paulson@13634
   962
          Relation1(M, formula, is_d(f), \<lambda>u. d(u, f ` succ(depth(u)) ` u))"
paulson@13557
   963
      and fr_replace: "n \<in> nat ==> transrec_replacement(M,MH,n)"
paulson@13557
   964
      and fr_lam_replace:
paulson@13557
   965
           "M(g) ==>
paulson@13557
   966
            strong_replacement
paulson@13557
   967
	      (M, \<lambda>x y. x \<in> formula &
paulson@13557
   968
		  y = \<langle>x, formula_rec_case(a,b,c,d,g,x)\<rangle>)";
paulson@13557
   969
paulson@13557
   970
lemma (in Formula_Rec) formula_rec_case_closed:
paulson@13557
   971
    "[|M(g); p \<in> formula|] ==> M(formula_rec_case(a, b, c, d, g, p))"
paulson@13655
   972
by (simp add: formula_rec_case_def a_closed b_closed c_closed d_closed)
paulson@13557
   973
paulson@13557
   974
lemma (in Formula_Rec) formula_rec_lam_closed:
paulson@13557
   975
    "M(g) ==> M(Lambda (formula, formula_rec_case(a,b,c,d,g)))"
paulson@13557
   976
by (simp add: lam_closed2 fr_lam_replace formula_rec_case_closed)
paulson@13557
   977
paulson@13557
   978
lemma (in Formula_Rec) MH_rel2:
paulson@13634
   979
     "relation2 (M, MH,
paulson@13557
   980
             \<lambda>x h. Lambda (formula, formula_rec_case(a,b,c,d,h)))"
paulson@13655
   981
apply (simp add: relation2_def MH_def, clarify)
paulson@13655
   982
apply (rule lambda_abs2)
paulson@13655
   983
apply (rule Relation1_formula_rec_case)
paulson@13655
   984
apply (simp_all add: a_rel b_rel c_rel d_rel formula_rec_case_closed)
paulson@13557
   985
done
paulson@13557
   986
paulson@13557
   987
lemma (in Formula_Rec) fr_transrec_closed:
paulson@13557
   988
    "n \<in> nat
paulson@13557
   989
     ==> M(transrec
paulson@13557
   990
          (n, \<lambda>x h. Lambda(formula, formula_rec_case(a, b, c, d, h))))"
paulson@13655
   991
by (simp add: transrec_closed [OF fr_replace MH_rel2]
paulson@13655
   992
              nat_into_M formula_rec_lam_closed)
paulson@13557
   993
paulson@13557
   994
text{*The main two results: @{term formula_rec} is absolute for @{term M}.*}
paulson@13557
   995
theorem (in Formula_Rec) formula_rec_closed:
paulson@13557
   996
    "p \<in> formula ==> M(formula_rec(a,b,c,d,p))"
paulson@13655
   997
by (simp add: formula_rec_eq fr_transrec_closed
paulson@13557
   998
              transM [OF _ formula_closed])
paulson@13557
   999
paulson@13557
  1000
theorem (in Formula_Rec) formula_rec_abs:
paulson@13655
  1001
  "[| p \<in> formula; M(z)|]
paulson@13655
  1002
   ==> is_formula_rec(M,MH,p,z) <-> z = formula_rec(a,b,c,d,p)"
paulson@13557
  1003
by (simp add: is_formula_rec_def formula_rec_eq transM [OF _ formula_closed]
paulson@13557
  1004
              transrec_abs [OF fr_replace MH_rel2] depth_type
paulson@13557
  1005
              fr_transrec_closed formula_rec_lam_closed eq_commute)
paulson@13557
  1006
paulson@13557
  1007
paulson@13268
  1008
end