src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy
author paulson <lp15@cam.ac.uk>
Wed Feb 24 15:51:01 2016 +0000 (2016-02-24)
changeset 62397 5ae24f33d343
parent 62127 d8e7738bd2e9
child 63016 3590590699b1
permissions -rw-r--r--
Substantial new material for multivariate analysis. Also removal of some duplicates.
lp15@61711
     1
section \<open>Instantiates the finite Cartesian product of Euclidean spaces as a Euclidean space.\<close>
hoelzl@37489
     2
hoelzl@37489
     3
theory Cartesian_Euclidean_Space
hoelzl@37489
     4
imports Finite_Cartesian_Product Integration
hoelzl@37489
     5
begin
hoelzl@37489
     6
hoelzl@37489
     7
lemma delta_mult_idempotent:
wenzelm@49644
     8
  "(if k=a then 1 else (0::'a::semiring_1)) * (if k=a then 1 else 0) = (if k=a then 1 else 0)"
wenzelm@49644
     9
  by (cases "k=a") auto
hoelzl@37489
    10
hoelzl@37489
    11
lemma setsum_UNIV_sum:
hoelzl@37489
    12
  fixes g :: "'a::finite + 'b::finite \<Rightarrow> _"
hoelzl@37489
    13
  shows "(\<Sum>x\<in>UNIV. g x) = (\<Sum>x\<in>UNIV. g (Inl x)) + (\<Sum>x\<in>UNIV. g (Inr x))"
hoelzl@37489
    14
  apply (subst UNIV_Plus_UNIV [symmetric])
haftmann@57418
    15
  apply (subst setsum.Plus)
haftmann@57418
    16
  apply simp_all
hoelzl@37489
    17
  done
hoelzl@37489
    18
hoelzl@37489
    19
lemma setsum_mult_product:
hoelzl@37489
    20
  "setsum h {..<A * B :: nat} = (\<Sum>i\<in>{..<A}. \<Sum>j\<in>{..<B}. h (j + i * B))"
hoelzl@56193
    21
  unfolding setsum_nat_group[of h B A, unfolded atLeast0LessThan, symmetric]
haftmann@57418
    22
proof (rule setsum.cong, simp, rule setsum.reindex_cong)
wenzelm@49644
    23
  fix i
wenzelm@49644
    24
  show "inj_on (\<lambda>j. j + i * B) {..<B}" by (auto intro!: inj_onI)
hoelzl@37489
    25
  show "{i * B..<i * B + B} = (\<lambda>j. j + i * B) ` {..<B}"
hoelzl@37489
    26
  proof safe
hoelzl@37489
    27
    fix j assume "j \<in> {i * B..<i * B + B}"
wenzelm@49644
    28
    then show "j \<in> (\<lambda>j. j + i * B) ` {..<B}"
hoelzl@37489
    29
      by (auto intro!: image_eqI[of _ _ "j - i * B"])
hoelzl@37489
    30
  qed simp
hoelzl@37489
    31
qed simp
hoelzl@37489
    32
wenzelm@49644
    33
wenzelm@60420
    34
subsection\<open>Basic componentwise operations on vectors.\<close>
hoelzl@37489
    35
huffman@44136
    36
instantiation vec :: (times, finite) times
hoelzl@37489
    37
begin
wenzelm@49644
    38
wenzelm@49644
    39
definition "op * \<equiv> (\<lambda> x y.  (\<chi> i. (x$i) * (y$i)))"
wenzelm@49644
    40
instance ..
wenzelm@49644
    41
hoelzl@37489
    42
end
hoelzl@37489
    43
huffman@44136
    44
instantiation vec :: (one, finite) one
hoelzl@37489
    45
begin
wenzelm@49644
    46
wenzelm@49644
    47
definition "1 \<equiv> (\<chi> i. 1)"
wenzelm@49644
    48
instance ..
wenzelm@49644
    49
hoelzl@37489
    50
end
hoelzl@37489
    51
huffman@44136
    52
instantiation vec :: (ord, finite) ord
hoelzl@37489
    53
begin
wenzelm@49644
    54
wenzelm@49644
    55
definition "x \<le> y \<longleftrightarrow> (\<forall>i. x$i \<le> y$i)"
immler@54776
    56
definition "x < (y::'a^'b) \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x"
wenzelm@49644
    57
instance ..
wenzelm@49644
    58
hoelzl@37489
    59
end
hoelzl@37489
    60
wenzelm@60420
    61
text\<open>The ordering on one-dimensional vectors is linear.\<close>
hoelzl@37489
    62
wenzelm@49197
    63
class cart_one =
wenzelm@61076
    64
  assumes UNIV_one: "card (UNIV :: 'a set) = Suc 0"
hoelzl@37489
    65
begin
wenzelm@49197
    66
wenzelm@49197
    67
subclass finite
wenzelm@49197
    68
proof
wenzelm@49197
    69
  from UNIV_one show "finite (UNIV :: 'a set)"
wenzelm@49197
    70
    by (auto intro!: card_ge_0_finite)
wenzelm@49197
    71
qed
wenzelm@49197
    72
hoelzl@37489
    73
end
hoelzl@37489
    74
immler@54776
    75
instance vec:: (order, finite) order
wenzelm@61169
    76
  by standard (auto simp: less_eq_vec_def less_vec_def vec_eq_iff
immler@54776
    77
      intro: order.trans order.antisym order.strict_implies_order)
wenzelm@49197
    78
immler@54776
    79
instance vec :: (linorder, cart_one) linorder
wenzelm@49197
    80
proof
wenzelm@49197
    81
  obtain a :: 'b where all: "\<And>P. (\<forall>i. P i) \<longleftrightarrow> P a"
wenzelm@49197
    82
  proof -
wenzelm@49197
    83
    have "card (UNIV :: 'b set) = Suc 0" by (rule UNIV_one)
wenzelm@49197
    84
    then obtain b :: 'b where "UNIV = {b}" by (auto iff: card_Suc_eq)
wenzelm@49197
    85
    then have "\<And>P. (\<forall>i\<in>UNIV. P i) \<longleftrightarrow> P b" by auto
wenzelm@49197
    86
    then show thesis by (auto intro: that)
wenzelm@49197
    87
  qed
immler@54776
    88
  fix x y :: "'a^'b::cart_one"
wenzelm@49197
    89
  note [simp] = less_eq_vec_def less_vec_def all vec_eq_iff field_simps
immler@54776
    90
  show "x \<le> y \<or> y \<le> x" by auto
wenzelm@49197
    91
qed
wenzelm@49197
    92
wenzelm@60420
    93
text\<open>Constant Vectors\<close>
hoelzl@37489
    94
hoelzl@37489
    95
definition "vec x = (\<chi> i. x)"
hoelzl@37489
    96
immler@56188
    97
lemma interval_cbox_cart: "{a::real^'n..b} = cbox a b"
immler@56188
    98
  by (auto simp add: less_eq_vec_def mem_box Basis_vec_def inner_axis)
immler@56188
    99
wenzelm@60420
   100
text\<open>Also the scalar-vector multiplication.\<close>
hoelzl@37489
   101
hoelzl@37489
   102
definition vector_scalar_mult:: "'a::times \<Rightarrow> 'a ^ 'n \<Rightarrow> 'a ^ 'n" (infixl "*s" 70)
hoelzl@37489
   103
  where "c *s x = (\<chi> i. c * (x$i))"
hoelzl@37489
   104
wenzelm@49644
   105
wenzelm@60420
   106
subsection \<open>A naive proof procedure to lift really trivial arithmetic stuff from the basis of the vector space.\<close>
hoelzl@37489
   107
haftmann@57418
   108
lemma setsum_cong_aux:
haftmann@57418
   109
  "(\<And>x. x \<in> A \<Longrightarrow> f x = g x) \<Longrightarrow> setsum f A = setsum g A"
haftmann@57418
   110
  by (auto intro: setsum.cong)
haftmann@57418
   111
haftmann@57418
   112
hide_fact (open) setsum_cong_aux
haftmann@57418
   113
wenzelm@60420
   114
method_setup vector = \<open>
hoelzl@37489
   115
let
wenzelm@51717
   116
  val ss1 =
wenzelm@51717
   117
    simpset_of (put_simpset HOL_basic_ss @{context}
haftmann@57418
   118
      addsimps [@{thm setsum.distrib} RS sym,
wenzelm@51717
   119
      @{thm setsum_subtractf} RS sym, @{thm setsum_right_distrib},
wenzelm@51717
   120
      @{thm setsum_left_distrib}, @{thm setsum_negf} RS sym])
wenzelm@51717
   121
  val ss2 =
wenzelm@51717
   122
    simpset_of (@{context} addsimps
huffman@44136
   123
             [@{thm plus_vec_def}, @{thm times_vec_def},
huffman@44136
   124
              @{thm minus_vec_def}, @{thm uminus_vec_def},
huffman@44136
   125
              @{thm one_vec_def}, @{thm zero_vec_def}, @{thm vec_def},
huffman@44136
   126
              @{thm scaleR_vec_def},
wenzelm@51717
   127
              @{thm vec_lambda_beta}, @{thm vector_scalar_mult_def}])
wenzelm@51717
   128
  fun vector_arith_tac ctxt ths =
wenzelm@51717
   129
    simp_tac (put_simpset ss1 ctxt)
wenzelm@60754
   130
    THEN' (fn i => resolve_tac ctxt @{thms Cartesian_Euclidean_Space.setsum_cong_aux} i
wenzelm@60754
   131
         ORELSE resolve_tac ctxt @{thms setsum.neutral} i
wenzelm@51717
   132
         ORELSE simp_tac (put_simpset HOL_basic_ss ctxt addsimps [@{thm vec_eq_iff}]) i)
wenzelm@49644
   133
    (* THEN' TRY o clarify_tac HOL_cs  THEN' (TRY o rtac @{thm iffI}) *)
wenzelm@51717
   134
    THEN' asm_full_simp_tac (put_simpset ss2 ctxt addsimps ths)
wenzelm@49644
   135
in
wenzelm@51717
   136
  Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD' (vector_arith_tac ctxt ths))
wenzelm@49644
   137
end
wenzelm@60420
   138
\<close> "lift trivial vector statements to real arith statements"
hoelzl@37489
   139
wenzelm@57865
   140
lemma vec_0[simp]: "vec 0 = 0" by vector
wenzelm@57865
   141
lemma vec_1[simp]: "vec 1 = 1" by vector
hoelzl@37489
   142
hoelzl@37489
   143
lemma vec_inj[simp]: "vec x = vec y \<longleftrightarrow> x = y" by vector
hoelzl@37489
   144
hoelzl@37489
   145
lemma vec_in_image_vec: "vec x \<in> (vec ` S) \<longleftrightarrow> x \<in> S" by auto
hoelzl@37489
   146
wenzelm@57865
   147
lemma vec_add: "vec(x + y) = vec x + vec y"  by vector
wenzelm@57865
   148
lemma vec_sub: "vec(x - y) = vec x - vec y" by vector
wenzelm@57865
   149
lemma vec_cmul: "vec(c * x) = c *s vec x " by vector
wenzelm@57865
   150
lemma vec_neg: "vec(- x) = - vec x " by vector
hoelzl@37489
   151
wenzelm@49644
   152
lemma vec_setsum:
wenzelm@49644
   153
  assumes "finite S"
wenzelm@61736
   154
  shows "vec(setsum f S) = setsum (vec \<circ> f) S"
wenzelm@49644
   155
  using assms
wenzelm@49644
   156
proof induct
wenzelm@49644
   157
  case empty
wenzelm@49644
   158
  then show ?case by simp
wenzelm@49644
   159
next
wenzelm@49644
   160
  case insert
wenzelm@49644
   161
  then show ?case by (auto simp add: vec_add)
wenzelm@49644
   162
qed
hoelzl@37489
   163
wenzelm@60420
   164
text\<open>Obvious "component-pushing".\<close>
hoelzl@37489
   165
hoelzl@37489
   166
lemma vec_component [simp]: "vec x $ i = x"
wenzelm@57865
   167
  by vector
hoelzl@37489
   168
hoelzl@37489
   169
lemma vector_mult_component [simp]: "(x * y)$i = x$i * y$i"
hoelzl@37489
   170
  by vector
hoelzl@37489
   171
hoelzl@37489
   172
lemma vector_smult_component [simp]: "(c *s y)$i = c * (y$i)"
hoelzl@37489
   173
  by vector
hoelzl@37489
   174
hoelzl@37489
   175
lemma cond_component: "(if b then x else y)$i = (if b then x$i else y$i)" by vector
hoelzl@37489
   176
hoelzl@37489
   177
lemmas vector_component =
hoelzl@37489
   178
  vec_component vector_add_component vector_mult_component
hoelzl@37489
   179
  vector_smult_component vector_minus_component vector_uminus_component
hoelzl@37489
   180
  vector_scaleR_component cond_component
hoelzl@37489
   181
wenzelm@49644
   182
wenzelm@60420
   183
subsection \<open>Some frequently useful arithmetic lemmas over vectors.\<close>
hoelzl@37489
   184
huffman@44136
   185
instance vec :: (semigroup_mult, finite) semigroup_mult
wenzelm@61169
   186
  by standard (vector mult.assoc)
hoelzl@37489
   187
huffman@44136
   188
instance vec :: (monoid_mult, finite) monoid_mult
wenzelm@61169
   189
  by standard vector+
hoelzl@37489
   190
huffman@44136
   191
instance vec :: (ab_semigroup_mult, finite) ab_semigroup_mult
wenzelm@61169
   192
  by standard (vector mult.commute)
hoelzl@37489
   193
huffman@44136
   194
instance vec :: (comm_monoid_mult, finite) comm_monoid_mult
wenzelm@61169
   195
  by standard vector
hoelzl@37489
   196
huffman@44136
   197
instance vec :: (semiring, finite) semiring
wenzelm@61169
   198
  by standard (vector field_simps)+
hoelzl@37489
   199
huffman@44136
   200
instance vec :: (semiring_0, finite) semiring_0
wenzelm@61169
   201
  by standard (vector field_simps)+
huffman@44136
   202
instance vec :: (semiring_1, finite) semiring_1
wenzelm@61169
   203
  by standard vector
huffman@44136
   204
instance vec :: (comm_semiring, finite) comm_semiring
wenzelm@61169
   205
  by standard (vector field_simps)+
hoelzl@37489
   206
huffman@44136
   207
instance vec :: (comm_semiring_0, finite) comm_semiring_0 ..
huffman@44136
   208
instance vec :: (cancel_comm_monoid_add, finite) cancel_comm_monoid_add ..
huffman@44136
   209
instance vec :: (semiring_0_cancel, finite) semiring_0_cancel ..
huffman@44136
   210
instance vec :: (comm_semiring_0_cancel, finite) comm_semiring_0_cancel ..
huffman@44136
   211
instance vec :: (ring, finite) ring ..
huffman@44136
   212
instance vec :: (semiring_1_cancel, finite) semiring_1_cancel ..
huffman@44136
   213
instance vec :: (comm_semiring_1, finite) comm_semiring_1 ..
hoelzl@37489
   214
huffman@44136
   215
instance vec :: (ring_1, finite) ring_1 ..
hoelzl@37489
   216
huffman@44136
   217
instance vec :: (real_algebra, finite) real_algebra
wenzelm@61169
   218
  by standard (simp_all add: vec_eq_iff)
hoelzl@37489
   219
huffman@44136
   220
instance vec :: (real_algebra_1, finite) real_algebra_1 ..
hoelzl@37489
   221
wenzelm@49644
   222
lemma of_nat_index: "(of_nat n :: 'a::semiring_1 ^'n)$i = of_nat n"
wenzelm@49644
   223
proof (induct n)
wenzelm@49644
   224
  case 0
wenzelm@49644
   225
  then show ?case by vector
wenzelm@49644
   226
next
wenzelm@49644
   227
  case Suc
wenzelm@49644
   228
  then show ?case by vector
wenzelm@49644
   229
qed
hoelzl@37489
   230
haftmann@54489
   231
lemma one_index [simp]: "(1 :: 'a :: one ^ 'n) $ i = 1"
haftmann@54489
   232
  by vector
haftmann@54489
   233
haftmann@54489
   234
lemma neg_one_index [simp]: "(- 1 :: 'a :: {one, uminus} ^ 'n) $ i = - 1"
wenzelm@49644
   235
  by vector
hoelzl@37489
   236
huffman@44136
   237
instance vec :: (semiring_char_0, finite) semiring_char_0
haftmann@38621
   238
proof
haftmann@38621
   239
  fix m n :: nat
haftmann@38621
   240
  show "inj (of_nat :: nat \<Rightarrow> 'a ^ 'b)"
huffman@44136
   241
    by (auto intro!: injI simp add: vec_eq_iff of_nat_index)
hoelzl@37489
   242
qed
hoelzl@37489
   243
huffman@47108
   244
instance vec :: (numeral, finite) numeral ..
huffman@47108
   245
instance vec :: (semiring_numeral, finite) semiring_numeral ..
huffman@47108
   246
huffman@47108
   247
lemma numeral_index [simp]: "numeral w $ i = numeral w"
wenzelm@49644
   248
  by (induct w) (simp_all only: numeral.simps vector_add_component one_index)
huffman@47108
   249
haftmann@54489
   250
lemma neg_numeral_index [simp]: "- numeral w $ i = - numeral w"
haftmann@54489
   251
  by (simp only: vector_uminus_component numeral_index)
huffman@47108
   252
huffman@44136
   253
instance vec :: (comm_ring_1, finite) comm_ring_1 ..
huffman@44136
   254
instance vec :: (ring_char_0, finite) ring_char_0 ..
hoelzl@37489
   255
hoelzl@37489
   256
lemma vector_smult_assoc: "a *s (b *s x) = ((a::'a::semigroup_mult) * b) *s x"
haftmann@57512
   257
  by (vector mult.assoc)
hoelzl@37489
   258
lemma vector_sadd_rdistrib: "((a::'a::semiring) + b) *s x = a *s x + b *s x"
hoelzl@37489
   259
  by (vector field_simps)
hoelzl@37489
   260
lemma vector_add_ldistrib: "(c::'a::semiring) *s (x + y) = c *s x + c *s y"
hoelzl@37489
   261
  by (vector field_simps)
hoelzl@37489
   262
lemma vector_smult_lzero[simp]: "(0::'a::mult_zero) *s x = 0" by vector
hoelzl@37489
   263
lemma vector_smult_lid[simp]: "(1::'a::monoid_mult) *s x = x" by vector
hoelzl@37489
   264
lemma vector_ssub_ldistrib: "(c::'a::ring) *s (x - y) = c *s x - c *s y"
hoelzl@37489
   265
  by (vector field_simps)
hoelzl@37489
   266
lemma vector_smult_rneg: "(c::'a::ring) *s -x = -(c *s x)" by vector
hoelzl@37489
   267
lemma vector_smult_lneg: "- (c::'a::ring) *s x = -(c *s x)" by vector
huffman@47108
   268
lemma vector_sneg_minus1: "-x = (-1::'a::ring_1) *s x" by vector
hoelzl@37489
   269
lemma vector_smult_rzero[simp]: "c *s 0 = (0::'a::mult_zero ^ 'n)" by vector
hoelzl@37489
   270
lemma vector_sub_rdistrib: "((a::'a::ring) - b) *s x = a *s x - b *s x"
hoelzl@37489
   271
  by (vector field_simps)
hoelzl@37489
   272
hoelzl@37489
   273
lemma vec_eq[simp]: "(vec m = vec n) \<longleftrightarrow> (m = n)"
huffman@44136
   274
  by (simp add: vec_eq_iff)
hoelzl@37489
   275
hoelzl@37489
   276
lemma norm_eq_0_imp: "norm x = 0 ==> x = (0::real ^'n)" by (metis norm_eq_zero)
hoelzl@37489
   277
lemma vector_mul_eq_0[simp]: "(a *s x = 0) \<longleftrightarrow> a = (0::'a::idom) \<or> x = 0"
hoelzl@37489
   278
  by vector
hoelzl@37489
   279
lemma vector_mul_lcancel[simp]: "a *s x = a *s y \<longleftrightarrow> a = (0::real) \<or> x = y"
hoelzl@37489
   280
  by (metis eq_iff_diff_eq_0 vector_mul_eq_0 vector_ssub_ldistrib)
hoelzl@37489
   281
lemma vector_mul_rcancel[simp]: "a *s x = b *s x \<longleftrightarrow> (a::real) = b \<or> x = 0"
hoelzl@37489
   282
  by (metis eq_iff_diff_eq_0 vector_mul_eq_0 vector_sub_rdistrib)
hoelzl@37489
   283
lemma vector_mul_lcancel_imp: "a \<noteq> (0::real) ==>  a *s x = a *s y ==> (x = y)"
hoelzl@37489
   284
  by (metis vector_mul_lcancel)
hoelzl@37489
   285
lemma vector_mul_rcancel_imp: "x \<noteq> 0 \<Longrightarrow> (a::real) *s x = b *s x ==> a = b"
hoelzl@37489
   286
  by (metis vector_mul_rcancel)
hoelzl@37489
   287
hoelzl@37489
   288
lemma component_le_norm_cart: "\<bar>x$i\<bar> <= norm x"
huffman@44136
   289
  apply (simp add: norm_vec_def)
hoelzl@37489
   290
  apply (rule member_le_setL2, simp_all)
hoelzl@37489
   291
  done
hoelzl@37489
   292
hoelzl@37489
   293
lemma norm_bound_component_le_cart: "norm x <= e ==> \<bar>x$i\<bar> <= e"
hoelzl@37489
   294
  by (metis component_le_norm_cart order_trans)
hoelzl@37489
   295
hoelzl@37489
   296
lemma norm_bound_component_lt_cart: "norm x < e ==> \<bar>x$i\<bar> < e"
huffman@53595
   297
  by (metis component_le_norm_cart le_less_trans)
hoelzl@37489
   298
hoelzl@37489
   299
lemma norm_le_l1_cart: "norm x <= setsum(\<lambda>i. \<bar>x$i\<bar>) UNIV"
huffman@44136
   300
  by (simp add: norm_vec_def setL2_le_setsum)
hoelzl@37489
   301
hoelzl@37489
   302
lemma scalar_mult_eq_scaleR: "c *s x = c *\<^sub>R x"
huffman@44136
   303
  unfolding scaleR_vec_def vector_scalar_mult_def by simp
hoelzl@37489
   304
hoelzl@37489
   305
lemma dist_mul[simp]: "dist (c *s x) (c *s y) = \<bar>c\<bar> * dist x y"
hoelzl@37489
   306
  unfolding dist_norm scalar_mult_eq_scaleR
hoelzl@37489
   307
  unfolding scaleR_right_diff_distrib[symmetric] by simp
hoelzl@37489
   308
hoelzl@37489
   309
lemma setsum_component [simp]:
hoelzl@37489
   310
  fixes f:: " 'a \<Rightarrow> ('b::comm_monoid_add) ^'n"
hoelzl@37489
   311
  shows "(setsum f S)$i = setsum (\<lambda>x. (f x)$i) S"
wenzelm@49644
   312
proof (cases "finite S")
wenzelm@49644
   313
  case True
wenzelm@49644
   314
  then show ?thesis by induct simp_all
wenzelm@49644
   315
next
wenzelm@49644
   316
  case False
wenzelm@49644
   317
  then show ?thesis by simp
wenzelm@49644
   318
qed
hoelzl@37489
   319
hoelzl@37489
   320
lemma setsum_eq: "setsum f S = (\<chi> i. setsum (\<lambda>x. (f x)$i ) S)"
huffman@44136
   321
  by (simp add: vec_eq_iff)
hoelzl@37489
   322
hoelzl@37489
   323
lemma setsum_cmul:
hoelzl@37489
   324
  fixes f:: "'c \<Rightarrow> ('a::semiring_1)^'n"
hoelzl@37489
   325
  shows "setsum (\<lambda>x. c *s f x) S = c *s setsum f S"
huffman@44136
   326
  by (simp add: vec_eq_iff setsum_right_distrib)
hoelzl@37489
   327
hoelzl@37489
   328
lemma setsum_norm_allsubsets_bound_cart:
hoelzl@37489
   329
  fixes f:: "'a \<Rightarrow> real ^'n"
hoelzl@37489
   330
  assumes fP: "finite P" and fPs: "\<And>Q. Q \<subseteq> P \<Longrightarrow> norm (setsum f Q) \<le> e"
hoelzl@37489
   331
  shows "setsum (\<lambda>x. norm (f x)) P \<le> 2 * real CARD('n) *  e"
hoelzl@50526
   332
  using setsum_norm_allsubsets_bound[OF assms]
wenzelm@57865
   333
  by simp
hoelzl@37489
   334
lp15@62397
   335
subsection\<open>Closures and interiors of halfspaces\<close>
lp15@62397
   336
lp15@62397
   337
lemma interior_halfspace_le [simp]:
lp15@62397
   338
  assumes "a \<noteq> 0"
lp15@62397
   339
    shows "interior {x. a \<bullet> x \<le> b} = {x. a \<bullet> x < b}"
lp15@62397
   340
proof -
lp15@62397
   341
  have *: "a \<bullet> x < b" if x: "x \<in> S" and S: "S \<subseteq> {x. a \<bullet> x \<le> b}" and "open S" for S x
lp15@62397
   342
  proof -
lp15@62397
   343
    obtain e where "e>0" and e: "cball x e \<subseteq> S"
lp15@62397
   344
      using \<open>open S\<close> open_contains_cball x by blast
lp15@62397
   345
    then have "x + (e / norm a) *\<^sub>R a \<in> cball x e"
lp15@62397
   346
      by (simp add: dist_norm)
lp15@62397
   347
    then have "x + (e / norm a) *\<^sub>R a \<in> S"
lp15@62397
   348
      using e by blast
lp15@62397
   349
    then have "x + (e / norm a) *\<^sub>R a \<in> {x. a \<bullet> x \<le> b}"
lp15@62397
   350
      using S by blast
lp15@62397
   351
    moreover have "e * (a \<bullet> a) / norm a > 0"
lp15@62397
   352
      by (simp add: \<open>0 < e\<close> assms)
lp15@62397
   353
    ultimately show ?thesis
lp15@62397
   354
      by (simp add: algebra_simps)
lp15@62397
   355
  qed
lp15@62397
   356
  show ?thesis
lp15@62397
   357
    by (rule interior_unique) (auto simp: open_halfspace_lt *)
lp15@62397
   358
qed
lp15@62397
   359
lp15@62397
   360
lemma interior_halfspace_ge [simp]:
lp15@62397
   361
   "a \<noteq> 0 \<Longrightarrow> interior {x. a \<bullet> x \<ge> b} = {x. a \<bullet> x > b}"
lp15@62397
   362
using interior_halfspace_le [of "-a" "-b"] by simp
lp15@62397
   363
lp15@62397
   364
lemma interior_halfspace_component_le [simp]:
lp15@62397
   365
     "interior {x. x$k \<le> a} = {x :: (real,'n::finite) vec. x$k < a}" (is "?LE")
lp15@62397
   366
  and interior_halfspace_component_ge [simp]:
lp15@62397
   367
     "interior {x. x$k \<ge> a} = {x :: (real,'n::finite) vec. x$k > a}" (is "?GE")
lp15@62397
   368
proof -
lp15@62397
   369
  have "axis k (1::real) \<noteq> 0"
lp15@62397
   370
    by (simp add: axis_def vec_eq_iff)
lp15@62397
   371
  moreover have "axis k (1::real) \<bullet> x = x$k" for x
lp15@62397
   372
    by (simp add: cart_eq_inner_axis inner_commute)
lp15@62397
   373
  ultimately show ?LE ?GE
lp15@62397
   374
    using interior_halfspace_le [of "axis k (1::real)" a]
lp15@62397
   375
          interior_halfspace_ge [of "axis k (1::real)" a] by auto
lp15@62397
   376
qed
lp15@62397
   377
lp15@62397
   378
lemma closure_halfspace_lt [simp]:
lp15@62397
   379
  assumes "a \<noteq> 0"
lp15@62397
   380
    shows "closure {x. a \<bullet> x < b} = {x. a \<bullet> x \<le> b}"
lp15@62397
   381
proof -
lp15@62397
   382
  have [simp]: "-{x. a \<bullet> x < b} = {x. a \<bullet> x \<ge> b}"
lp15@62397
   383
    by (force simp:)
lp15@62397
   384
  then show ?thesis
lp15@62397
   385
    using interior_halfspace_ge [of a b] assms
lp15@62397
   386
    by (force simp: closure_interior)
lp15@62397
   387
qed
lp15@62397
   388
lp15@62397
   389
lemma closure_halfspace_gt [simp]:
lp15@62397
   390
   "a \<noteq> 0 \<Longrightarrow> closure {x. a \<bullet> x > b} = {x. a \<bullet> x \<ge> b}"
lp15@62397
   391
using closure_halfspace_lt [of "-a" "-b"] by simp
lp15@62397
   392
lp15@62397
   393
lemma closure_halfspace_component_lt [simp]:
lp15@62397
   394
     "closure {x. x$k < a} = {x :: (real,'n::finite) vec. x$k \<le> a}" (is "?LE")
lp15@62397
   395
  and closure_halfspace_component_gt [simp]:
lp15@62397
   396
     "closure {x. x$k > a} = {x :: (real,'n::finite) vec. x$k \<ge> a}" (is "?GE")
lp15@62397
   397
proof -
lp15@62397
   398
  have "axis k (1::real) \<noteq> 0"
lp15@62397
   399
    by (simp add: axis_def vec_eq_iff)
lp15@62397
   400
  moreover have "axis k (1::real) \<bullet> x = x$k" for x
lp15@62397
   401
    by (simp add: cart_eq_inner_axis inner_commute)
lp15@62397
   402
  ultimately show ?LE ?GE
lp15@62397
   403
    using closure_halfspace_lt [of "axis k (1::real)" a]
lp15@62397
   404
          closure_halfspace_gt [of "axis k (1::real)" a] by auto
lp15@62397
   405
qed
lp15@62397
   406
lp15@62397
   407
lemma interior_hyperplane [simp]:
lp15@62397
   408
  assumes "a \<noteq> 0"
lp15@62397
   409
    shows "interior {x. a \<bullet> x = b} = {}"
lp15@62397
   410
proof -
lp15@62397
   411
  have [simp]: "{x. a \<bullet> x = b} = {x. a \<bullet> x \<le> b} \<inter> {x. a \<bullet> x \<ge> b}"
lp15@62397
   412
    by (force simp:)
lp15@62397
   413
  then show ?thesis
lp15@62397
   414
    by (auto simp: assms)
lp15@62397
   415
qed
lp15@62397
   416
lp15@62397
   417
lemma frontier_halfspace_le:
lp15@62397
   418
  assumes "a \<noteq> 0 \<or> b \<noteq> 0"
lp15@62397
   419
    shows "frontier {x. a \<bullet> x \<le> b} = {x. a \<bullet> x = b}"
lp15@62397
   420
proof (cases "a = 0")
lp15@62397
   421
  case True with assms show ?thesis by simp
lp15@62397
   422
next
lp15@62397
   423
  case False then show ?thesis
lp15@62397
   424
    by (force simp: frontier_def closed_halfspace_le)
lp15@62397
   425
qed
lp15@62397
   426
lp15@62397
   427
lemma frontier_halfspace_ge:
lp15@62397
   428
  assumes "a \<noteq> 0 \<or> b \<noteq> 0"
lp15@62397
   429
    shows "frontier {x. a \<bullet> x \<ge> b} = {x. a \<bullet> x = b}"
lp15@62397
   430
proof (cases "a = 0")
lp15@62397
   431
  case True with assms show ?thesis by simp
lp15@62397
   432
next
lp15@62397
   433
  case False then show ?thesis
lp15@62397
   434
    by (force simp: frontier_def closed_halfspace_ge)
lp15@62397
   435
qed
lp15@62397
   436
lp15@62397
   437
lemma frontier_halfspace_lt:
lp15@62397
   438
  assumes "a \<noteq> 0 \<or> b \<noteq> 0"
lp15@62397
   439
    shows "frontier {x. a \<bullet> x < b} = {x. a \<bullet> x = b}"
lp15@62397
   440
proof (cases "a = 0")
lp15@62397
   441
  case True with assms show ?thesis by simp
lp15@62397
   442
next
lp15@62397
   443
  case False then show ?thesis
lp15@62397
   444
    by (force simp: frontier_def interior_open open_halfspace_lt)
lp15@62397
   445
qed
lp15@62397
   446
lp15@62397
   447
lemma frontier_halfspace_gt:
lp15@62397
   448
  assumes "a \<noteq> 0 \<or> b \<noteq> 0"
lp15@62397
   449
    shows "frontier {x. a \<bullet> x > b} = {x. a \<bullet> x = b}"
lp15@62397
   450
proof (cases "a = 0")
lp15@62397
   451
  case True with assms show ?thesis by simp
lp15@62397
   452
next
lp15@62397
   453
  case False then show ?thesis
lp15@62397
   454
    by (force simp: frontier_def interior_open open_halfspace_gt)
lp15@62397
   455
qed
lp15@62397
   456
lp15@62397
   457
lemma interior_standard_hyperplane:
lp15@62397
   458
   "interior {x :: (real,'n::finite) vec. x$k = a} = {}"
lp15@62397
   459
proof -
lp15@62397
   460
  have "axis k (1::real) \<noteq> 0"
lp15@62397
   461
    by (simp add: axis_def vec_eq_iff)
lp15@62397
   462
  moreover have "axis k (1::real) \<bullet> x = x$k" for x
lp15@62397
   463
    by (simp add: cart_eq_inner_axis inner_commute)
lp15@62397
   464
  ultimately show ?thesis
lp15@62397
   465
    using interior_hyperplane [of "axis k (1::real)" a]
lp15@62397
   466
    by force
lp15@62397
   467
qed
lp15@62397
   468
wenzelm@60420
   469
subsection \<open>Matrix operations\<close>
hoelzl@37489
   470
wenzelm@60420
   471
text\<open>Matrix notation. NB: an MxN matrix is of type @{typ "'a^'n^'m"}, not @{typ "'a^'m^'n"}\<close>
hoelzl@37489
   472
wenzelm@49644
   473
definition matrix_matrix_mult :: "('a::semiring_1) ^'n^'m \<Rightarrow> 'a ^'p^'n \<Rightarrow> 'a ^ 'p ^'m"
wenzelm@49644
   474
    (infixl "**" 70)
hoelzl@37489
   475
  where "m ** m' == (\<chi> i j. setsum (\<lambda>k. ((m$i)$k) * ((m'$k)$j)) (UNIV :: 'n set)) ::'a ^ 'p ^'m"
hoelzl@37489
   476
wenzelm@49644
   477
definition matrix_vector_mult :: "('a::semiring_1) ^'n^'m \<Rightarrow> 'a ^'n \<Rightarrow> 'a ^ 'm"
wenzelm@49644
   478
    (infixl "*v" 70)
hoelzl@37489
   479
  where "m *v x \<equiv> (\<chi> i. setsum (\<lambda>j. ((m$i)$j) * (x$j)) (UNIV ::'n set)) :: 'a^'m"
hoelzl@37489
   480
wenzelm@49644
   481
definition vector_matrix_mult :: "'a ^ 'm \<Rightarrow> ('a::semiring_1) ^'n^'m \<Rightarrow> 'a ^'n "
wenzelm@49644
   482
    (infixl "v*" 70)
hoelzl@37489
   483
  where "v v* m == (\<chi> j. setsum (\<lambda>i. ((m$i)$j) * (v$i)) (UNIV :: 'm set)) :: 'a^'n"
hoelzl@37489
   484
hoelzl@37489
   485
definition "(mat::'a::zero => 'a ^'n^'n) k = (\<chi> i j. if i = j then k else 0)"
hoelzl@37489
   486
definition transpose where 
hoelzl@37489
   487
  "(transpose::'a^'n^'m \<Rightarrow> 'a^'m^'n) A = (\<chi> i j. ((A$j)$i))"
hoelzl@37489
   488
definition "(row::'m => 'a ^'n^'m \<Rightarrow> 'a ^'n) i A = (\<chi> j. ((A$i)$j))"
hoelzl@37489
   489
definition "(column::'n =>'a^'n^'m =>'a^'m) j A = (\<chi> i. ((A$i)$j))"
hoelzl@37489
   490
definition "rows(A::'a^'n^'m) = { row i A | i. i \<in> (UNIV :: 'm set)}"
hoelzl@37489
   491
definition "columns(A::'a^'n^'m) = { column i A | i. i \<in> (UNIV :: 'n set)}"
hoelzl@37489
   492
hoelzl@37489
   493
lemma mat_0[simp]: "mat 0 = 0" by (vector mat_def)
hoelzl@37489
   494
lemma matrix_add_ldistrib: "(A ** (B + C)) = (A ** B) + (A ** C)"
haftmann@57418
   495
  by (vector matrix_matrix_mult_def setsum.distrib[symmetric] field_simps)
hoelzl@37489
   496
hoelzl@37489
   497
lemma matrix_mul_lid:
hoelzl@37489
   498
  fixes A :: "'a::semiring_1 ^ 'm ^ 'n"
hoelzl@37489
   499
  shows "mat 1 ** A = A"
hoelzl@37489
   500
  apply (simp add: matrix_matrix_mult_def mat_def)
hoelzl@37489
   501
  apply vector
haftmann@57418
   502
  apply (auto simp only: if_distrib cond_application_beta setsum.delta'[OF finite]
wenzelm@49644
   503
    mult_1_left mult_zero_left if_True UNIV_I)
wenzelm@49644
   504
  done
hoelzl@37489
   505
hoelzl@37489
   506
hoelzl@37489
   507
lemma matrix_mul_rid:
hoelzl@37489
   508
  fixes A :: "'a::semiring_1 ^ 'm ^ 'n"
hoelzl@37489
   509
  shows "A ** mat 1 = A"
hoelzl@37489
   510
  apply (simp add: matrix_matrix_mult_def mat_def)
hoelzl@37489
   511
  apply vector
haftmann@57418
   512
  apply (auto simp only: if_distrib cond_application_beta setsum.delta[OF finite]
wenzelm@49644
   513
    mult_1_right mult_zero_right if_True UNIV_I cong: if_cong)
wenzelm@49644
   514
  done
hoelzl@37489
   515
hoelzl@37489
   516
lemma matrix_mul_assoc: "A ** (B ** C) = (A ** B) ** C"
haftmann@57512
   517
  apply (vector matrix_matrix_mult_def setsum_right_distrib setsum_left_distrib mult.assoc)
haftmann@57418
   518
  apply (subst setsum.commute)
hoelzl@37489
   519
  apply simp
hoelzl@37489
   520
  done
hoelzl@37489
   521
hoelzl@37489
   522
lemma matrix_vector_mul_assoc: "A *v (B *v x) = (A ** B) *v x"
wenzelm@49644
   523
  apply (vector matrix_matrix_mult_def matrix_vector_mult_def
haftmann@57512
   524
    setsum_right_distrib setsum_left_distrib mult.assoc)
haftmann@57418
   525
  apply (subst setsum.commute)
hoelzl@37489
   526
  apply simp
hoelzl@37489
   527
  done
hoelzl@37489
   528
hoelzl@37489
   529
lemma matrix_vector_mul_lid: "mat 1 *v x = (x::'a::semiring_1 ^ 'n)"
hoelzl@37489
   530
  apply (vector matrix_vector_mult_def mat_def)
haftmann@57418
   531
  apply (simp add: if_distrib cond_application_beta setsum.delta' cong del: if_weak_cong)
wenzelm@49644
   532
  done
hoelzl@37489
   533
wenzelm@49644
   534
lemma matrix_transpose_mul:
wenzelm@49644
   535
    "transpose(A ** B) = transpose B ** transpose (A::'a::comm_semiring_1^_^_)"
haftmann@57512
   536
  by (simp add: matrix_matrix_mult_def transpose_def vec_eq_iff mult.commute)
hoelzl@37489
   537
hoelzl@37489
   538
lemma matrix_eq:
hoelzl@37489
   539
  fixes A B :: "'a::semiring_1 ^ 'n ^ 'm"
hoelzl@37489
   540
  shows "A = B \<longleftrightarrow>  (\<forall>x. A *v x = B *v x)" (is "?lhs \<longleftrightarrow> ?rhs")
hoelzl@37489
   541
  apply auto
huffman@44136
   542
  apply (subst vec_eq_iff)
hoelzl@37489
   543
  apply clarify
hoelzl@50526
   544
  apply (clarsimp simp add: matrix_vector_mult_def if_distrib cond_application_beta vec_eq_iff cong del: if_weak_cong)
hoelzl@50526
   545
  apply (erule_tac x="axis ia 1" in allE)
hoelzl@37489
   546
  apply (erule_tac x="i" in allE)
hoelzl@50526
   547
  apply (auto simp add: if_distrib cond_application_beta axis_def
haftmann@57418
   548
    setsum.delta[OF finite] cong del: if_weak_cong)
wenzelm@49644
   549
  done
hoelzl@37489
   550
wenzelm@49644
   551
lemma matrix_vector_mul_component: "((A::real^_^_) *v x)$k = (A$k) \<bullet> x"
huffman@44136
   552
  by (simp add: matrix_vector_mult_def inner_vec_def)
hoelzl@37489
   553
hoelzl@37489
   554
lemma dot_lmul_matrix: "((x::real ^_) v* A) \<bullet> y = x \<bullet> (A *v y)"
haftmann@57514
   555
  apply (simp add: inner_vec_def matrix_vector_mult_def vector_matrix_mult_def setsum_left_distrib setsum_right_distrib ac_simps)
haftmann@57418
   556
  apply (subst setsum.commute)
wenzelm@49644
   557
  apply simp
wenzelm@49644
   558
  done
hoelzl@37489
   559
hoelzl@37489
   560
lemma transpose_mat: "transpose (mat n) = mat n"
hoelzl@37489
   561
  by (vector transpose_def mat_def)
hoelzl@37489
   562
hoelzl@37489
   563
lemma transpose_transpose: "transpose(transpose A) = A"
hoelzl@37489
   564
  by (vector transpose_def)
hoelzl@37489
   565
hoelzl@37489
   566
lemma row_transpose:
hoelzl@37489
   567
  fixes A:: "'a::semiring_1^_^_"
hoelzl@37489
   568
  shows "row i (transpose A) = column i A"
huffman@44136
   569
  by (simp add: row_def column_def transpose_def vec_eq_iff)
hoelzl@37489
   570
hoelzl@37489
   571
lemma column_transpose:
hoelzl@37489
   572
  fixes A:: "'a::semiring_1^_^_"
hoelzl@37489
   573
  shows "column i (transpose A) = row i A"
huffman@44136
   574
  by (simp add: row_def column_def transpose_def vec_eq_iff)
hoelzl@37489
   575
hoelzl@37489
   576
lemma rows_transpose: "rows(transpose (A::'a::semiring_1^_^_)) = columns A"
wenzelm@49644
   577
  by (auto simp add: rows_def columns_def row_transpose intro: set_eqI)
hoelzl@37489
   578
wenzelm@49644
   579
lemma columns_transpose: "columns(transpose (A::'a::semiring_1^_^_)) = rows A"
wenzelm@49644
   580
  by (metis transpose_transpose rows_transpose)
hoelzl@37489
   581
wenzelm@60420
   582
text\<open>Two sometimes fruitful ways of looking at matrix-vector multiplication.\<close>
hoelzl@37489
   583
hoelzl@37489
   584
lemma matrix_mult_dot: "A *v x = (\<chi> i. A$i \<bullet> x)"
huffman@44136
   585
  by (simp add: matrix_vector_mult_def inner_vec_def)
hoelzl@37489
   586
wenzelm@49644
   587
lemma matrix_mult_vsum:
wenzelm@49644
   588
  "(A::'a::comm_semiring_1^'n^'m) *v x = setsum (\<lambda>i. (x$i) *s column i A) (UNIV:: 'n set)"
haftmann@57512
   589
  by (simp add: matrix_vector_mult_def vec_eq_iff column_def mult.commute)
hoelzl@37489
   590
hoelzl@37489
   591
lemma vector_componentwise:
hoelzl@50526
   592
  "(x::'a::ring_1^'n) = (\<chi> j. \<Sum>i\<in>UNIV. (x$i) * (axis i 1 :: 'a^'n) $ j)"
haftmann@57418
   593
  by (simp add: axis_def if_distrib setsum.If_cases vec_eq_iff)
hoelzl@50526
   594
hoelzl@50526
   595
lemma basis_expansion: "setsum (\<lambda>i. (x$i) *s axis i 1) UNIV = (x::('a::ring_1) ^'n)"
haftmann@57418
   596
  by (auto simp add: axis_def vec_eq_iff if_distrib setsum.If_cases cong del: if_weak_cong)
hoelzl@37489
   597
hoelzl@37489
   598
lemma linear_componentwise:
hoelzl@37489
   599
  fixes f:: "real ^'m \<Rightarrow> real ^ _"
hoelzl@37489
   600
  assumes lf: "linear f"
hoelzl@50526
   601
  shows "(f x)$j = setsum (\<lambda>i. (x$i) * (f (axis i 1)$j)) (UNIV :: 'm set)" (is "?lhs = ?rhs")
wenzelm@49644
   602
proof -
hoelzl@37489
   603
  let ?M = "(UNIV :: 'm set)"
hoelzl@37489
   604
  let ?N = "(UNIV :: 'n set)"
hoelzl@50526
   605
  have "?rhs = (setsum (\<lambda>i.(x$i) *\<^sub>R f (axis i 1) ) ?M)$j"
hoelzl@50526
   606
    unfolding setsum_component by simp
wenzelm@49644
   607
  then show ?thesis
huffman@56196
   608
    unfolding linear_setsum_mul[OF lf, symmetric]
hoelzl@50526
   609
    unfolding scalar_mult_eq_scaleR[symmetric]
hoelzl@50526
   610
    unfolding basis_expansion
hoelzl@50526
   611
    by simp
hoelzl@37489
   612
qed
hoelzl@37489
   613
wenzelm@60420
   614
text\<open>Inverse matrices  (not necessarily square)\<close>
hoelzl@37489
   615
wenzelm@49644
   616
definition
wenzelm@49644
   617
  "invertible(A::'a::semiring_1^'n^'m) \<longleftrightarrow> (\<exists>A'::'a^'m^'n. A ** A' = mat 1 \<and> A' ** A = mat 1)"
hoelzl@37489
   618
wenzelm@49644
   619
definition
wenzelm@49644
   620
  "matrix_inv(A:: 'a::semiring_1^'n^'m) =
wenzelm@49644
   621
    (SOME A'::'a^'m^'n. A ** A' = mat 1 \<and> A' ** A = mat 1)"
hoelzl@37489
   622
wenzelm@60420
   623
text\<open>Correspondence between matrices and linear operators.\<close>
hoelzl@37489
   624
wenzelm@49644
   625
definition matrix :: "('a::{plus,times, one, zero}^'m \<Rightarrow> 'a ^ 'n) \<Rightarrow> 'a^'m^'n"
hoelzl@50526
   626
  where "matrix f = (\<chi> i j. (f(axis j 1))$i)"
hoelzl@37489
   627
hoelzl@37489
   628
lemma matrix_vector_mul_linear: "linear(\<lambda>x. A *v (x::real ^ _))"
huffman@53600
   629
  by (simp add: linear_iff matrix_vector_mult_def vec_eq_iff
haftmann@57418
   630
      field_simps setsum_right_distrib setsum.distrib)
hoelzl@37489
   631
wenzelm@49644
   632
lemma matrix_works:
wenzelm@49644
   633
  assumes lf: "linear f"
wenzelm@49644
   634
  shows "matrix f *v x = f (x::real ^ 'n)"
haftmann@57512
   635
  apply (simp add: matrix_def matrix_vector_mult_def vec_eq_iff mult.commute)
wenzelm@49644
   636
  apply clarify
wenzelm@49644
   637
  apply (rule linear_componentwise[OF lf, symmetric])
wenzelm@49644
   638
  done
hoelzl@37489
   639
wenzelm@49644
   640
lemma matrix_vector_mul: "linear f ==> f = (\<lambda>x. matrix f *v (x::real ^ 'n))"
wenzelm@49644
   641
  by (simp add: ext matrix_works)
hoelzl@37489
   642
hoelzl@37489
   643
lemma matrix_of_matrix_vector_mul: "matrix(\<lambda>x. A *v (x :: real ^ 'n)) = A"
hoelzl@37489
   644
  by (simp add: matrix_eq matrix_vector_mul_linear matrix_works)
hoelzl@37489
   645
hoelzl@37489
   646
lemma matrix_compose:
hoelzl@37489
   647
  assumes lf: "linear (f::real^'n \<Rightarrow> real^'m)"
wenzelm@49644
   648
    and lg: "linear (g::real^'m \<Rightarrow> real^_)"
wenzelm@61736
   649
  shows "matrix (g \<circ> f) = matrix g ** matrix f"
hoelzl@37489
   650
  using lf lg linear_compose[OF lf lg] matrix_works[OF linear_compose[OF lf lg]]
wenzelm@49644
   651
  by (simp add: matrix_eq matrix_works matrix_vector_mul_assoc[symmetric] o_def)
hoelzl@37489
   652
wenzelm@49644
   653
lemma matrix_vector_column:
wenzelm@49644
   654
  "(A::'a::comm_semiring_1^'n^_) *v x = setsum (\<lambda>i. (x$i) *s ((transpose A)$i)) (UNIV:: 'n set)"
haftmann@57512
   655
  by (simp add: matrix_vector_mult_def transpose_def vec_eq_iff mult.commute)
hoelzl@37489
   656
hoelzl@37489
   657
lemma adjoint_matrix: "adjoint(\<lambda>x. (A::real^'n^'m) *v x) = (\<lambda>x. transpose A *v x)"
hoelzl@37489
   658
  apply (rule adjoint_unique)
wenzelm@49644
   659
  apply (simp add: transpose_def inner_vec_def matrix_vector_mult_def
wenzelm@49644
   660
    setsum_left_distrib setsum_right_distrib)
haftmann@57418
   661
  apply (subst setsum.commute)
haftmann@57514
   662
  apply (auto simp add: ac_simps)
hoelzl@37489
   663
  done
hoelzl@37489
   664
hoelzl@37489
   665
lemma matrix_adjoint: assumes lf: "linear (f :: real^'n \<Rightarrow> real ^'m)"
hoelzl@37489
   666
  shows "matrix(adjoint f) = transpose(matrix f)"
hoelzl@37489
   667
  apply (subst matrix_vector_mul[OF lf])
wenzelm@49644
   668
  unfolding adjoint_matrix matrix_of_matrix_vector_mul
wenzelm@49644
   669
  apply rule
wenzelm@49644
   670
  done
wenzelm@49644
   671
hoelzl@37489
   672
wenzelm@60420
   673
subsection \<open>lambda skolemization on cartesian products\<close>
hoelzl@37489
   674
hoelzl@37489
   675
(* FIXME: rename do choice_cart *)
hoelzl@37489
   676
hoelzl@37489
   677
lemma lambda_skolem: "(\<forall>i. \<exists>x. P i x) \<longleftrightarrow>
hoelzl@37494
   678
   (\<exists>x::'a ^ 'n. \<forall>i. P i (x $ i))" (is "?lhs \<longleftrightarrow> ?rhs")
wenzelm@49644
   679
proof -
hoelzl@37489
   680
  let ?S = "(UNIV :: 'n set)"
wenzelm@49644
   681
  { assume H: "?rhs"
wenzelm@49644
   682
    then have ?lhs by auto }
hoelzl@37489
   683
  moreover
wenzelm@49644
   684
  { assume H: "?lhs"
hoelzl@37489
   685
    then obtain f where f:"\<forall>i. P i (f i)" unfolding choice_iff by metis
hoelzl@37489
   686
    let ?x = "(\<chi> i. (f i)) :: 'a ^ 'n"
wenzelm@49644
   687
    { fix i
hoelzl@37489
   688
      from f have "P i (f i)" by metis
hoelzl@37494
   689
      then have "P i (?x $ i)" by auto
hoelzl@37489
   690
    }
hoelzl@37489
   691
    hence "\<forall>i. P i (?x$i)" by metis
hoelzl@37489
   692
    hence ?rhs by metis }
hoelzl@37489
   693
  ultimately show ?thesis by metis
hoelzl@37489
   694
qed
hoelzl@37489
   695
hoelzl@37489
   696
lemma vector_sub_project_orthogonal_cart: "(b::real^'n) \<bullet> (x - ((b \<bullet> x) / (b \<bullet> b)) *s b) = 0"
hoelzl@50526
   697
  unfolding inner_simps scalar_mult_eq_scaleR by auto
hoelzl@37489
   698
hoelzl@37489
   699
lemma left_invertible_transpose:
hoelzl@37489
   700
  "(\<exists>(B). B ** transpose (A) = mat (1::'a::comm_semiring_1)) \<longleftrightarrow> (\<exists>(B). A ** B = mat 1)"
hoelzl@37489
   701
  by (metis matrix_transpose_mul transpose_mat transpose_transpose)
hoelzl@37489
   702
hoelzl@37489
   703
lemma right_invertible_transpose:
hoelzl@37489
   704
  "(\<exists>(B). transpose (A) ** B = mat (1::'a::comm_semiring_1)) \<longleftrightarrow> (\<exists>(B). B ** A = mat 1)"
hoelzl@37489
   705
  by (metis matrix_transpose_mul transpose_mat transpose_transpose)
hoelzl@37489
   706
hoelzl@37489
   707
lemma matrix_left_invertible_injective:
wenzelm@49644
   708
  "(\<exists>B. (B::real^'m^'n) ** (A::real^'n^'m) = mat 1) \<longleftrightarrow> (\<forall>x y. A *v x = A *v y \<longrightarrow> x = y)"
wenzelm@49644
   709
proof -
wenzelm@49644
   710
  { fix B:: "real^'m^'n" and x y assume B: "B ** A = mat 1" and xy: "A *v x = A*v y"
hoelzl@37489
   711
    from xy have "B*v (A *v x) = B *v (A*v y)" by simp
hoelzl@37489
   712
    hence "x = y"
wenzelm@49644
   713
      unfolding matrix_vector_mul_assoc B matrix_vector_mul_lid . }
hoelzl@37489
   714
  moreover
wenzelm@49644
   715
  { assume A: "\<forall>x y. A *v x = A *v y \<longrightarrow> x = y"
hoelzl@37489
   716
    hence i: "inj (op *v A)" unfolding inj_on_def by auto
hoelzl@37489
   717
    from linear_injective_left_inverse[OF matrix_vector_mul_linear i]
wenzelm@61736
   718
    obtain g where g: "linear g" "g \<circ> op *v A = id" by blast
hoelzl@37489
   719
    have "matrix g ** A = mat 1"
hoelzl@37489
   720
      unfolding matrix_eq matrix_vector_mul_lid matrix_vector_mul_assoc[symmetric] matrix_works[OF g(1)]
huffman@44165
   721
      using g(2) by (simp add: fun_eq_iff)
wenzelm@49644
   722
    then have "\<exists>B. (B::real ^'m^'n) ** A = mat 1" by blast }
hoelzl@37489
   723
  ultimately show ?thesis by blast
hoelzl@37489
   724
qed
hoelzl@37489
   725
hoelzl@37489
   726
lemma matrix_left_invertible_ker:
hoelzl@37489
   727
  "(\<exists>B. (B::real ^'m^'n) ** (A::real^'n^'m) = mat 1) \<longleftrightarrow> (\<forall>x. A *v x = 0 \<longrightarrow> x = 0)"
hoelzl@37489
   728
  unfolding matrix_left_invertible_injective
hoelzl@37489
   729
  using linear_injective_0[OF matrix_vector_mul_linear, of A]
hoelzl@37489
   730
  by (simp add: inj_on_def)
hoelzl@37489
   731
hoelzl@37489
   732
lemma matrix_right_invertible_surjective:
wenzelm@49644
   733
  "(\<exists>B. (A::real^'n^'m) ** (B::real^'m^'n) = mat 1) \<longleftrightarrow> surj (\<lambda>x. A *v x)"
wenzelm@49644
   734
proof -
wenzelm@49644
   735
  { fix B :: "real ^'m^'n"
wenzelm@49644
   736
    assume AB: "A ** B = mat 1"
wenzelm@49644
   737
    { fix x :: "real ^ 'm"
hoelzl@37489
   738
      have "A *v (B *v x) = x"
wenzelm@49644
   739
        by (simp add: matrix_vector_mul_lid matrix_vector_mul_assoc AB) }
hoelzl@37489
   740
    hence "surj (op *v A)" unfolding surj_def by metis }
hoelzl@37489
   741
  moreover
wenzelm@49644
   742
  { assume sf: "surj (op *v A)"
hoelzl@37489
   743
    from linear_surjective_right_inverse[OF matrix_vector_mul_linear sf]
wenzelm@61736
   744
    obtain g:: "real ^'m \<Rightarrow> real ^'n" where g: "linear g" "op *v A \<circ> g = id"
hoelzl@37489
   745
      by blast
hoelzl@37489
   746
hoelzl@37489
   747
    have "A ** (matrix g) = mat 1"
hoelzl@37489
   748
      unfolding matrix_eq  matrix_vector_mul_lid
hoelzl@37489
   749
        matrix_vector_mul_assoc[symmetric] matrix_works[OF g(1)]
huffman@44165
   750
      using g(2) unfolding o_def fun_eq_iff id_def
hoelzl@37489
   751
      .
hoelzl@37489
   752
    hence "\<exists>B. A ** (B::real^'m^'n) = mat 1" by blast
hoelzl@37489
   753
  }
hoelzl@37489
   754
  ultimately show ?thesis unfolding surj_def by blast
hoelzl@37489
   755
qed
hoelzl@37489
   756
hoelzl@37489
   757
lemma matrix_left_invertible_independent_columns:
hoelzl@37489
   758
  fixes A :: "real^'n^'m"
wenzelm@49644
   759
  shows "(\<exists>(B::real ^'m^'n). B ** A = mat 1) \<longleftrightarrow>
wenzelm@49644
   760
      (\<forall>c. setsum (\<lambda>i. c i *s column i A) (UNIV :: 'n set) = 0 \<longrightarrow> (\<forall>i. c i = 0))"
wenzelm@49644
   761
    (is "?lhs \<longleftrightarrow> ?rhs")
wenzelm@49644
   762
proof -
hoelzl@37489
   763
  let ?U = "UNIV :: 'n set"
wenzelm@49644
   764
  { assume k: "\<forall>x. A *v x = 0 \<longrightarrow> x = 0"
wenzelm@49644
   765
    { fix c i
wenzelm@49644
   766
      assume c: "setsum (\<lambda>i. c i *s column i A) ?U = 0" and i: "i \<in> ?U"
hoelzl@37489
   767
      let ?x = "\<chi> i. c i"
hoelzl@37489
   768
      have th0:"A *v ?x = 0"
hoelzl@37489
   769
        using c
huffman@44136
   770
        unfolding matrix_mult_vsum vec_eq_iff
hoelzl@37489
   771
        by auto
hoelzl@37489
   772
      from k[rule_format, OF th0] i
huffman@44136
   773
      have "c i = 0" by (vector vec_eq_iff)}
wenzelm@49644
   774
    hence ?rhs by blast }
hoelzl@37489
   775
  moreover
wenzelm@49644
   776
  { assume H: ?rhs
wenzelm@49644
   777
    { fix x assume x: "A *v x = 0"
hoelzl@37489
   778
      let ?c = "\<lambda>i. ((x$i ):: real)"
hoelzl@37489
   779
      from H[rule_format, of ?c, unfolded matrix_mult_vsum[symmetric], OF x]
wenzelm@49644
   780
      have "x = 0" by vector }
wenzelm@49644
   781
  }
hoelzl@37489
   782
  ultimately show ?thesis unfolding matrix_left_invertible_ker by blast
hoelzl@37489
   783
qed
hoelzl@37489
   784
hoelzl@37489
   785
lemma matrix_right_invertible_independent_rows:
hoelzl@37489
   786
  fixes A :: "real^'n^'m"
wenzelm@49644
   787
  shows "(\<exists>(B::real^'m^'n). A ** B = mat 1) \<longleftrightarrow>
wenzelm@49644
   788
    (\<forall>c. setsum (\<lambda>i. c i *s row i A) (UNIV :: 'm set) = 0 \<longrightarrow> (\<forall>i. c i = 0))"
hoelzl@37489
   789
  unfolding left_invertible_transpose[symmetric]
hoelzl@37489
   790
    matrix_left_invertible_independent_columns
hoelzl@37489
   791
  by (simp add: column_transpose)
hoelzl@37489
   792
hoelzl@37489
   793
lemma matrix_right_invertible_span_columns:
wenzelm@49644
   794
  "(\<exists>(B::real ^'n^'m). (A::real ^'m^'n) ** B = mat 1) \<longleftrightarrow>
wenzelm@49644
   795
    span (columns A) = UNIV" (is "?lhs = ?rhs")
wenzelm@49644
   796
proof -
hoelzl@37489
   797
  let ?U = "UNIV :: 'm set"
hoelzl@37489
   798
  have fU: "finite ?U" by simp
hoelzl@37489
   799
  have lhseq: "?lhs \<longleftrightarrow> (\<forall>y. \<exists>(x::real^'m). setsum (\<lambda>i. (x$i) *s column i A) ?U = y)"
hoelzl@37489
   800
    unfolding matrix_right_invertible_surjective matrix_mult_vsum surj_def
wenzelm@49644
   801
    apply (subst eq_commute)
wenzelm@49644
   802
    apply rule
wenzelm@49644
   803
    done
hoelzl@37489
   804
  have rhseq: "?rhs \<longleftrightarrow> (\<forall>x. x \<in> span (columns A))" by blast
wenzelm@49644
   805
  { assume h: ?lhs
wenzelm@49644
   806
    { fix x:: "real ^'n"
wenzelm@49644
   807
      from h[unfolded lhseq, rule_format, of x] obtain y :: "real ^'m"
wenzelm@49644
   808
        where y: "setsum (\<lambda>i. (y$i) *s column i A) ?U = x" by blast
wenzelm@49644
   809
      have "x \<in> span (columns A)"
wenzelm@49644
   810
        unfolding y[symmetric]
huffman@56196
   811
        apply (rule span_setsum)
wenzelm@49644
   812
        apply clarify
hoelzl@50526
   813
        unfolding scalar_mult_eq_scaleR
wenzelm@49644
   814
        apply (rule span_mul)
wenzelm@49644
   815
        apply (rule span_superset)
wenzelm@49644
   816
        unfolding columns_def
wenzelm@49644
   817
        apply blast
wenzelm@49644
   818
        done
wenzelm@49644
   819
    }
wenzelm@49644
   820
    then have ?rhs unfolding rhseq by blast }
hoelzl@37489
   821
  moreover
wenzelm@49644
   822
  { assume h:?rhs
hoelzl@37489
   823
    let ?P = "\<lambda>(y::real ^'n). \<exists>(x::real^'m). setsum (\<lambda>i. (x$i) *s column i A) ?U = y"
wenzelm@49644
   824
    { fix y
wenzelm@49644
   825
      have "?P y"
hoelzl@50526
   826
      proof (rule span_induct_alt[of ?P "columns A", folded scalar_mult_eq_scaleR])
wenzelm@61076
   827
        show "\<exists>x::real ^ 'm. setsum (\<lambda>i. (x$i) *s column i A) ?U = 0"
hoelzl@37489
   828
          by (rule exI[where x=0], simp)
hoelzl@37489
   829
      next
wenzelm@49644
   830
        fix c y1 y2
wenzelm@49644
   831
        assume y1: "y1 \<in> columns A" and y2: "?P y2"
hoelzl@37489
   832
        from y1 obtain i where i: "i \<in> ?U" "y1 = column i A"
hoelzl@37489
   833
          unfolding columns_def by blast
hoelzl@37489
   834
        from y2 obtain x:: "real ^'m" where
hoelzl@37489
   835
          x: "setsum (\<lambda>i. (x$i) *s column i A) ?U = y2" by blast
hoelzl@37489
   836
        let ?x = "(\<chi> j. if j = i then c + (x$i) else (x$j))::real^'m"
hoelzl@37489
   837
        show "?P (c*s y1 + y2)"
webertj@49962
   838
        proof (rule exI[where x= "?x"], vector, auto simp add: i x[symmetric] if_distrib distrib_left cond_application_beta cong del: if_weak_cong)
wenzelm@49644
   839
          fix j
wenzelm@49644
   840
          have th: "\<forall>xa \<in> ?U. (if xa = i then (c + (x$i)) * ((column xa A)$j)
wenzelm@49644
   841
              else (x$xa) * ((column xa A$j))) = (if xa = i then c * ((column i A)$j) else 0) + ((x$xa) * ((column xa A)$j))"
wenzelm@49644
   842
            using i(1) by (simp add: field_simps)
wenzelm@49644
   843
          have "setsum (\<lambda>xa. if xa = i then (c + (x$i)) * ((column xa A)$j)
wenzelm@49644
   844
              else (x$xa) * ((column xa A$j))) ?U = setsum (\<lambda>xa. (if xa = i then c * ((column i A)$j) else 0) + ((x$xa) * ((column xa A)$j))) ?U"
haftmann@57418
   845
            apply (rule setsum.cong[OF refl])
wenzelm@49644
   846
            using th apply blast
wenzelm@49644
   847
            done
wenzelm@49644
   848
          also have "\<dots> = setsum (\<lambda>xa. if xa = i then c * ((column i A)$j) else 0) ?U + setsum (\<lambda>xa. ((x$xa) * ((column xa A)$j))) ?U"
haftmann@57418
   849
            by (simp add: setsum.distrib)
wenzelm@49644
   850
          also have "\<dots> = c * ((column i A)$j) + setsum (\<lambda>xa. ((x$xa) * ((column xa A)$j))) ?U"
haftmann@57418
   851
            unfolding setsum.delta[OF fU]
wenzelm@49644
   852
            using i(1) by simp
wenzelm@49644
   853
          finally show "setsum (\<lambda>xa. if xa = i then (c + (x$i)) * ((column xa A)$j)
wenzelm@49644
   854
            else (x$xa) * ((column xa A$j))) ?U = c * ((column i A)$j) + setsum (\<lambda>xa. ((x$xa) * ((column xa A)$j))) ?U" .
wenzelm@49644
   855
        qed
wenzelm@49644
   856
      next
wenzelm@49644
   857
        show "y \<in> span (columns A)"
wenzelm@49644
   858
          unfolding h by blast
wenzelm@49644
   859
      qed
wenzelm@49644
   860
    }
wenzelm@49644
   861
    then have ?lhs unfolding lhseq ..
wenzelm@49644
   862
  }
hoelzl@37489
   863
  ultimately show ?thesis by blast
hoelzl@37489
   864
qed
hoelzl@37489
   865
hoelzl@37489
   866
lemma matrix_left_invertible_span_rows:
hoelzl@37489
   867
  "(\<exists>(B::real^'m^'n). B ** (A::real^'n^'m) = mat 1) \<longleftrightarrow> span (rows A) = UNIV"
hoelzl@37489
   868
  unfolding right_invertible_transpose[symmetric]
hoelzl@37489
   869
  unfolding columns_transpose[symmetric]
hoelzl@37489
   870
  unfolding matrix_right_invertible_span_columns
wenzelm@49644
   871
  ..
hoelzl@37489
   872
wenzelm@60420
   873
text \<open>The same result in terms of square matrices.\<close>
hoelzl@37489
   874
hoelzl@37489
   875
lemma matrix_left_right_inverse:
hoelzl@37489
   876
  fixes A A' :: "real ^'n^'n"
hoelzl@37489
   877
  shows "A ** A' = mat 1 \<longleftrightarrow> A' ** A = mat 1"
wenzelm@49644
   878
proof -
wenzelm@49644
   879
  { fix A A' :: "real ^'n^'n"
wenzelm@49644
   880
    assume AA': "A ** A' = mat 1"
hoelzl@37489
   881
    have sA: "surj (op *v A)"
hoelzl@37489
   882
      unfolding surj_def
hoelzl@37489
   883
      apply clarify
hoelzl@37489
   884
      apply (rule_tac x="(A' *v y)" in exI)
wenzelm@49644
   885
      apply (simp add: matrix_vector_mul_assoc AA' matrix_vector_mul_lid)
wenzelm@49644
   886
      done
hoelzl@37489
   887
    from linear_surjective_isomorphism[OF matrix_vector_mul_linear sA]
hoelzl@37489
   888
    obtain f' :: "real ^'n \<Rightarrow> real ^'n"
hoelzl@37489
   889
      where f': "linear f'" "\<forall>x. f' (A *v x) = x" "\<forall>x. A *v f' x = x" by blast
hoelzl@37489
   890
    have th: "matrix f' ** A = mat 1"
wenzelm@49644
   891
      by (simp add: matrix_eq matrix_works[OF f'(1)]
wenzelm@49644
   892
          matrix_vector_mul_assoc[symmetric] matrix_vector_mul_lid f'(2)[rule_format])
hoelzl@37489
   893
    hence "(matrix f' ** A) ** A' = mat 1 ** A'" by simp
wenzelm@49644
   894
    hence "matrix f' = A'"
wenzelm@49644
   895
      by (simp add: matrix_mul_assoc[symmetric] AA' matrix_mul_rid matrix_mul_lid)
hoelzl@37489
   896
    hence "matrix f' ** A = A' ** A" by simp
wenzelm@49644
   897
    hence "A' ** A = mat 1" by (simp add: th)
wenzelm@49644
   898
  }
hoelzl@37489
   899
  then show ?thesis by blast
hoelzl@37489
   900
qed
hoelzl@37489
   901
wenzelm@60420
   902
text \<open>Considering an n-element vector as an n-by-1 or 1-by-n matrix.\<close>
hoelzl@37489
   903
hoelzl@37489
   904
definition "rowvector v = (\<chi> i j. (v$j))"
hoelzl@37489
   905
hoelzl@37489
   906
definition "columnvector v = (\<chi> i j. (v$i))"
hoelzl@37489
   907
wenzelm@49644
   908
lemma transpose_columnvector: "transpose(columnvector v) = rowvector v"
huffman@44136
   909
  by (simp add: transpose_def rowvector_def columnvector_def vec_eq_iff)
hoelzl@37489
   910
hoelzl@37489
   911
lemma transpose_rowvector: "transpose(rowvector v) = columnvector v"
huffman@44136
   912
  by (simp add: transpose_def columnvector_def rowvector_def vec_eq_iff)
hoelzl@37489
   913
wenzelm@49644
   914
lemma dot_rowvector_columnvector: "columnvector (A *v v) = A ** columnvector v"
hoelzl@37489
   915
  by (vector columnvector_def matrix_matrix_mult_def matrix_vector_mult_def)
hoelzl@37489
   916
wenzelm@49644
   917
lemma dot_matrix_product:
wenzelm@49644
   918
  "(x::real^'n) \<bullet> y = (((rowvector x ::real^'n^1) ** (columnvector y :: real^1^'n))$1)$1"
huffman@44136
   919
  by (vector matrix_matrix_mult_def rowvector_def columnvector_def inner_vec_def)
hoelzl@37489
   920
hoelzl@37489
   921
lemma dot_matrix_vector_mul:
hoelzl@37489
   922
  fixes A B :: "real ^'n ^'n" and x y :: "real ^'n"
hoelzl@37489
   923
  shows "(A *v x) \<bullet> (B *v y) =
hoelzl@37489
   924
      (((rowvector x :: real^'n^1) ** ((transpose A ** B) ** (columnvector y :: real ^1^'n)))$1)$1"
wenzelm@49644
   925
  unfolding dot_matrix_product transpose_columnvector[symmetric]
wenzelm@49644
   926
    dot_rowvector_columnvector matrix_transpose_mul matrix_mul_assoc ..
hoelzl@37489
   927
hoelzl@37489
   928
wenzelm@61945
   929
lemma infnorm_cart:"infnorm (x::real^'n) = Sup {\<bar>x$i\<bar> |i. i\<in>UNIV}"
hoelzl@50526
   930
  by (simp add: infnorm_def inner_axis Basis_vec_def) (metis (lifting) inner_axis real_inner_1_right)
hoelzl@37489
   931
wenzelm@49644
   932
lemma component_le_infnorm_cart: "\<bar>x$i\<bar> \<le> infnorm (x::real^'n)"
hoelzl@50526
   933
  using Basis_le_infnorm[of "axis i 1" x]
hoelzl@50526
   934
  by (simp add: Basis_vec_def axis_eq_axis inner_axis)
hoelzl@37489
   935
wenzelm@49644
   936
lemma continuous_component: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. f x $ i)"
huffman@44647
   937
  unfolding continuous_def by (rule tendsto_vec_nth)
huffman@44213
   938
wenzelm@49644
   939
lemma continuous_on_component: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. f x $ i)"
huffman@44647
   940
  unfolding continuous_on_def by (fast intro: tendsto_vec_nth)
huffman@44213
   941
hoelzl@37489
   942
lemma closed_positive_orthant: "closed {x::real^'n. \<forall>i. 0 \<le>x$i}"
huffman@44233
   943
  by (simp add: Collect_all_eq closed_INT closed_Collect_le)
huffman@44213
   944
hoelzl@37489
   945
lemma bounded_component_cart: "bounded s \<Longrightarrow> bounded ((\<lambda>x. x $ i) ` s)"
wenzelm@49644
   946
  unfolding bounded_def
wenzelm@49644
   947
  apply clarify
wenzelm@49644
   948
  apply (rule_tac x="x $ i" in exI)
wenzelm@49644
   949
  apply (rule_tac x="e" in exI)
wenzelm@49644
   950
  apply clarify
wenzelm@49644
   951
  apply (rule order_trans [OF dist_vec_nth_le], simp)
wenzelm@49644
   952
  done
hoelzl@37489
   953
hoelzl@37489
   954
lemma compact_lemma_cart:
hoelzl@37489
   955
  fixes f :: "nat \<Rightarrow> 'a::heine_borel ^ 'n"
hoelzl@50998
   956
  assumes f: "bounded (range f)"
immler@62127
   957
  shows "\<exists>l r. subseq r \<and>
hoelzl@37489
   958
        (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) $ i) (l $ i) < e) sequentially)"
immler@62127
   959
    (is "?th d")
immler@62127
   960
proof -
immler@62127
   961
  have "\<forall>d' \<subseteq> d. ?th d'"
immler@62127
   962
    by (rule compact_lemma_general[where unproj=vec_lambda])
immler@62127
   963
      (auto intro!: f bounded_component_cart simp: vec_lambda_eta)
immler@62127
   964
  then show "?th d" by simp
hoelzl@37489
   965
qed
hoelzl@37489
   966
huffman@44136
   967
instance vec :: (heine_borel, finite) heine_borel
hoelzl@37489
   968
proof
hoelzl@50998
   969
  fix f :: "nat \<Rightarrow> 'a ^ 'b"
hoelzl@50998
   970
  assume f: "bounded (range f)"
hoelzl@37489
   971
  then obtain l r where r: "subseq r"
wenzelm@49644
   972
      and l: "\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>UNIV. dist (f (r n) $ i) (l $ i) < e) sequentially"
hoelzl@50998
   973
    using compact_lemma_cart [OF f] by blast
hoelzl@37489
   974
  let ?d = "UNIV::'b set"
hoelzl@37489
   975
  { fix e::real assume "e>0"
hoelzl@37489
   976
    hence "0 < e / (real_of_nat (card ?d))"
wenzelm@49644
   977
      using zero_less_card_finite divide_pos_pos[of e, of "real_of_nat (card ?d)"] by auto
hoelzl@37489
   978
    with l have "eventually (\<lambda>n. \<forall>i. dist (f (r n) $ i) (l $ i) < e / (real_of_nat (card ?d))) sequentially"
hoelzl@37489
   979
      by simp
hoelzl@37489
   980
    moreover
wenzelm@49644
   981
    { fix n
wenzelm@49644
   982
      assume n: "\<forall>i. dist (f (r n) $ i) (l $ i) < e / (real_of_nat (card ?d))"
hoelzl@37489
   983
      have "dist (f (r n)) l \<le> (\<Sum>i\<in>?d. dist (f (r n) $ i) (l $ i))"
huffman@44136
   984
        unfolding dist_vec_def using zero_le_dist by (rule setL2_le_setsum)
hoelzl@37489
   985
      also have "\<dots> < (\<Sum>i\<in>?d. e / (real_of_nat (card ?d)))"
hoelzl@37489
   986
        by (rule setsum_strict_mono) (simp_all add: n)
hoelzl@37489
   987
      finally have "dist (f (r n)) l < e" by simp
hoelzl@37489
   988
    }
hoelzl@37489
   989
    ultimately have "eventually (\<lambda>n. dist (f (r n)) l < e) sequentially"
lp15@61810
   990
      by (rule eventually_mono)
hoelzl@37489
   991
  }
wenzelm@61973
   992
  hence "((f \<circ> r) \<longlongrightarrow> l) sequentially" unfolding o_def tendsto_iff by simp
wenzelm@61973
   993
  with r show "\<exists>l r. subseq r \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially" by auto
hoelzl@37489
   994
qed
hoelzl@37489
   995
wenzelm@49644
   996
lemma interval_cart:
immler@54775
   997
  fixes a :: "real^'n"
immler@54775
   998
  shows "box a b = {x::real^'n. \<forall>i. a$i < x$i \<and> x$i < b$i}"
immler@56188
   999
    and "cbox a b = {x::real^'n. \<forall>i. a$i \<le> x$i \<and> x$i \<le> b$i}"
immler@56188
  1000
  by (auto simp add: set_eq_iff less_vec_def less_eq_vec_def mem_box Basis_vec_def inner_axis)
hoelzl@37489
  1001
wenzelm@49644
  1002
lemma mem_interval_cart:
immler@54775
  1003
  fixes a :: "real^'n"
immler@54775
  1004
  shows "x \<in> box a b \<longleftrightarrow> (\<forall>i. a$i < x$i \<and> x$i < b$i)"
immler@56188
  1005
    and "x \<in> cbox a b \<longleftrightarrow> (\<forall>i. a$i \<le> x$i \<and> x$i \<le> b$i)"
wenzelm@49644
  1006
  using interval_cart[of a b] by (auto simp add: set_eq_iff less_vec_def less_eq_vec_def)
hoelzl@37489
  1007
wenzelm@49644
  1008
lemma interval_eq_empty_cart:
wenzelm@49644
  1009
  fixes a :: "real^'n"
immler@54775
  1010
  shows "(box a b = {} \<longleftrightarrow> (\<exists>i. b$i \<le> a$i))" (is ?th1)
immler@56188
  1011
    and "(cbox a b = {} \<longleftrightarrow> (\<exists>i. b$i < a$i))" (is ?th2)
wenzelm@49644
  1012
proof -
immler@54775
  1013
  { fix i x assume as:"b$i \<le> a$i" and x:"x\<in>box a b"
hoelzl@37489
  1014
    hence "a $ i < x $ i \<and> x $ i < b $ i" unfolding mem_interval_cart by auto
hoelzl@37489
  1015
    hence "a$i < b$i" by auto
wenzelm@49644
  1016
    hence False using as by auto }
hoelzl@37489
  1017
  moreover
hoelzl@37489
  1018
  { assume as:"\<forall>i. \<not> (b$i \<le> a$i)"
hoelzl@37489
  1019
    let ?x = "(1/2) *\<^sub>R (a + b)"
hoelzl@37489
  1020
    { fix i
hoelzl@37489
  1021
      have "a$i < b$i" using as[THEN spec[where x=i]] by auto
hoelzl@37489
  1022
      hence "a$i < ((1/2) *\<^sub>R (a+b)) $ i" "((1/2) *\<^sub>R (a+b)) $ i < b$i"
hoelzl@37489
  1023
        unfolding vector_smult_component and vector_add_component
wenzelm@49644
  1024
        by auto }
immler@54775
  1025
    hence "box a b \<noteq> {}" using mem_interval_cart(1)[of "?x" a b] by auto }
hoelzl@37489
  1026
  ultimately show ?th1 by blast
hoelzl@37489
  1027
immler@56188
  1028
  { fix i x assume as:"b$i < a$i" and x:"x\<in>cbox a b"
hoelzl@37489
  1029
    hence "a $ i \<le> x $ i \<and> x $ i \<le> b $ i" unfolding mem_interval_cart by auto
hoelzl@37489
  1030
    hence "a$i \<le> b$i" by auto
wenzelm@49644
  1031
    hence False using as by auto }
hoelzl@37489
  1032
  moreover
hoelzl@37489
  1033
  { assume as:"\<forall>i. \<not> (b$i < a$i)"
hoelzl@37489
  1034
    let ?x = "(1/2) *\<^sub>R (a + b)"
hoelzl@37489
  1035
    { fix i
hoelzl@37489
  1036
      have "a$i \<le> b$i" using as[THEN spec[where x=i]] by auto
hoelzl@37489
  1037
      hence "a$i \<le> ((1/2) *\<^sub>R (a+b)) $ i" "((1/2) *\<^sub>R (a+b)) $ i \<le> b$i"
hoelzl@37489
  1038
        unfolding vector_smult_component and vector_add_component
wenzelm@49644
  1039
        by auto }
immler@56188
  1040
    hence "cbox a b \<noteq> {}" using mem_interval_cart(2)[of "?x" a b] by auto  }
hoelzl@37489
  1041
  ultimately show ?th2 by blast
hoelzl@37489
  1042
qed
hoelzl@37489
  1043
wenzelm@49644
  1044
lemma interval_ne_empty_cart:
wenzelm@49644
  1045
  fixes a :: "real^'n"
immler@56188
  1046
  shows "cbox a b \<noteq> {} \<longleftrightarrow> (\<forall>i. a$i \<le> b$i)"
immler@54775
  1047
    and "box a b \<noteq> {} \<longleftrightarrow> (\<forall>i. a$i < b$i)"
hoelzl@37489
  1048
  unfolding interval_eq_empty_cart[of a b] by (auto simp add: not_less not_le)
hoelzl@37489
  1049
    (* BH: Why doesn't just "auto" work here? *)
hoelzl@37489
  1050
wenzelm@49644
  1051
lemma subset_interval_imp_cart:
wenzelm@49644
  1052
  fixes a :: "real^'n"
immler@56188
  1053
  shows "(\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> cbox c d \<subseteq> cbox a b"
immler@56188
  1054
    and "(\<forall>i. a$i < c$i \<and> d$i < b$i) \<Longrightarrow> cbox c d \<subseteq> box a b"
immler@56188
  1055
    and "(\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> box c d \<subseteq> cbox a b"
immler@54775
  1056
    and "(\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> box c d \<subseteq> box a b"
hoelzl@37489
  1057
  unfolding subset_eq[unfolded Ball_def] unfolding mem_interval_cart
hoelzl@37489
  1058
  by (auto intro: order_trans less_le_trans le_less_trans less_imp_le) (* BH: Why doesn't just "auto" work here? *)
hoelzl@37489
  1059
wenzelm@49644
  1060
lemma interval_sing:
wenzelm@49644
  1061
  fixes a :: "'a::linorder^'n"
wenzelm@49644
  1062
  shows "{a .. a} = {a} \<and> {a<..<a} = {}"
wenzelm@49644
  1063
  apply (auto simp add: set_eq_iff less_vec_def less_eq_vec_def vec_eq_iff)
wenzelm@49644
  1064
  done
hoelzl@37489
  1065
wenzelm@49644
  1066
lemma subset_interval_cart:
wenzelm@49644
  1067
  fixes a :: "real^'n"
immler@56188
  1068
  shows "cbox c d \<subseteq> cbox a b \<longleftrightarrow> (\<forall>i. c$i \<le> d$i) --> (\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th1)
immler@56188
  1069
    and "cbox c d \<subseteq> box a b \<longleftrightarrow> (\<forall>i. c$i \<le> d$i) --> (\<forall>i. a$i < c$i \<and> d$i < b$i)" (is ?th2)
immler@56188
  1070
    and "box c d \<subseteq> cbox a b \<longleftrightarrow> (\<forall>i. c$i < d$i) --> (\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th3)
immler@54775
  1071
    and "box c d \<subseteq> box a b \<longleftrightarrow> (\<forall>i. c$i < d$i) --> (\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th4)
immler@56188
  1072
  using subset_box[of c d a b] by (simp_all add: Basis_vec_def inner_axis)
hoelzl@37489
  1073
wenzelm@49644
  1074
lemma disjoint_interval_cart:
wenzelm@49644
  1075
  fixes a::"real^'n"
immler@56188
  1076
  shows "cbox a b \<inter> cbox c d = {} \<longleftrightarrow> (\<exists>i. (b$i < a$i \<or> d$i < c$i \<or> b$i < c$i \<or> d$i < a$i))" (is ?th1)
immler@56188
  1077
    and "cbox a b \<inter> box c d = {} \<longleftrightarrow> (\<exists>i. (b$i < a$i \<or> d$i \<le> c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th2)
immler@56188
  1078
    and "box a b \<inter> cbox c d = {} \<longleftrightarrow> (\<exists>i. (b$i \<le> a$i \<or> d$i < c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th3)
immler@54775
  1079
    and "box a b \<inter> box c d = {} \<longleftrightarrow> (\<exists>i. (b$i \<le> a$i \<or> d$i \<le> c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th4)
hoelzl@50526
  1080
  using disjoint_interval[of a b c d] by (simp_all add: Basis_vec_def inner_axis)
hoelzl@37489
  1081
wenzelm@49644
  1082
lemma inter_interval_cart:
immler@54775
  1083
  fixes a :: "real^'n"
immler@56188
  1084
  shows "cbox a b \<inter> cbox c d =  {(\<chi> i. max (a$i) (c$i)) .. (\<chi> i. min (b$i) (d$i))}"
immler@56188
  1085
  unfolding inter_interval
immler@56188
  1086
  by (auto simp: mem_box less_eq_vec_def)
immler@56188
  1087
    (auto simp: Basis_vec_def inner_axis)
hoelzl@37489
  1088
wenzelm@49644
  1089
lemma closed_interval_left_cart:
wenzelm@49644
  1090
  fixes b :: "real^'n"
hoelzl@37489
  1091
  shows "closed {x::real^'n. \<forall>i. x$i \<le> b$i}"
huffman@44233
  1092
  by (simp add: Collect_all_eq closed_INT closed_Collect_le)
hoelzl@37489
  1093
wenzelm@49644
  1094
lemma closed_interval_right_cart:
wenzelm@49644
  1095
  fixes a::"real^'n"
hoelzl@37489
  1096
  shows "closed {x::real^'n. \<forall>i. a$i \<le> x$i}"
huffman@44233
  1097
  by (simp add: Collect_all_eq closed_INT closed_Collect_le)
hoelzl@37489
  1098
wenzelm@49644
  1099
lemma is_interval_cart:
wenzelm@49644
  1100
  "is_interval (s::(real^'n) set) \<longleftrightarrow>
wenzelm@49644
  1101
    (\<forall>a\<in>s. \<forall>b\<in>s. \<forall>x. (\<forall>i. ((a$i \<le> x$i \<and> x$i \<le> b$i) \<or> (b$i \<le> x$i \<and> x$i \<le> a$i))) \<longrightarrow> x \<in> s)"
hoelzl@50526
  1102
  by (simp add: is_interval_def Ball_def Basis_vec_def inner_axis imp_ex)
hoelzl@37489
  1103
wenzelm@49644
  1104
lemma closed_halfspace_component_le_cart: "closed {x::real^'n. x$i \<le> a}"
huffman@44233
  1105
  by (simp add: closed_Collect_le)
hoelzl@37489
  1106
wenzelm@49644
  1107
lemma closed_halfspace_component_ge_cart: "closed {x::real^'n. x$i \<ge> a}"
huffman@44233
  1108
  by (simp add: closed_Collect_le)
hoelzl@37489
  1109
wenzelm@49644
  1110
lemma open_halfspace_component_lt_cart: "open {x::real^'n. x$i < a}"
wenzelm@49644
  1111
  by (simp add: open_Collect_less)
wenzelm@49644
  1112
wenzelm@49644
  1113
lemma open_halfspace_component_gt_cart: "open {x::real^'n. x$i  > a}"
huffman@44233
  1114
  by (simp add: open_Collect_less)
hoelzl@37489
  1115
wenzelm@49644
  1116
lemma Lim_component_le_cart:
wenzelm@49644
  1117
  fixes f :: "'a \<Rightarrow> real^'n"
wenzelm@61973
  1118
  assumes "(f \<longlongrightarrow> l) net" "\<not> (trivial_limit net)"  "eventually (\<lambda>x. f x $i \<le> b) net"
hoelzl@37489
  1119
  shows "l$i \<le> b"
hoelzl@50526
  1120
  by (rule tendsto_le[OF assms(2) tendsto_const tendsto_vec_nth, OF assms(1, 3)])
hoelzl@37489
  1121
wenzelm@49644
  1122
lemma Lim_component_ge_cart:
wenzelm@49644
  1123
  fixes f :: "'a \<Rightarrow> real^'n"
wenzelm@61973
  1124
  assumes "(f \<longlongrightarrow> l) net"  "\<not> (trivial_limit net)"  "eventually (\<lambda>x. b \<le> (f x)$i) net"
hoelzl@37489
  1125
  shows "b \<le> l$i"
hoelzl@50526
  1126
  by (rule tendsto_le[OF assms(2) tendsto_vec_nth tendsto_const, OF assms(1, 3)])
hoelzl@37489
  1127
wenzelm@49644
  1128
lemma Lim_component_eq_cart:
wenzelm@49644
  1129
  fixes f :: "'a \<Rightarrow> real^'n"
wenzelm@61973
  1130
  assumes net: "(f \<longlongrightarrow> l) net" "~(trivial_limit net)" and ev:"eventually (\<lambda>x. f(x)$i = b) net"
hoelzl@37489
  1131
  shows "l$i = b"
wenzelm@49644
  1132
  using ev[unfolded order_eq_iff eventually_conj_iff] and
wenzelm@49644
  1133
    Lim_component_ge_cart[OF net, of b i] and
hoelzl@37489
  1134
    Lim_component_le_cart[OF net, of i b] by auto
hoelzl@37489
  1135
wenzelm@49644
  1136
lemma connected_ivt_component_cart:
wenzelm@49644
  1137
  fixes x :: "real^'n"
wenzelm@49644
  1138
  shows "connected s \<Longrightarrow> x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> x$k \<le> a \<Longrightarrow> a \<le> y$k \<Longrightarrow> (\<exists>z\<in>s.  z$k = a)"
hoelzl@50526
  1139
  using connected_ivt_hyperplane[of s x y "axis k 1" a]
hoelzl@50526
  1140
  by (auto simp add: inner_axis inner_commute)
hoelzl@37489
  1141
wenzelm@49644
  1142
lemma subspace_substandard_cart: "subspace {x::real^_. (\<forall>i. P i \<longrightarrow> x$i = 0)}"
hoelzl@37489
  1143
  unfolding subspace_def by auto
hoelzl@37489
  1144
hoelzl@37489
  1145
lemma closed_substandard_cart:
huffman@44213
  1146
  "closed {x::'a::real_normed_vector ^ 'n. \<forall>i. P i \<longrightarrow> x$i = 0}"
wenzelm@49644
  1147
proof -
huffman@44213
  1148
  { fix i::'n
huffman@44213
  1149
    have "closed {x::'a ^ 'n. P i \<longrightarrow> x$i = 0}"
wenzelm@49644
  1150
      by (cases "P i") (simp_all add: closed_Collect_eq) }
huffman@44213
  1151
  thus ?thesis
huffman@44213
  1152
    unfolding Collect_all_eq by (simp add: closed_INT)
hoelzl@37489
  1153
qed
hoelzl@37489
  1154
wenzelm@49644
  1155
lemma dim_substandard_cart: "dim {x::real^'n. \<forall>i. i \<notin> d \<longrightarrow> x$i = 0} = card d"
wenzelm@49644
  1156
  (is "dim ?A = _")
wenzelm@49644
  1157
proof -
hoelzl@50526
  1158
  let ?a = "\<lambda>x. axis x 1 :: real^'n"
hoelzl@50526
  1159
  have *: "{x. \<forall>i\<in>Basis. i \<notin> ?a ` d \<longrightarrow> x \<bullet> i = 0} = ?A"
hoelzl@50526
  1160
    by (auto simp: image_iff Basis_vec_def axis_eq_axis inner_axis)
hoelzl@50526
  1161
  have "?a ` d \<subseteq> Basis"
hoelzl@50526
  1162
    by (auto simp: Basis_vec_def)
wenzelm@49644
  1163
  thus ?thesis
hoelzl@50526
  1164
    using dim_substandard[of "?a ` d"] card_image[of ?a d]
hoelzl@50526
  1165
    by (auto simp: axis_eq_axis inj_on_def *)
hoelzl@37489
  1166
qed
hoelzl@37489
  1167
hoelzl@37489
  1168
lemma affinity_inverses:
hoelzl@37489
  1169
  assumes m0: "m \<noteq> (0::'a::field)"
wenzelm@61736
  1170
  shows "(\<lambda>x. m *s x + c) \<circ> (\<lambda>x. inverse(m) *s x + (-(inverse(m) *s c))) = id"
wenzelm@61736
  1171
  "(\<lambda>x. inverse(m) *s x + (-(inverse(m) *s c))) \<circ> (\<lambda>x. m *s x + c) = id"
hoelzl@37489
  1172
  using m0
haftmann@54230
  1173
  apply (auto simp add: fun_eq_iff vector_add_ldistrib diff_conv_add_uminus simp del: add_uminus_conv_diff)
haftmann@54230
  1174
  apply (simp_all add: vector_smult_lneg[symmetric] vector_smult_assoc vector_sneg_minus1 [symmetric])
wenzelm@49644
  1175
  done
hoelzl@37489
  1176
hoelzl@37489
  1177
lemma vector_affinity_eq:
hoelzl@37489
  1178
  assumes m0: "(m::'a::field) \<noteq> 0"
hoelzl@37489
  1179
  shows "m *s x + c = y \<longleftrightarrow> x = inverse m *s y + -(inverse m *s c)"
hoelzl@37489
  1180
proof
hoelzl@37489
  1181
  assume h: "m *s x + c = y"
hoelzl@37489
  1182
  hence "m *s x = y - c" by (simp add: field_simps)
hoelzl@37489
  1183
  hence "inverse m *s (m *s x) = inverse m *s (y - c)" by simp
hoelzl@37489
  1184
  then show "x = inverse m *s y + - (inverse m *s c)"
hoelzl@37489
  1185
    using m0 by (simp add: vector_smult_assoc vector_ssub_ldistrib)
hoelzl@37489
  1186
next
hoelzl@37489
  1187
  assume h: "x = inverse m *s y + - (inverse m *s c)"
haftmann@54230
  1188
  show "m *s x + c = y" unfolding h
hoelzl@37489
  1189
    using m0 by (simp add: vector_smult_assoc vector_ssub_ldistrib)
hoelzl@37489
  1190
qed
hoelzl@37489
  1191
hoelzl@37489
  1192
lemma vector_eq_affinity:
wenzelm@49644
  1193
    "(m::'a::field) \<noteq> 0 ==> (y = m *s x + c \<longleftrightarrow> inverse(m) *s y + -(inverse(m) *s c) = x)"
hoelzl@37489
  1194
  using vector_affinity_eq[where m=m and x=x and y=y and c=c]
hoelzl@37489
  1195
  by metis
hoelzl@37489
  1196
hoelzl@50526
  1197
lemma vector_cart:
hoelzl@50526
  1198
  fixes f :: "real^'n \<Rightarrow> real"
hoelzl@50526
  1199
  shows "(\<chi> i. f (axis i 1)) = (\<Sum>i\<in>Basis. f i *\<^sub>R i)"
hoelzl@50526
  1200
  unfolding euclidean_eq_iff[where 'a="real^'n"]
hoelzl@50526
  1201
  by simp (simp add: Basis_vec_def inner_axis)
hoelzl@50526
  1202
  
hoelzl@50526
  1203
lemma const_vector_cart:"((\<chi> i. d)::real^'n) = (\<Sum>i\<in>Basis. d *\<^sub>R i)"
hoelzl@50526
  1204
  by (rule vector_cart)
wenzelm@49644
  1205
huffman@44360
  1206
subsection "Convex Euclidean Space"
hoelzl@37489
  1207
hoelzl@50526
  1208
lemma Cart_1:"(1::real^'n) = \<Sum>Basis"
hoelzl@50526
  1209
  using const_vector_cart[of 1] by (simp add: one_vec_def)
hoelzl@37489
  1210
hoelzl@37489
  1211
declare vector_add_ldistrib[simp] vector_ssub_ldistrib[simp] vector_smult_assoc[simp] vector_smult_rneg[simp]
hoelzl@37489
  1212
declare vector_sadd_rdistrib[simp] vector_sub_rdistrib[simp]
hoelzl@37489
  1213
hoelzl@50526
  1214
lemmas vector_component_simps = vector_minus_component vector_smult_component vector_add_component less_eq_vec_def vec_lambda_beta vector_uminus_component
hoelzl@37489
  1215
hoelzl@37489
  1216
lemma convex_box_cart:
hoelzl@37489
  1217
  assumes "\<And>i. convex {x. P i x}"
hoelzl@37489
  1218
  shows "convex {x. \<forall>i. P i (x$i)}"
hoelzl@37489
  1219
  using assms unfolding convex_def by auto
hoelzl@37489
  1220
hoelzl@37489
  1221
lemma convex_positive_orthant_cart: "convex {x::real^'n. (\<forall>i. 0 \<le> x$i)}"
hoelzl@37489
  1222
  by (rule convex_box_cart) (simp add: atLeast_def[symmetric] convex_real_interval)
hoelzl@37489
  1223
hoelzl@37489
  1224
lemma unit_interval_convex_hull_cart:
immler@56188
  1225
  "cbox (0::real^'n) 1 = convex hull {x. \<forall>i. (x$i = 0) \<or> (x$i = 1)}"
immler@56188
  1226
  unfolding Cart_1 unit_interval_convex_hull[where 'a="real^'n"] box_real[symmetric]
hoelzl@50526
  1227
  by (rule arg_cong[where f="\<lambda>x. convex hull x"]) (simp add: Basis_vec_def inner_axis)
hoelzl@37489
  1228
hoelzl@37489
  1229
lemma cube_convex_hull_cart:
wenzelm@49644
  1230
  assumes "0 < d"
wenzelm@49644
  1231
  obtains s::"(real^'n) set"
immler@56188
  1232
    where "finite s" "cbox (x - (\<chi> i. d)) (x + (\<chi> i. d)) = convex hull s"
wenzelm@49644
  1233
proof -
wenzelm@55522
  1234
  from assms obtain s where "finite s"
immler@56188
  1235
    and "cbox (x - setsum (op *\<^sub>R d) Basis) (x + setsum (op *\<^sub>R d) Basis) = convex hull s"
wenzelm@55522
  1236
    by (rule cube_convex_hull)
wenzelm@55522
  1237
  with that[of s] show thesis
wenzelm@55522
  1238
    by (simp add: const_vector_cart)
hoelzl@37489
  1239
qed
hoelzl@37489
  1240
hoelzl@37489
  1241
hoelzl@37489
  1242
subsection "Derivative"
hoelzl@37489
  1243
hoelzl@37489
  1244
definition "jacobian f net = matrix(frechet_derivative f net)"
hoelzl@37489
  1245
wenzelm@49644
  1246
lemma jacobian_works:
wenzelm@49644
  1247
  "(f::(real^'a) \<Rightarrow> (real^'b)) differentiable net \<longleftrightarrow>
wenzelm@49644
  1248
    (f has_derivative (\<lambda>h. (jacobian f net) *v h)) net"
wenzelm@49644
  1249
  apply rule
wenzelm@49644
  1250
  unfolding jacobian_def
wenzelm@49644
  1251
  apply (simp only: matrix_works[OF linear_frechet_derivative]) defer
wenzelm@49644
  1252
  apply (rule differentiableI)
wenzelm@49644
  1253
  apply assumption
wenzelm@49644
  1254
  unfolding frechet_derivative_works
wenzelm@49644
  1255
  apply assumption
wenzelm@49644
  1256
  done
hoelzl@37489
  1257
hoelzl@37489
  1258
wenzelm@60420
  1259
subsection \<open>Component of the differential must be zero if it exists at a local
wenzelm@60420
  1260
  maximum or minimum for that corresponding component.\<close>
hoelzl@37489
  1261
hoelzl@50526
  1262
lemma differential_zero_maxmin_cart:
wenzelm@49644
  1263
  fixes f::"real^'a \<Rightarrow> real^'b"
wenzelm@49644
  1264
  assumes "0 < e" "((\<forall>y \<in> ball x e. (f y)$k \<le> (f x)$k) \<or> (\<forall>y\<in>ball x e. (f x)$k \<le> (f y)$k))"
hoelzl@50526
  1265
    "f differentiable (at x)"
hoelzl@50526
  1266
  shows "jacobian f (at x) $ k = 0"
hoelzl@50526
  1267
  using differential_zero_maxmin_component[of "axis k 1" e x f] assms
hoelzl@50526
  1268
    vector_cart[of "\<lambda>j. frechet_derivative f (at x) j $ k"]
hoelzl@50526
  1269
  by (simp add: Basis_vec_def axis_eq_axis inner_axis jacobian_def matrix_def)
wenzelm@49644
  1270
wenzelm@60420
  1271
subsection \<open>Lemmas for working on @{typ "real^1"}\<close>
hoelzl@37489
  1272
hoelzl@37489
  1273
lemma forall_1[simp]: "(\<forall>i::1. P i) \<longleftrightarrow> P 1"
wenzelm@49644
  1274
  by (metis (full_types) num1_eq_iff)
hoelzl@37489
  1275
hoelzl@37489
  1276
lemma ex_1[simp]: "(\<exists>x::1. P x) \<longleftrightarrow> P 1"
wenzelm@49644
  1277
  by auto (metis (full_types) num1_eq_iff)
hoelzl@37489
  1278
hoelzl@37489
  1279
lemma exhaust_2:
wenzelm@49644
  1280
  fixes x :: 2
wenzelm@49644
  1281
  shows "x = 1 \<or> x = 2"
hoelzl@37489
  1282
proof (induct x)
hoelzl@37489
  1283
  case (of_int z)
hoelzl@37489
  1284
  then have "0 <= z" and "z < 2" by simp_all
hoelzl@37489
  1285
  then have "z = 0 | z = 1" by arith
hoelzl@37489
  1286
  then show ?case by auto
hoelzl@37489
  1287
qed
hoelzl@37489
  1288
hoelzl@37489
  1289
lemma forall_2: "(\<forall>i::2. P i) \<longleftrightarrow> P 1 \<and> P 2"
hoelzl@37489
  1290
  by (metis exhaust_2)
hoelzl@37489
  1291
hoelzl@37489
  1292
lemma exhaust_3:
wenzelm@49644
  1293
  fixes x :: 3
wenzelm@49644
  1294
  shows "x = 1 \<or> x = 2 \<or> x = 3"
hoelzl@37489
  1295
proof (induct x)
hoelzl@37489
  1296
  case (of_int z)
hoelzl@37489
  1297
  then have "0 <= z" and "z < 3" by simp_all
hoelzl@37489
  1298
  then have "z = 0 \<or> z = 1 \<or> z = 2" by arith
hoelzl@37489
  1299
  then show ?case by auto
hoelzl@37489
  1300
qed
hoelzl@37489
  1301
hoelzl@37489
  1302
lemma forall_3: "(\<forall>i::3. P i) \<longleftrightarrow> P 1 \<and> P 2 \<and> P 3"
hoelzl@37489
  1303
  by (metis exhaust_3)
hoelzl@37489
  1304
hoelzl@37489
  1305
lemma UNIV_1 [simp]: "UNIV = {1::1}"
hoelzl@37489
  1306
  by (auto simp add: num1_eq_iff)
hoelzl@37489
  1307
hoelzl@37489
  1308
lemma UNIV_2: "UNIV = {1::2, 2::2}"
hoelzl@37489
  1309
  using exhaust_2 by auto
hoelzl@37489
  1310
hoelzl@37489
  1311
lemma UNIV_3: "UNIV = {1::3, 2::3, 3::3}"
hoelzl@37489
  1312
  using exhaust_3 by auto
hoelzl@37489
  1313
hoelzl@37489
  1314
lemma setsum_1: "setsum f (UNIV::1 set) = f 1"
hoelzl@37489
  1315
  unfolding UNIV_1 by simp
hoelzl@37489
  1316
hoelzl@37489
  1317
lemma setsum_2: "setsum f (UNIV::2 set) = f 1 + f 2"
hoelzl@37489
  1318
  unfolding UNIV_2 by simp
hoelzl@37489
  1319
hoelzl@37489
  1320
lemma setsum_3: "setsum f (UNIV::3 set) = f 1 + f 2 + f 3"
haftmann@57514
  1321
  unfolding UNIV_3 by (simp add: ac_simps)
hoelzl@37489
  1322
wenzelm@49644
  1323
instantiation num1 :: cart_one
wenzelm@49644
  1324
begin
wenzelm@49644
  1325
wenzelm@49644
  1326
instance
wenzelm@49644
  1327
proof
hoelzl@37489
  1328
  show "CARD(1) = Suc 0" by auto
wenzelm@49644
  1329
qed
wenzelm@49644
  1330
wenzelm@49644
  1331
end
hoelzl@37489
  1332
wenzelm@60420
  1333
subsection\<open>The collapse of the general concepts to dimension one.\<close>
hoelzl@37489
  1334
hoelzl@37489
  1335
lemma vector_one: "(x::'a ^1) = (\<chi> i. (x$1))"
huffman@44136
  1336
  by (simp add: vec_eq_iff)
hoelzl@37489
  1337
hoelzl@37489
  1338
lemma forall_one: "(\<forall>(x::'a ^1). P x) \<longleftrightarrow> (\<forall>x. P(\<chi> i. x))"
hoelzl@37489
  1339
  apply auto
hoelzl@37489
  1340
  apply (erule_tac x= "x$1" in allE)
hoelzl@37489
  1341
  apply (simp only: vector_one[symmetric])
hoelzl@37489
  1342
  done
hoelzl@37489
  1343
hoelzl@37489
  1344
lemma norm_vector_1: "norm (x :: _^1) = norm (x$1)"
huffman@44136
  1345
  by (simp add: norm_vec_def)
hoelzl@37489
  1346
wenzelm@61945
  1347
lemma norm_real: "norm(x::real ^ 1) = \<bar>x$1\<bar>"
hoelzl@37489
  1348
  by (simp add: norm_vector_1)
hoelzl@37489
  1349
wenzelm@61945
  1350
lemma dist_real: "dist(x::real ^ 1) y = \<bar>(x$1) - (y$1)\<bar>"
hoelzl@37489
  1351
  by (auto simp add: norm_real dist_norm)
hoelzl@37489
  1352
wenzelm@49644
  1353
wenzelm@60420
  1354
subsection\<open>Explicit vector construction from lists.\<close>
hoelzl@37489
  1355
hoelzl@43995
  1356
definition "vector l = (\<chi> i. foldr (\<lambda>x f n. fun_upd (f (n+1)) n x) l (\<lambda>n x. 0) 1 i)"
hoelzl@37489
  1357
hoelzl@37489
  1358
lemma vector_1: "(vector[x]) $1 = x"
hoelzl@37489
  1359
  unfolding vector_def by simp
hoelzl@37489
  1360
hoelzl@37489
  1361
lemma vector_2:
hoelzl@37489
  1362
 "(vector[x,y]) $1 = x"
hoelzl@37489
  1363
 "(vector[x,y] :: 'a^2)$2 = (y::'a::zero)"
hoelzl@37489
  1364
  unfolding vector_def by simp_all
hoelzl@37489
  1365
hoelzl@37489
  1366
lemma vector_3:
hoelzl@37489
  1367
 "(vector [x,y,z] ::('a::zero)^3)$1 = x"
hoelzl@37489
  1368
 "(vector [x,y,z] ::('a::zero)^3)$2 = y"
hoelzl@37489
  1369
 "(vector [x,y,z] ::('a::zero)^3)$3 = z"
hoelzl@37489
  1370
  unfolding vector_def by simp_all
hoelzl@37489
  1371
hoelzl@37489
  1372
lemma forall_vector_1: "(\<forall>v::'a::zero^1. P v) \<longleftrightarrow> (\<forall>x. P(vector[x]))"
hoelzl@37489
  1373
  apply auto
hoelzl@37489
  1374
  apply (erule_tac x="v$1" in allE)
hoelzl@37489
  1375
  apply (subgoal_tac "vector [v$1] = v")
hoelzl@37489
  1376
  apply simp
hoelzl@37489
  1377
  apply (vector vector_def)
hoelzl@37489
  1378
  apply simp
hoelzl@37489
  1379
  done
hoelzl@37489
  1380
hoelzl@37489
  1381
lemma forall_vector_2: "(\<forall>v::'a::zero^2. P v) \<longleftrightarrow> (\<forall>x y. P(vector[x, y]))"
hoelzl@37489
  1382
  apply auto
hoelzl@37489
  1383
  apply (erule_tac x="v$1" in allE)
hoelzl@37489
  1384
  apply (erule_tac x="v$2" in allE)
hoelzl@37489
  1385
  apply (subgoal_tac "vector [v$1, v$2] = v")
hoelzl@37489
  1386
  apply simp
hoelzl@37489
  1387
  apply (vector vector_def)
hoelzl@37489
  1388
  apply (simp add: forall_2)
hoelzl@37489
  1389
  done
hoelzl@37489
  1390
hoelzl@37489
  1391
lemma forall_vector_3: "(\<forall>v::'a::zero^3. P v) \<longleftrightarrow> (\<forall>x y z. P(vector[x, y, z]))"
hoelzl@37489
  1392
  apply auto
hoelzl@37489
  1393
  apply (erule_tac x="v$1" in allE)
hoelzl@37489
  1394
  apply (erule_tac x="v$2" in allE)
hoelzl@37489
  1395
  apply (erule_tac x="v$3" in allE)
hoelzl@37489
  1396
  apply (subgoal_tac "vector [v$1, v$2, v$3] = v")
hoelzl@37489
  1397
  apply simp
hoelzl@37489
  1398
  apply (vector vector_def)
hoelzl@37489
  1399
  apply (simp add: forall_3)
hoelzl@37489
  1400
  done
hoelzl@37489
  1401
hoelzl@37489
  1402
lemma bounded_linear_component_cart[intro]: "bounded_linear (\<lambda>x::real^'n. x $ k)"
wenzelm@49644
  1403
  apply (rule bounded_linearI[where K=1])
hoelzl@37489
  1404
  using component_le_norm_cart[of _ k] unfolding real_norm_def by auto
hoelzl@37489
  1405
wenzelm@49644
  1406
lemma integral_component_eq_cart[simp]:
immler@56188
  1407
  fixes f :: "'n::euclidean_space \<Rightarrow> real^'m"
wenzelm@49644
  1408
  assumes "f integrable_on s"
wenzelm@49644
  1409
  shows "integral s (\<lambda>x. f x $ k) = integral s f $ k"
hoelzl@37489
  1410
  using integral_linear[OF assms(1) bounded_linear_component_cart,unfolded o_def] .
hoelzl@37489
  1411
hoelzl@37489
  1412
lemma interval_split_cart:
hoelzl@37489
  1413
  "{a..b::real^'n} \<inter> {x. x$k \<le> c} = {a .. (\<chi> i. if i = k then min (b$k) c else b$i)}"
immler@56188
  1414
  "cbox a b \<inter> {x. x$k \<ge> c} = {(\<chi> i. if i = k then max (a$k) c else a$i) .. b}"
wenzelm@49644
  1415
  apply (rule_tac[!] set_eqI)
immler@56188
  1416
  unfolding Int_iff mem_interval_cart mem_Collect_eq interval_cbox_cart
wenzelm@49644
  1417
  unfolding vec_lambda_beta
wenzelm@49644
  1418
  by auto
hoelzl@37489
  1419
hoelzl@37489
  1420
end