src/Pure/drule.ML
author wenzelm
Wed Dec 31 00:08:13 2008 +0100 (2008-12-31)
changeset 29265 5b4247055bd7
parent 28713 135317cd34d6
child 29270 0eade173f77e
permissions -rw-r--r--
moved old add_term_vars, add_term_frees etc. to structure OldTerm;
wenzelm@252
     1
(*  Title:      Pure/drule.ML
wenzelm@252
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     3
wenzelm@3766
     4
Derived rules and other operations on theorems.
clasohm@0
     5
*)
clasohm@0
     6
wenzelm@21578
     7
infix 0 RS RSN RL RLN MRS MRL OF COMP INCR_COMP COMP_INCR;
clasohm@0
     8
wenzelm@5903
     9
signature BASIC_DRULE =
wenzelm@3766
    10
sig
wenzelm@18179
    11
  val mk_implies: cterm * cterm -> cterm
wenzelm@18179
    12
  val list_implies: cterm list * cterm -> cterm
wenzelm@18179
    13
  val strip_imp_prems: cterm -> cterm list
wenzelm@18179
    14
  val strip_imp_concl: cterm -> cterm
wenzelm@18179
    15
  val cprems_of: thm -> cterm list
wenzelm@18179
    16
  val cterm_fun: (term -> term) -> (cterm -> cterm)
wenzelm@18179
    17
  val ctyp_fun: (typ -> typ) -> (ctyp -> ctyp)
wenzelm@18179
    18
  val forall_intr_list: cterm list -> thm -> thm
wenzelm@18179
    19
  val forall_intr_frees: thm -> thm
wenzelm@18179
    20
  val forall_intr_vars: thm -> thm
wenzelm@18179
    21
  val forall_elim_list: cterm list -> thm -> thm
wenzelm@18179
    22
  val gen_all: thm -> thm
wenzelm@18179
    23
  val lift_all: cterm -> thm -> thm
wenzelm@18179
    24
  val freeze_thaw: thm -> thm * (thm -> thm)
paulson@15495
    25
  val freeze_thaw_robust: thm -> thm * (int -> thm -> thm)
wenzelm@18179
    26
  val implies_elim_list: thm -> thm list -> thm
wenzelm@18179
    27
  val implies_intr_list: cterm list -> thm -> thm
wenzelm@18206
    28
  val instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@21603
    29
  val zero_var_indexes_list: thm list -> thm list
wenzelm@18179
    30
  val zero_var_indexes: thm -> thm
wenzelm@18179
    31
  val implies_intr_hyps: thm -> thm
wenzelm@18179
    32
  val standard: thm -> thm
wenzelm@18179
    33
  val standard': thm -> thm
wenzelm@18179
    34
  val rotate_prems: int -> thm -> thm
wenzelm@18179
    35
  val rearrange_prems: int list -> thm -> thm
wenzelm@18179
    36
  val RSN: thm * (int * thm) -> thm
wenzelm@18179
    37
  val RS: thm * thm -> thm
wenzelm@18179
    38
  val RLN: thm list * (int * thm list) -> thm list
wenzelm@18179
    39
  val RL: thm list * thm list -> thm list
wenzelm@18179
    40
  val MRS: thm list * thm -> thm
wenzelm@18179
    41
  val MRL: thm list list * thm list -> thm list
wenzelm@18179
    42
  val OF: thm * thm list -> thm
wenzelm@18179
    43
  val compose: thm * int * thm -> thm list
wenzelm@18179
    44
  val COMP: thm * thm -> thm
wenzelm@21578
    45
  val INCR_COMP: thm * thm -> thm
wenzelm@21578
    46
  val COMP_INCR: thm * thm -> thm
wenzelm@18179
    47
  val cterm_instantiate: (cterm*cterm)list -> thm -> thm
wenzelm@18179
    48
  val size_of_thm: thm -> int
wenzelm@18179
    49
  val reflexive_thm: thm
wenzelm@18179
    50
  val symmetric_thm: thm
wenzelm@18179
    51
  val transitive_thm: thm
wenzelm@18179
    52
  val symmetric_fun: thm -> thm
wenzelm@18179
    53
  val extensional: thm -> thm
wenzelm@18820
    54
  val equals_cong: thm
wenzelm@18179
    55
  val imp_cong: thm
wenzelm@18179
    56
  val swap_prems_eq: thm
wenzelm@18179
    57
  val asm_rl: thm
wenzelm@18179
    58
  val cut_rl: thm
wenzelm@18179
    59
  val revcut_rl: thm
wenzelm@18179
    60
  val thin_rl: thm
wenzelm@4285
    61
  val triv_forall_equality: thm
wenzelm@19051
    62
  val distinct_prems_rl: thm
wenzelm@18179
    63
  val swap_prems_rl: thm
wenzelm@18179
    64
  val equal_intr_rule: thm
wenzelm@18179
    65
  val equal_elim_rule1: thm
wenzelm@19421
    66
  val equal_elim_rule2: thm
wenzelm@18179
    67
  val instantiate': ctyp option list -> cterm option list -> thm -> thm
wenzelm@5903
    68
end;
wenzelm@5903
    69
wenzelm@5903
    70
signature DRULE =
wenzelm@5903
    71
sig
wenzelm@5903
    72
  include BASIC_DRULE
wenzelm@19999
    73
  val generalize: string list * string list -> thm -> thm
paulson@15949
    74
  val list_comb: cterm * cterm list -> cterm
berghofe@12908
    75
  val strip_comb: cterm -> cterm * cterm list
berghofe@15262
    76
  val strip_type: ctyp -> ctyp list * ctyp
paulson@15949
    77
  val beta_conv: cterm -> cterm -> cterm
wenzelm@27156
    78
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
berghofe@17713
    79
  val flexflex_unique: thm -> thm
wenzelm@19421
    80
  val store_thm: bstring -> thm -> thm
wenzelm@19421
    81
  val store_standard_thm: bstring -> thm -> thm
wenzelm@19421
    82
  val store_thm_open: bstring -> thm -> thm
wenzelm@19421
    83
  val store_standard_thm_open: bstring -> thm -> thm
wenzelm@11975
    84
  val compose_single: thm * int * thm -> thm
wenzelm@18468
    85
  val imp_cong_rule: thm -> thm -> thm
wenzelm@22939
    86
  val arg_cong_rule: cterm -> thm -> thm
wenzelm@23568
    87
  val binop_cong_rule: cterm -> thm -> thm -> thm
wenzelm@22939
    88
  val fun_cong_rule: thm -> cterm -> thm
skalberg@15001
    89
  val beta_eta_conversion: cterm -> thm
berghofe@15925
    90
  val eta_long_conversion: cterm -> thm
paulson@20861
    91
  val eta_contraction_rule: thm -> thm
wenzelm@11975
    92
  val norm_hhf_eq: thm
wenzelm@28618
    93
  val norm_hhf_eqs: thm list
wenzelm@12800
    94
  val is_norm_hhf: term -> bool
wenzelm@16425
    95
  val norm_hhf: theory -> term -> term
wenzelm@20298
    96
  val norm_hhf_cterm: cterm -> cterm
wenzelm@18025
    97
  val protect: cterm -> cterm
wenzelm@18025
    98
  val protectI: thm
wenzelm@18025
    99
  val protectD: thm
wenzelm@18179
   100
  val protect_cong: thm
wenzelm@18025
   101
  val implies_intr_protected: cterm list -> thm -> thm
wenzelm@19775
   102
  val termI: thm
wenzelm@19775
   103
  val mk_term: cterm -> thm
wenzelm@19775
   104
  val dest_term: thm -> cterm
wenzelm@21519
   105
  val cterm_rule: (thm -> thm) -> cterm -> cterm
wenzelm@20881
   106
  val term_rule: theory -> (thm -> thm) -> term -> term
wenzelm@24005
   107
  val dummy_thm: thm
wenzelm@28618
   108
  val sort_constraintI: thm
wenzelm@28618
   109
  val sort_constraint_eq: thm
wenzelm@19523
   110
  val sort_triv: theory -> typ * sort -> thm list
wenzelm@19504
   111
  val unconstrainTs: thm -> thm
wenzelm@23423
   112
  val with_subgoal: int -> (thm -> thm) -> thm -> thm
berghofe@14081
   113
  val rename_bvars: (string * string) list -> thm -> thm
berghofe@14081
   114
  val rename_bvars': string option list -> thm -> thm
paulson@24426
   115
  val incr_type_indexes: int -> thm -> thm
wenzelm@19124
   116
  val incr_indexes: thm -> thm -> thm
wenzelm@19124
   117
  val incr_indexes2: thm -> thm -> thm -> thm
wenzelm@12297
   118
  val remdups_rl: thm
wenzelm@18225
   119
  val multi_resolve: thm list -> thm -> thm Seq.seq
wenzelm@18225
   120
  val multi_resolves: thm list -> thm list -> thm Seq.seq
berghofe@13325
   121
  val abs_def: thm -> thm
wenzelm@3766
   122
end;
clasohm@0
   123
wenzelm@5903
   124
structure Drule: DRULE =
clasohm@0
   125
struct
clasohm@0
   126
wenzelm@3991
   127
wenzelm@16682
   128
(** some cterm->cterm operations: faster than calling cterm_of! **)
lcp@708
   129
lcp@708
   130
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   131
fun strip_imp_prems ct =
wenzelm@22906
   132
  let val (cA, cB) = Thm.dest_implies ct
wenzelm@20579
   133
  in cA :: strip_imp_prems cB end
wenzelm@20579
   134
  handle TERM _ => [];
lcp@708
   135
paulson@2004
   136
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   137
fun strip_imp_concl ct =
wenzelm@20579
   138
  (case Thm.term_of ct of
wenzelm@20579
   139
    Const ("==>", _) $ _ $ _ => strip_imp_concl (Thm.dest_arg ct)
wenzelm@20579
   140
  | _ => ct);
paulson@2004
   141
lcp@708
   142
(*The premises of a theorem, as a cterm list*)
berghofe@13659
   143
val cprems_of = strip_imp_prems o cprop_of;
lcp@708
   144
wenzelm@26627
   145
fun cterm_fun f ct = Thm.cterm_of (Thm.theory_of_cterm ct) (f (Thm.term_of ct));
wenzelm@26627
   146
fun ctyp_fun f cT = Thm.ctyp_of (Thm.theory_of_ctyp cT) (f (Thm.typ_of cT));
berghofe@15797
   147
wenzelm@26487
   148
fun certify t = Thm.cterm_of (Context.the_theory (Context.the_thread_data ())) t;
paulson@9547
   149
wenzelm@27333
   150
val implies = certify Logic.implies;
wenzelm@19183
   151
fun mk_implies (A, B) = Thm.capply (Thm.capply implies A) B;
paulson@9547
   152
paulson@9547
   153
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   154
fun list_implies([], B) = B
paulson@9547
   155
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   156
paulson@15949
   157
(*cterm version of list_comb: maps  (f, [t1,...,tn])  to  f(t1,...,tn) *)
paulson@15949
   158
fun list_comb (f, []) = f
paulson@15949
   159
  | list_comb (f, t::ts) = list_comb (Thm.capply f t, ts);
paulson@15949
   160
berghofe@12908
   161
(*cterm version of strip_comb: maps  f(t1,...,tn)  to  (f, [t1,...,tn]) *)
wenzelm@18179
   162
fun strip_comb ct =
berghofe@12908
   163
  let
berghofe@12908
   164
    fun stripc (p as (ct, cts)) =
berghofe@12908
   165
      let val (ct1, ct2) = Thm.dest_comb ct
berghofe@12908
   166
      in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
berghofe@12908
   167
  in stripc (ct, []) end;
berghofe@12908
   168
berghofe@15262
   169
(* cterm version of strip_type: maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T) *)
berghofe@15262
   170
fun strip_type cT = (case Thm.typ_of cT of
berghofe@15262
   171
    Type ("fun", _) =>
berghofe@15262
   172
      let
berghofe@15262
   173
        val [cT1, cT2] = Thm.dest_ctyp cT;
berghofe@15262
   174
        val (cTs, cT') = strip_type cT2
berghofe@15262
   175
      in (cT1 :: cTs, cT') end
berghofe@15262
   176
  | _ => ([], cT));
berghofe@15262
   177
paulson@15949
   178
(*Beta-conversion for cterms, where x is an abstraction. Simply returns the rhs
paulson@15949
   179
  of the meta-equality returned by the beta_conversion rule.*)
wenzelm@18179
   180
fun beta_conv x y =
wenzelm@20579
   181
  Thm.dest_arg (cprop_of (Thm.beta_conversion false (Thm.capply x y)));
paulson@15949
   182
wenzelm@15875
   183
lcp@708
   184
wenzelm@252
   185
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   186
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   187
     type variables) when reading another term.
clasohm@0
   188
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   189
***)
clasohm@0
   190
clasohm@0
   191
fun types_sorts thm =
wenzelm@20329
   192
  let
wenzelm@22695
   193
    val vars = Thm.fold_terms Term.add_vars thm [];
wenzelm@22695
   194
    val frees = Thm.fold_terms Term.add_frees thm [];
wenzelm@22695
   195
    val tvars = Thm.fold_terms Term.add_tvars thm [];
wenzelm@22695
   196
    val tfrees = Thm.fold_terms Term.add_tfrees thm [];
wenzelm@20329
   197
    fun types (a, i) =
wenzelm@20329
   198
      if i < 0 then AList.lookup (op =) frees a else AList.lookup (op =) vars (a, i);
wenzelm@20329
   199
    fun sorts (a, i) =
wenzelm@20329
   200
      if i < 0 then AList.lookup (op =) tfrees a else AList.lookup (op =) tvars (a, i);
wenzelm@20329
   201
  in (types, sorts) end;
clasohm@0
   202
wenzelm@15669
   203
wenzelm@7636
   204
wenzelm@9455
   205
clasohm@0
   206
(** Standardization of rules **)
clasohm@0
   207
wenzelm@19523
   208
(* type classes and sorts *)
wenzelm@19523
   209
wenzelm@19523
   210
fun sort_triv thy (T, S) =
wenzelm@19523
   211
  let
wenzelm@19523
   212
    val certT = Thm.ctyp_of thy;
wenzelm@19523
   213
    val cT = certT T;
wenzelm@19523
   214
    fun class_triv c =
wenzelm@19523
   215
      Thm.class_triv thy c
wenzelm@24848
   216
      |> Thm.instantiate ([(certT (TVar ((Name.aT, 0), [c])), cT)], []);
wenzelm@19523
   217
  in map class_triv S end;
wenzelm@19523
   218
wenzelm@19504
   219
fun unconstrainTs th =
wenzelm@20298
   220
  fold (Thm.unconstrainT o Thm.ctyp_of (Thm.theory_of_thm th) o TVar)
wenzelm@22695
   221
    (Thm.fold_terms Term.add_tvars th []) th;
wenzelm@19504
   222
wenzelm@19730
   223
(*Generalization over a list of variables*)
wenzelm@19730
   224
val forall_intr_list = fold_rev forall_intr;
clasohm@0
   225
clasohm@0
   226
(*Generalization over all suitable Free variables*)
clasohm@0
   227
fun forall_intr_frees th =
wenzelm@19730
   228
    let
wenzelm@26627
   229
      val thy = Thm.theory_of_thm th;
wenzelm@26627
   230
      val {prop, hyps, tpairs, ...} = rep_thm th;
wenzelm@19730
   231
      val fixed = fold Term.add_frees (Thm.terms_of_tpairs tpairs @ hyps) [];
wenzelm@19730
   232
      val frees = Term.fold_aterms (fn Free v =>
wenzelm@19730
   233
        if member (op =) fixed v then I else insert (op =) v | _ => I) prop [];
wenzelm@19730
   234
    in fold (forall_intr o cterm_of thy o Free) frees th end;
clasohm@0
   235
wenzelm@18535
   236
(*Generalization over Vars -- canonical order*)
wenzelm@18535
   237
fun forall_intr_vars th =
wenzelm@20298
   238
  fold forall_intr
wenzelm@22695
   239
    (map (Thm.cterm_of (Thm.theory_of_thm th) o Var) (Thm.fold_terms Term.add_vars th [])) th;
wenzelm@18535
   240
wenzelm@18025
   241
fun outer_params t =
wenzelm@20077
   242
  let val vs = Term.strip_all_vars t
wenzelm@20077
   243
  in Name.variant_list [] (map (Name.clean o #1) vs) ~~ map #2 vs end;
wenzelm@18025
   244
wenzelm@18025
   245
(*generalize outermost parameters*)
wenzelm@18025
   246
fun gen_all th =
wenzelm@12719
   247
  let
wenzelm@26627
   248
    val thy = Thm.theory_of_thm th;
wenzelm@26627
   249
    val {prop, maxidx, ...} = Thm.rep_thm th;
wenzelm@18025
   250
    val cert = Thm.cterm_of thy;
wenzelm@18025
   251
    fun elim (x, T) = Thm.forall_elim (cert (Var ((x, maxidx + 1), T)));
wenzelm@18025
   252
  in fold elim (outer_params prop) th end;
wenzelm@18025
   253
wenzelm@18025
   254
(*lift vars wrt. outermost goal parameters
wenzelm@18118
   255
  -- reverses the effect of gen_all modulo higher-order unification*)
wenzelm@18025
   256
fun lift_all goal th =
wenzelm@18025
   257
  let
wenzelm@18025
   258
    val thy = Theory.merge (Thm.theory_of_cterm goal, Thm.theory_of_thm th);
wenzelm@18025
   259
    val cert = Thm.cterm_of thy;
wenzelm@19421
   260
    val maxidx = Thm.maxidx_of th;
wenzelm@18025
   261
    val ps = outer_params (Thm.term_of goal)
wenzelm@18025
   262
      |> map (fn (x, T) => Var ((x, maxidx + 1), Logic.incr_tvar (maxidx + 1) T));
wenzelm@18025
   263
    val Ts = map Term.fastype_of ps;
wenzelm@22695
   264
    val inst = Thm.fold_terms Term.add_vars th [] |> map (fn (xi, T) =>
wenzelm@18025
   265
      (cert (Var (xi, T)), cert (Term.list_comb (Var (xi, Ts ---> T), ps))));
wenzelm@18025
   266
  in
wenzelm@18025
   267
    th |> Thm.instantiate ([], inst)
wenzelm@18025
   268
    |> fold_rev (Thm.forall_intr o cert) ps
wenzelm@18025
   269
  end;
wenzelm@18025
   270
wenzelm@19999
   271
(*direct generalization*)
wenzelm@19999
   272
fun generalize names th = Thm.generalize names (Thm.maxidx_of th + 1) th;
wenzelm@9554
   273
wenzelm@16949
   274
(*specialization over a list of cterms*)
wenzelm@16949
   275
val forall_elim_list = fold forall_elim;
clasohm@0
   276
wenzelm@16949
   277
(*maps A1,...,An |- B  to  [| A1;...;An |] ==> B*)
wenzelm@16949
   278
val implies_intr_list = fold_rev implies_intr;
clasohm@0
   279
wenzelm@16949
   280
(*maps [| A1;...;An |] ==> B and [A1,...,An]  to  B*)
wenzelm@24978
   281
fun implies_elim_list impth ths = fold Thm.elim_implies ths impth;
clasohm@0
   282
clasohm@0
   283
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@21603
   284
fun zero_var_indexes_list [] = []
wenzelm@21603
   285
  | zero_var_indexes_list ths =
wenzelm@21603
   286
      let
wenzelm@21603
   287
        val thy = Theory.merge_list (map Thm.theory_of_thm ths);
wenzelm@21603
   288
        val certT = Thm.ctyp_of thy and cert = Thm.cterm_of thy;
wenzelm@21603
   289
        val (instT, inst) = TermSubst.zero_var_indexes_inst (map Thm.full_prop_of ths);
wenzelm@21603
   290
        val cinstT = map (fn (v, T) => (certT (TVar v), certT T)) instT;
wenzelm@21603
   291
        val cinst = map (fn (v, t) => (cert (Var v), cert t)) inst;
wenzelm@21603
   292
      in map (Thm.adjust_maxidx_thm ~1 o Thm.instantiate (cinstT, cinst)) ths end;
wenzelm@21603
   293
wenzelm@21603
   294
val zero_var_indexes = singleton zero_var_indexes_list;
clasohm@0
   295
clasohm@0
   296
paulson@14394
   297
(** Standard form of object-rule: no hypotheses, flexflex constraints,
paulson@14394
   298
    Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
wenzelm@10515
   299
wenzelm@16595
   300
(*Discharge all hypotheses.*)
wenzelm@16595
   301
fun implies_intr_hyps th =
wenzelm@16595
   302
  fold Thm.implies_intr (#hyps (Thm.crep_thm th)) th;
wenzelm@16595
   303
paulson@14394
   304
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
paulson@14394
   305
  This step can lose information.*)
paulson@14387
   306
fun flexflex_unique th =
berghofe@17713
   307
  if null (tpairs_of th) then th else
paulson@23439
   308
    case distinct Thm.eq_thm (Seq.list_of (flexflex_rule th)) of
paulson@23439
   309
      [th] => th
paulson@23439
   310
    | []   => raise THM("flexflex_unique: impossible constraints", 0, [th])
paulson@23439
   311
    |  _   => raise THM("flexflex_unique: multiple unifiers", 0, [th]);
paulson@14387
   312
wenzelm@21603
   313
wenzelm@21603
   314
(* legacy standard operations *)
wenzelm@21603
   315
wenzelm@16949
   316
val standard' =
wenzelm@16949
   317
  implies_intr_hyps
wenzelm@16949
   318
  #> forall_intr_frees
wenzelm@19421
   319
  #> `Thm.maxidx_of
wenzelm@16949
   320
  #-> (fn maxidx =>
wenzelm@26653
   321
    Thm.forall_elim_vars (maxidx + 1)
wenzelm@20904
   322
    #> Thm.strip_shyps
wenzelm@16949
   323
    #> zero_var_indexes
wenzelm@26627
   324
    #> Thm.varifyT);
wenzelm@1218
   325
wenzelm@16949
   326
val standard =
wenzelm@21600
   327
  flexflex_unique
wenzelm@16949
   328
  #> standard'
wenzelm@26627
   329
  #> Thm.close_derivation;
berghofe@11512
   330
clasohm@0
   331
wenzelm@8328
   332
(*Convert all Vars in a theorem to Frees.  Also return a function for
paulson@4610
   333
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@4610
   334
  Similar code in type/freeze_thaw*)
paulson@15495
   335
paulson@15495
   336
fun freeze_thaw_robust th =
wenzelm@19878
   337
 let val fth = Thm.freezeT th
wenzelm@26627
   338
     val thy = Thm.theory_of_thm fth
wenzelm@26627
   339
     val {prop, tpairs, ...} = rep_thm fth
paulson@15495
   340
 in
wenzelm@29265
   341
   case List.foldr OldTerm.add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@15495
   342
       [] => (fth, fn i => fn x => x)   (*No vars: nothing to do!*)
paulson@15495
   343
     | vars =>
paulson@19753
   344
         let fun newName (Var(ix,_)) = (ix, gensym (string_of_indexname ix))
paulson@19753
   345
             val alist = map newName vars
paulson@15495
   346
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   347
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   348
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
paulson@15495
   349
             val insts = map mk_inst vars
paulson@15495
   350
             fun thaw i th' = (*i is non-negative increment for Var indexes*)
paulson@15495
   351
                 th' |> forall_intr_list (map #2 insts)
wenzelm@22906
   352
                     |> forall_elim_list (map (Thm.incr_indexes_cterm i o #1) insts)
paulson@15495
   353
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@15495
   354
 end;
paulson@15495
   355
paulson@15495
   356
(*Basic version of the function above. No option to rename Vars apart in thaw.
wenzelm@19999
   357
  The Frees created from Vars have nice names. FIXME: does not check for
paulson@19753
   358
  clashes with variables in the assumptions, so delete and use freeze_thaw_robust instead?*)
paulson@4610
   359
fun freeze_thaw th =
wenzelm@19878
   360
 let val fth = Thm.freezeT th
wenzelm@26627
   361
     val thy = Thm.theory_of_thm fth
wenzelm@26627
   362
     val {prop, tpairs, ...} = rep_thm fth
paulson@7248
   363
 in
wenzelm@29265
   364
   case List.foldr OldTerm.add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@7248
   365
       [] => (fth, fn x => x)
paulson@7248
   366
     | vars =>
wenzelm@8328
   367
         let fun newName (Var(ix,_), (pairs,used)) =
wenzelm@20077
   368
                   let val v = Name.variant used (string_of_indexname ix)
wenzelm@8328
   369
                   in  ((ix,v)::pairs, v::used)  end;
wenzelm@23178
   370
             val (alist, _) = List.foldr newName ([], Library.foldr add_term_names
skalberg@15574
   371
               (prop :: Thm.terms_of_tpairs tpairs, [])) vars
wenzelm@8328
   372
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   373
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   374
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
wenzelm@8328
   375
             val insts = map mk_inst vars
wenzelm@8328
   376
             fun thaw th' =
wenzelm@8328
   377
                 th' |> forall_intr_list (map #2 insts)
wenzelm@8328
   378
                     |> forall_elim_list (map #1 insts)
wenzelm@8328
   379
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@7248
   380
 end;
paulson@4610
   381
paulson@7248
   382
(*Rotates a rule's premises to the left by k*)
wenzelm@23537
   383
fun rotate_prems 0 = I
wenzelm@23537
   384
  | rotate_prems k = permute_prems 0 k;
wenzelm@23537
   385
wenzelm@23423
   386
fun with_subgoal i f = rotate_prems (i - 1) #> f #> rotate_prems (1 - i);
paulson@4610
   387
oheimb@11163
   388
(* permute prems, where the i-th position in the argument list (counting from 0)
oheimb@11163
   389
   gives the position within the original thm to be transferred to position i.
oheimb@11163
   390
   Any remaining trailing positions are left unchanged. *)
oheimb@11163
   391
val rearrange_prems = let
oheimb@11163
   392
  fun rearr new []      thm = thm
wenzelm@11815
   393
  |   rearr new (p::ps) thm = rearr (new+1)
oheimb@11163
   394
     (map (fn q => if new<=q andalso q<p then q+1 else q) ps)
oheimb@11163
   395
     (permute_prems (new+1) (new-p) (permute_prems new (p-new) thm))
oheimb@11163
   396
  in rearr 0 end;
paulson@4610
   397
wenzelm@252
   398
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   399
fun tha RSN (i,thb) =
wenzelm@19861
   400
  case Seq.chop 2 (biresolution false [(false,tha)] i thb) of
clasohm@0
   401
      ([th],_) => th
clasohm@0
   402
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   403
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   404
clasohm@0
   405
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   406
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   407
clasohm@0
   408
(*For joining lists of rules*)
wenzelm@252
   409
fun thas RLN (i,thbs) =
clasohm@0
   410
  let val resolve = biresolution false (map (pair false) thas) i
wenzelm@4270
   411
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
wenzelm@19482
   412
  in maps resb thbs end;
clasohm@0
   413
clasohm@0
   414
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   415
lcp@11
   416
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   417
  makes proof trees*)
wenzelm@252
   418
fun rls MRS bottom_rl =
lcp@11
   419
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   420
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   421
  in  rs_aux 1 rls  end;
lcp@11
   422
lcp@11
   423
(*As above, but for rule lists*)
wenzelm@252
   424
fun rlss MRL bottom_rls =
lcp@11
   425
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   426
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   427
  in  rs_aux 1 rlss  end;
lcp@11
   428
wenzelm@9288
   429
(*A version of MRS with more appropriate argument order*)
wenzelm@9288
   430
fun bottom_rl OF rls = rls MRS bottom_rl;
wenzelm@9288
   431
wenzelm@252
   432
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   433
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   434
  ALWAYS deletes premise i *)
wenzelm@252
   435
fun compose(tha,i,thb) =
paulson@24426
   436
    distinct Thm.eq_thm (Seq.list_of (bicompose false (false,tha,0) i thb));
clasohm@0
   437
wenzelm@6946
   438
fun compose_single (tha,i,thb) =
paulson@24426
   439
  case compose (tha,i,thb) of
wenzelm@6946
   440
    [th] => th
paulson@24426
   441
  | _ => raise THM ("compose: unique result expected", i, [tha,thb]);
wenzelm@6946
   442
clasohm@0
   443
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   444
fun tha COMP thb =
paulson@24426
   445
    case compose(tha,1,thb) of
wenzelm@252
   446
        [th] => th
clasohm@0
   447
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   448
wenzelm@13105
   449
wenzelm@4016
   450
(** theorem equality **)
clasohm@0
   451
clasohm@0
   452
(*Useful "distance" function for BEST_FIRST*)
wenzelm@16720
   453
val size_of_thm = size_of_term o Thm.full_prop_of;
clasohm@0
   454
lcp@1194
   455
lcp@1194
   456
clasohm@0
   457
(*** Meta-Rewriting Rules ***)
clasohm@0
   458
wenzelm@26487
   459
val read_prop = certify o SimpleSyntax.read_prop;
wenzelm@26487
   460
wenzelm@26487
   461
fun store_thm name th =
wenzelm@26487
   462
  Context.>>> (Context.map_theory_result (PureThy.store_thm (name, th)));
paulson@4610
   463
wenzelm@26487
   464
fun store_thm_open name th =
wenzelm@26487
   465
  Context.>>> (Context.map_theory_result (PureThy.store_thm_open (name, th)));
wenzelm@26487
   466
wenzelm@26487
   467
fun store_standard_thm name th = store_thm name (standard th);
wenzelm@12135
   468
fun store_standard_thm_open name thm = store_thm_open name (standard' thm);
wenzelm@4016
   469
clasohm@0
   470
val reflexive_thm =
wenzelm@26487
   471
  let val cx = certify (Var(("x",0),TVar(("'a",0),[])))
wenzelm@12135
   472
  in store_standard_thm_open "reflexive" (Thm.reflexive cx) end;
clasohm@0
   473
clasohm@0
   474
val symmetric_thm =
wenzelm@24241
   475
  let val xy = read_prop "x::'a == y::'a"
wenzelm@16595
   476
  in store_standard_thm_open "symmetric" (Thm.implies_intr xy (Thm.symmetric (Thm.assume xy))) end;
clasohm@0
   477
clasohm@0
   478
val transitive_thm =
wenzelm@24241
   479
  let val xy = read_prop "x::'a == y::'a"
wenzelm@24241
   480
      val yz = read_prop "y::'a == z::'a"
clasohm@0
   481
      val xythm = Thm.assume xy and yzthm = Thm.assume yz
wenzelm@12135
   482
  in store_standard_thm_open "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
clasohm@0
   483
nipkow@4679
   484
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   485
berghofe@11512
   486
fun extensional eq =
berghofe@11512
   487
  let val eq' =
wenzelm@22906
   488
    abstract_rule "x" (Thm.dest_arg (fst (Thm.dest_equals (cprop_of eq)))) eq
berghofe@11512
   489
  in equal_elim (eta_conversion (cprop_of eq')) eq' end;
berghofe@11512
   490
wenzelm@18820
   491
val equals_cong =
wenzelm@24241
   492
  store_standard_thm_open "equals_cong" (Thm.reflexive (read_prop "x::'a == y::'a"));
wenzelm@18820
   493
berghofe@10414
   494
val imp_cong =
berghofe@10414
   495
  let
wenzelm@24241
   496
    val ABC = read_prop "A ==> B::prop == C::prop"
wenzelm@24241
   497
    val AB = read_prop "A ==> B"
wenzelm@24241
   498
    val AC = read_prop "A ==> C"
wenzelm@24241
   499
    val A = read_prop "A"
berghofe@10414
   500
  in
wenzelm@12135
   501
    store_standard_thm_open "imp_cong" (implies_intr ABC (equal_intr
berghofe@10414
   502
      (implies_intr AB (implies_intr A
berghofe@10414
   503
        (equal_elim (implies_elim (assume ABC) (assume A))
berghofe@10414
   504
          (implies_elim (assume AB) (assume A)))))
berghofe@10414
   505
      (implies_intr AC (implies_intr A
berghofe@10414
   506
        (equal_elim (symmetric (implies_elim (assume ABC) (assume A)))
berghofe@10414
   507
          (implies_elim (assume AC) (assume A)))))))
berghofe@10414
   508
  end;
berghofe@10414
   509
berghofe@10414
   510
val swap_prems_eq =
berghofe@10414
   511
  let
wenzelm@24241
   512
    val ABC = read_prop "A ==> B ==> C"
wenzelm@24241
   513
    val BAC = read_prop "B ==> A ==> C"
wenzelm@24241
   514
    val A = read_prop "A"
wenzelm@24241
   515
    val B = read_prop "B"
berghofe@10414
   516
  in
wenzelm@12135
   517
    store_standard_thm_open "swap_prems_eq" (equal_intr
berghofe@10414
   518
      (implies_intr ABC (implies_intr B (implies_intr A
berghofe@10414
   519
        (implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
berghofe@10414
   520
      (implies_intr BAC (implies_intr A (implies_intr B
berghofe@10414
   521
        (implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
berghofe@10414
   522
  end;
lcp@229
   523
wenzelm@22938
   524
val imp_cong_rule = Thm.combination o Thm.combination (Thm.reflexive implies);
wenzelm@22938
   525
wenzelm@23537
   526
fun arg_cong_rule ct th = Thm.combination (Thm.reflexive ct) th;    (*AP_TERM in LCF/HOL*)
wenzelm@23537
   527
fun fun_cong_rule th ct = Thm.combination th (Thm.reflexive ct);    (*AP_THM in LCF/HOL*)
wenzelm@23568
   528
fun binop_cong_rule ct th1 th2 = Thm.combination (arg_cong_rule ct th1) th2;
clasohm@0
   529
skalberg@15001
   530
local
wenzelm@22906
   531
  val dest_eq = Thm.dest_equals o cprop_of
skalberg@15001
   532
  val rhs_of = snd o dest_eq
skalberg@15001
   533
in
skalberg@15001
   534
fun beta_eta_conversion t =
skalberg@15001
   535
  let val thm = beta_conversion true t
skalberg@15001
   536
  in transitive thm (eta_conversion (rhs_of thm)) end
skalberg@15001
   537
end;
skalberg@15001
   538
berghofe@15925
   539
fun eta_long_conversion ct = transitive (beta_eta_conversion ct)
berghofe@15925
   540
  (symmetric (beta_eta_conversion (cterm_fun (Pattern.eta_long []) ct)));
berghofe@15925
   541
paulson@20861
   542
(*Contract all eta-redexes in the theorem, lest they give rise to needless abstractions*)
paulson@20861
   543
fun eta_contraction_rule th =
paulson@20861
   544
  equal_elim (eta_conversion (cprop_of th)) th;
paulson@20861
   545
wenzelm@24947
   546
wenzelm@24947
   547
(* abs_def *)
wenzelm@24947
   548
wenzelm@24947
   549
(*
wenzelm@24947
   550
   f ?x1 ... ?xn == u
wenzelm@24947
   551
  --------------------
wenzelm@24947
   552
   f == %x1 ... xn. u
wenzelm@24947
   553
*)
wenzelm@24947
   554
wenzelm@24947
   555
local
wenzelm@24947
   556
wenzelm@24947
   557
fun contract_lhs th =
wenzelm@24947
   558
  Thm.transitive (Thm.symmetric (beta_eta_conversion
wenzelm@24947
   559
    (fst (Thm.dest_equals (cprop_of th))))) th;
wenzelm@24947
   560
wenzelm@24947
   561
fun var_args ct =
wenzelm@24947
   562
  (case try Thm.dest_comb ct of
wenzelm@24947
   563
    SOME (f, arg) =>
wenzelm@24947
   564
      (case Thm.term_of arg of
wenzelm@24947
   565
        Var ((x, _), _) => update (eq_snd (op aconvc)) (x, arg) (var_args f)
wenzelm@24947
   566
      | _ => [])
wenzelm@24947
   567
  | NONE => []);
wenzelm@24947
   568
wenzelm@24947
   569
in
wenzelm@24947
   570
wenzelm@24947
   571
fun abs_def th =
wenzelm@18337
   572
  let
wenzelm@24947
   573
    val th' = contract_lhs th;
wenzelm@24947
   574
    val args = var_args (Thm.lhs_of th');
wenzelm@24947
   575
  in contract_lhs (fold (uncurry Thm.abstract_rule) args th') end;
wenzelm@24947
   576
wenzelm@24947
   577
end;
wenzelm@24947
   578
wenzelm@18337
   579
wenzelm@18468
   580
wenzelm@15669
   581
(*** Some useful meta-theorems ***)
clasohm@0
   582
clasohm@0
   583
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@24241
   584
val asm_rl = store_standard_thm_open "asm_rl" (Thm.trivial (read_prop "?psi"));
berghofe@28713
   585
val _ = store_thm_open "_" asm_rl;
clasohm@0
   586
clasohm@0
   587
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   588
val cut_rl =
wenzelm@12135
   589
  store_standard_thm_open "cut_rl"
wenzelm@24241
   590
    (Thm.trivial (read_prop "?psi ==> ?theta"));
clasohm@0
   591
wenzelm@252
   592
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   593
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   594
val revcut_rl =
wenzelm@24241
   595
  let val V = read_prop "V"
wenzelm@24241
   596
      and VW = read_prop "V ==> W";
wenzelm@4016
   597
  in
wenzelm@12135
   598
    store_standard_thm_open "revcut_rl"
wenzelm@4016
   599
      (implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
clasohm@0
   600
  end;
clasohm@0
   601
lcp@668
   602
(*for deleting an unwanted assumption*)
lcp@668
   603
val thin_rl =
wenzelm@24241
   604
  let val V = read_prop "V"
wenzelm@24241
   605
      and W = read_prop "W";
wenzelm@12135
   606
  in store_standard_thm_open "thin_rl" (implies_intr V (implies_intr W (assume W))) end;
lcp@668
   607
clasohm@0
   608
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   609
val triv_forall_equality =
wenzelm@24241
   610
  let val V  = read_prop "V"
wenzelm@24241
   611
      and QV = read_prop "!!x::'a. V"
wenzelm@26487
   612
      and x  = certify (Free ("x", Term.aT []));
wenzelm@4016
   613
  in
wenzelm@12135
   614
    store_standard_thm_open "triv_forall_equality"
berghofe@11512
   615
      (equal_intr (implies_intr QV (forall_elim x (assume QV)))
berghofe@11512
   616
        (implies_intr V  (forall_intr x (assume V))))
clasohm@0
   617
  end;
clasohm@0
   618
wenzelm@19051
   619
(* (PROP ?Phi ==> PROP ?Phi ==> PROP ?Psi) ==>
wenzelm@19051
   620
   (PROP ?Phi ==> PROP ?Psi)
wenzelm@19051
   621
*)
wenzelm@19051
   622
val distinct_prems_rl =
wenzelm@19051
   623
  let
wenzelm@24241
   624
    val AAB = read_prop "Phi ==> Phi ==> Psi"
wenzelm@24241
   625
    val A = read_prop "Phi";
wenzelm@19051
   626
  in
wenzelm@19051
   627
    store_standard_thm_open "distinct_prems_rl"
wenzelm@19051
   628
      (implies_intr_list [AAB, A] (implies_elim_list (assume AAB) [assume A, assume A]))
wenzelm@19051
   629
  end;
wenzelm@19051
   630
nipkow@1756
   631
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   632
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   633
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   634
*)
nipkow@1756
   635
val swap_prems_rl =
wenzelm@24241
   636
  let val cmajor = read_prop "PhiA ==> PhiB ==> Psi";
nipkow@1756
   637
      val major = assume cmajor;
wenzelm@24241
   638
      val cminor1 = read_prop "PhiA";
nipkow@1756
   639
      val minor1 = assume cminor1;
wenzelm@24241
   640
      val cminor2 = read_prop "PhiB";
nipkow@1756
   641
      val minor2 = assume cminor2;
wenzelm@12135
   642
  in store_standard_thm_open "swap_prems_rl"
nipkow@1756
   643
       (implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
nipkow@1756
   644
         (implies_elim (implies_elim major minor1) minor2))))
nipkow@1756
   645
  end;
nipkow@1756
   646
nipkow@3653
   647
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   648
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   649
   Introduction rule for == as a meta-theorem.
nipkow@3653
   650
*)
nipkow@3653
   651
val equal_intr_rule =
wenzelm@24241
   652
  let val PQ = read_prop "phi ==> psi"
wenzelm@24241
   653
      and QP = read_prop "psi ==> phi"
wenzelm@4016
   654
  in
wenzelm@12135
   655
    store_standard_thm_open "equal_intr_rule"
wenzelm@4016
   656
      (implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
nipkow@3653
   657
  end;
nipkow@3653
   658
wenzelm@19421
   659
(* PROP ?phi == PROP ?psi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@13368
   660
val equal_elim_rule1 =
wenzelm@24241
   661
  let val eq = read_prop "phi::prop == psi::prop"
wenzelm@24241
   662
      and P = read_prop "phi"
wenzelm@13368
   663
  in store_standard_thm_open "equal_elim_rule1"
wenzelm@13368
   664
    (Thm.equal_elim (assume eq) (assume P) |> implies_intr_list [eq, P])
wenzelm@13368
   665
  end;
wenzelm@4285
   666
wenzelm@19421
   667
(* PROP ?psi == PROP ?phi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@19421
   668
val equal_elim_rule2 =
wenzelm@19421
   669
  store_standard_thm_open "equal_elim_rule2" (symmetric_thm RS equal_elim_rule1);
wenzelm@19421
   670
wenzelm@28618
   671
(* PROP ?phi ==> PROP ?phi ==> PROP ?psi ==> PROP ?psi *)
wenzelm@12297
   672
val remdups_rl =
wenzelm@24241
   673
  let val P = read_prop "phi" and Q = read_prop "psi";
wenzelm@12297
   674
  in store_standard_thm_open "remdups_rl" (implies_intr_list [P, P, Q] (Thm.assume Q)) end;
wenzelm@12297
   675
wenzelm@12297
   676
wenzelm@28618
   677
wenzelm@28618
   678
(** embedded terms and types **)
wenzelm@28618
   679
wenzelm@28618
   680
local
wenzelm@28618
   681
  val A = certify (Free ("A", propT));
wenzelm@28674
   682
  val axiom = Thm.unvarify o Thm.axiom (Context.the_theory (Context.the_thread_data ()));
wenzelm@28674
   683
  val prop_def = axiom "Pure.prop_def";
wenzelm@28674
   684
  val term_def = axiom "Pure.term_def";
wenzelm@28674
   685
  val sort_constraint_def = axiom "Pure.sort_constraint_def";
wenzelm@28618
   686
  val C = Thm.lhs_of sort_constraint_def;
wenzelm@28618
   687
  val T = Thm.dest_arg C;
wenzelm@28618
   688
  val CA = mk_implies (C, A);
wenzelm@28618
   689
in
wenzelm@28618
   690
wenzelm@28618
   691
(* protect *)
wenzelm@28618
   692
wenzelm@28618
   693
val protect = Thm.capply (certify Logic.protectC);
wenzelm@28618
   694
wenzelm@28618
   695
val protectI = store_thm "protectI" (Thm.kind_rule Thm.internalK (standard
wenzelm@28618
   696
    (Thm.equal_elim (Thm.symmetric prop_def) (Thm.assume A))));
wenzelm@28618
   697
wenzelm@28618
   698
val protectD = store_thm "protectD" (Thm.kind_rule Thm.internalK (standard
wenzelm@28618
   699
    (Thm.equal_elim prop_def (Thm.assume (protect A)))));
wenzelm@28618
   700
wenzelm@28618
   701
val protect_cong = store_standard_thm_open "protect_cong" (Thm.reflexive (protect A));
wenzelm@28618
   702
wenzelm@28618
   703
fun implies_intr_protected asms th =
wenzelm@28618
   704
  let val asms' = map protect asms in
wenzelm@28618
   705
    implies_elim_list
wenzelm@28618
   706
      (implies_intr_list asms th)
wenzelm@28618
   707
      (map (fn asm' => Thm.assume asm' RS protectD) asms')
wenzelm@28618
   708
    |> implies_intr_list asms'
wenzelm@28618
   709
  end;
wenzelm@28618
   710
wenzelm@28618
   711
wenzelm@28618
   712
(* term *)
wenzelm@28618
   713
wenzelm@28618
   714
val termI = store_thm "termI" (Thm.kind_rule Thm.internalK (standard
wenzelm@28618
   715
    (Thm.equal_elim (Thm.symmetric term_def) (Thm.forall_intr A (Thm.trivial A)))));
wenzelm@9554
   716
wenzelm@28618
   717
fun mk_term ct =
wenzelm@28618
   718
  let
wenzelm@28618
   719
    val thy = Thm.theory_of_cterm ct;
wenzelm@28618
   720
    val cert = Thm.cterm_of thy;
wenzelm@28618
   721
    val certT = Thm.ctyp_of thy;
wenzelm@28618
   722
    val T = Thm.typ_of (Thm.ctyp_of_term ct);
wenzelm@28618
   723
    val a = certT (TVar (("'a", 0), []));
wenzelm@28618
   724
    val x = cert (Var (("x", 0), T));
wenzelm@28618
   725
  in Thm.instantiate ([(a, certT T)], [(x, ct)]) termI end;
wenzelm@28618
   726
wenzelm@28618
   727
fun dest_term th =
wenzelm@28618
   728
  let val cprop = strip_imp_concl (Thm.cprop_of th) in
wenzelm@28618
   729
    if can Logic.dest_term (Thm.term_of cprop) then
wenzelm@28618
   730
      Thm.dest_arg cprop
wenzelm@28618
   731
    else raise THM ("dest_term", 0, [th])
wenzelm@28618
   732
  end;
wenzelm@28618
   733
wenzelm@28618
   734
fun cterm_rule f = dest_term o f o mk_term;
wenzelm@28618
   735
fun term_rule thy f t = Thm.term_of (cterm_rule f (Thm.cterm_of thy t));
wenzelm@28618
   736
wenzelm@28618
   737
val dummy_thm = mk_term (certify (Term.dummy_pattern propT));
wenzelm@28618
   738
wenzelm@28618
   739
wenzelm@28618
   740
(* sort_constraint *)
wenzelm@28618
   741
wenzelm@28618
   742
val sort_constraintI = store_thm "sort_constraintI" (Thm.kind_rule Thm.internalK (standard
wenzelm@28618
   743
  (Thm.equal_elim (Thm.symmetric sort_constraint_def) (mk_term T))));
wenzelm@28618
   744
wenzelm@28618
   745
val sort_constraint_eq = store_thm "sort_constraint_eq" (Thm.kind_rule Thm.internalK (standard
wenzelm@28618
   746
  (Thm.equal_intr
wenzelm@28618
   747
    (Thm.implies_intr CA (Thm.implies_elim (Thm.assume CA) (Thm.unvarify sort_constraintI)))
wenzelm@28618
   748
    (implies_intr_list [A, C] (Thm.assume A)))));
wenzelm@28618
   749
wenzelm@28618
   750
end;
wenzelm@28618
   751
wenzelm@28618
   752
wenzelm@28618
   753
(* HHF normalization *)
wenzelm@28618
   754
wenzelm@28618
   755
(* (PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x)) *)
wenzelm@9554
   756
val norm_hhf_eq =
wenzelm@9554
   757
  let
wenzelm@14854
   758
    val aT = TFree ("'a", []);
wenzelm@9554
   759
    val all = Term.all aT;
wenzelm@9554
   760
    val x = Free ("x", aT);
wenzelm@9554
   761
    val phi = Free ("phi", propT);
wenzelm@9554
   762
    val psi = Free ("psi", aT --> propT);
wenzelm@9554
   763
wenzelm@26487
   764
    val cx = certify x;
wenzelm@26487
   765
    val cphi = certify phi;
wenzelm@26487
   766
    val lhs = certify (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
wenzelm@26487
   767
    val rhs = certify (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
wenzelm@9554
   768
  in
wenzelm@9554
   769
    Thm.equal_intr
wenzelm@9554
   770
      (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
wenzelm@9554
   771
        |> Thm.forall_elim cx
wenzelm@9554
   772
        |> Thm.implies_intr cphi
wenzelm@9554
   773
        |> Thm.forall_intr cx
wenzelm@9554
   774
        |> Thm.implies_intr lhs)
wenzelm@9554
   775
      (Thm.implies_elim
wenzelm@9554
   776
          (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
wenzelm@9554
   777
        |> Thm.forall_intr cx
wenzelm@9554
   778
        |> Thm.implies_intr cphi
wenzelm@9554
   779
        |> Thm.implies_intr rhs)
wenzelm@12135
   780
    |> store_standard_thm_open "norm_hhf_eq"
wenzelm@9554
   781
  end;
wenzelm@9554
   782
wenzelm@18179
   783
val norm_hhf_prop = Logic.dest_equals (Thm.prop_of norm_hhf_eq);
wenzelm@28618
   784
val norm_hhf_eqs = [norm_hhf_eq, sort_constraint_eq];
wenzelm@18179
   785
wenzelm@12800
   786
fun is_norm_hhf tm =
wenzelm@12800
   787
  let
wenzelm@28618
   788
    fun is_norm (Const ("Pure.sort_constraint", _)) = false
wenzelm@28618
   789
      | is_norm (Const ("==>", _) $ _ $ (Const ("all", _) $ _)) = false
wenzelm@12800
   790
      | is_norm (t $ u) = is_norm t andalso is_norm u
wenzelm@12800
   791
      | is_norm (Abs (_, _, t)) = is_norm t
wenzelm@12800
   792
      | is_norm _ = true;
wenzelm@18929
   793
  in is_norm (Envir.beta_eta_contract tm) end;
wenzelm@12800
   794
wenzelm@16425
   795
fun norm_hhf thy t =
wenzelm@12800
   796
  if is_norm_hhf t then t
wenzelm@18179
   797
  else Pattern.rewrite_term thy [norm_hhf_prop] [] t;
wenzelm@18179
   798
wenzelm@20298
   799
fun norm_hhf_cterm ct =
wenzelm@20298
   800
  if is_norm_hhf (Thm.term_of ct) then ct
wenzelm@20298
   801
  else cterm_fun (Pattern.rewrite_term (Thm.theory_of_cterm ct) [norm_hhf_prop] []) ct;
wenzelm@20298
   802
wenzelm@12800
   803
wenzelm@21603
   804
(* var indexes *)
wenzelm@21603
   805
paulson@24426
   806
(*Increment the indexes of only the type variables*)
paulson@24426
   807
fun incr_type_indexes inc th =
paulson@24426
   808
  let val tvs = term_tvars (prop_of th)
paulson@24426
   809
      and thy = theory_of_thm th
paulson@24426
   810
      fun inc_tvar ((a,i),s) = pairself (ctyp_of thy) (TVar ((a,i),s), TVar ((a,i+inc),s))
paulson@24426
   811
  in Thm.instantiate (map inc_tvar tvs, []) th end;
paulson@24426
   812
wenzelm@21603
   813
fun incr_indexes th = Thm.incr_indexes (Thm.maxidx_of th + 1);
wenzelm@21603
   814
wenzelm@21603
   815
fun incr_indexes2 th1 th2 =
wenzelm@21603
   816
  Thm.incr_indexes (Int.max (Thm.maxidx_of th1, Thm.maxidx_of th2) + 1);
wenzelm@21603
   817
wenzelm@21603
   818
fun th1 INCR_COMP th2 = incr_indexes th2 th1 COMP th2;
wenzelm@21603
   819
fun th1 COMP_INCR th2 = th1 COMP incr_indexes th1 th2;
wenzelm@21603
   820
wenzelm@9554
   821
wenzelm@16425
   822
(*** Instantiate theorem th, reading instantiations in theory thy ****)
paulson@8129
   823
paulson@8129
   824
(*Version that normalizes the result: Thm.instantiate no longer does that*)
wenzelm@21603
   825
fun instantiate instpair th =
wenzelm@21603
   826
  Thm.adjust_maxidx_thm ~1 (Thm.instantiate instpair th COMP_INCR asm_rl);
paulson@8129
   827
paulson@8129
   828
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
paulson@8129
   829
  Instantiates distinct Vars by terms, inferring type instantiations. *)
paulson@8129
   830
local
wenzelm@16425
   831
  fun add_types ((ct,cu), (thy,tye,maxidx)) =
wenzelm@26627
   832
    let
wenzelm@26627
   833
        val thyt = Thm.theory_of_cterm ct;
wenzelm@26627
   834
        val thyu = Thm.theory_of_cterm cu;
wenzelm@26627
   835
        val {t, T, maxidx = maxt, ...} = Thm.rep_cterm ct;
wenzelm@26627
   836
        val {t = u, T = U, maxidx = maxu, ...} = Thm.rep_cterm cu;
paulson@8129
   837
        val maxi = Int.max(maxidx, Int.max(maxt, maxu));
wenzelm@16425
   838
        val thy' = Theory.merge(thy, Theory.merge(thyt, thyu))
wenzelm@16949
   839
        val (tye',maxi') = Sign.typ_unify thy' (T, U) (tye, maxi)
berghofe@25470
   840
          handle Type.TUNIFY => raise TYPE ("Ill-typed instantiation:\nType\n" ^
wenzelm@26939
   841
            Syntax.string_of_typ_global thy' (Envir.norm_type tye T) ^
berghofe@25470
   842
            "\nof variable " ^
wenzelm@26939
   843
            Syntax.string_of_term_global thy' (Term.map_types (Envir.norm_type tye) t) ^
berghofe@25470
   844
            "\ncannot be unified with type\n" ^
wenzelm@26939
   845
            Syntax.string_of_typ_global thy' (Envir.norm_type tye U) ^ "\nof term " ^
wenzelm@26939
   846
            Syntax.string_of_term_global thy' (Term.map_types (Envir.norm_type tye) u),
berghofe@25470
   847
            [T, U], [t, u])
wenzelm@16425
   848
    in  (thy', tye', maxi')  end;
paulson@8129
   849
in
paulson@22561
   850
fun cterm_instantiate [] th = th
paulson@22561
   851
  | cterm_instantiate ctpairs0 th =
wenzelm@23178
   852
  let val (thy,tye,_) = List.foldr add_types (Thm.theory_of_thm th, Vartab.empty, 0) ctpairs0
wenzelm@18179
   853
      fun instT(ct,cu) =
paulson@22287
   854
        let val inst = cterm_of thy o Term.map_types (Envir.norm_type tye) o term_of
paulson@14340
   855
        in (inst ct, inst cu) end
paulson@22307
   856
      fun ctyp2 (ixn, (S, T)) = (ctyp_of thy (TVar (ixn, S)), ctyp_of thy (Envir.norm_type tye T))
berghofe@8406
   857
  in  instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th  end
paulson@8129
   858
  handle TERM _ =>
wenzelm@16425
   859
           raise THM("cterm_instantiate: incompatible theories",0,[th])
paulson@8129
   860
       | TYPE (msg, _, _) => raise THM(msg, 0, [th])
paulson@8129
   861
end;
paulson@8129
   862
paulson@8129
   863
wenzelm@4789
   864
wenzelm@5688
   865
(** variations on instantiate **)
wenzelm@4285
   866
wenzelm@4285
   867
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
   868
wenzelm@4285
   869
fun instantiate' cTs cts thm =
wenzelm@4285
   870
  let
wenzelm@4285
   871
    fun err msg =
wenzelm@4285
   872
      raise TYPE ("instantiate': " ^ msg,
wenzelm@19482
   873
        map_filter (Option.map Thm.typ_of) cTs,
wenzelm@19482
   874
        map_filter (Option.map Thm.term_of) cts);
wenzelm@4285
   875
wenzelm@4285
   876
    fun inst_of (v, ct) =
wenzelm@16425
   877
      (Thm.cterm_of (Thm.theory_of_cterm ct) (Var v), ct)
wenzelm@4285
   878
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
   879
berghofe@15797
   880
    fun tyinst_of (v, cT) =
wenzelm@16425
   881
      (Thm.ctyp_of (Thm.theory_of_ctyp cT) (TVar v), cT)
berghofe@15797
   882
        handle TYPE (msg, _, _) => err msg;
berghofe@15797
   883
wenzelm@20298
   884
    fun zip_vars xs ys =
wenzelm@20298
   885
      zip_options xs ys handle Library.UnequalLengths =>
wenzelm@20298
   886
        err "more instantiations than variables in thm";
wenzelm@4285
   887
wenzelm@4285
   888
    (*instantiate types first!*)
wenzelm@4285
   889
    val thm' =
wenzelm@4285
   890
      if forall is_none cTs then thm
wenzelm@20298
   891
      else Thm.instantiate
wenzelm@22695
   892
        (map tyinst_of (zip_vars (rev (Thm.fold_terms Term.add_tvars thm [])) cTs), []) thm;
wenzelm@20579
   893
    val thm'' =
wenzelm@4285
   894
      if forall is_none cts then thm'
wenzelm@20298
   895
      else Thm.instantiate
wenzelm@22695
   896
        ([], map inst_of (zip_vars (rev (Thm.fold_terms Term.add_vars thm' [])) cts)) thm';
wenzelm@20298
   897
    in thm'' end;
wenzelm@4285
   898
wenzelm@4285
   899
berghofe@14081
   900
berghofe@14081
   901
(** renaming of bound variables **)
berghofe@14081
   902
berghofe@14081
   903
(* replace bound variables x_i in thm by y_i *)
berghofe@14081
   904
(* where vs = [(x_1, y_1), ..., (x_n, y_n)]  *)
berghofe@14081
   905
berghofe@14081
   906
fun rename_bvars [] thm = thm
berghofe@14081
   907
  | rename_bvars vs thm =
wenzelm@26627
   908
      let
wenzelm@26627
   909
        val cert = Thm.cterm_of (Thm.theory_of_thm thm);
wenzelm@26627
   910
        fun ren (Abs (x, T, t)) = Abs (AList.lookup (op =) vs x |> the_default x, T, ren t)
wenzelm@26627
   911
          | ren (t $ u) = ren t $ ren u
wenzelm@26627
   912
          | ren t = t;
wenzelm@26627
   913
      in equal_elim (reflexive (cert (ren (Thm.prop_of thm)))) thm end;
berghofe@14081
   914
berghofe@14081
   915
berghofe@14081
   916
(* renaming in left-to-right order *)
berghofe@14081
   917
berghofe@14081
   918
fun rename_bvars' xs thm =
berghofe@14081
   919
  let
wenzelm@26627
   920
    val cert = Thm.cterm_of (Thm.theory_of_thm thm);
wenzelm@26627
   921
    val prop = Thm.prop_of thm;
berghofe@14081
   922
    fun rename [] t = ([], t)
berghofe@14081
   923
      | rename (x' :: xs) (Abs (x, T, t)) =
berghofe@14081
   924
          let val (xs', t') = rename xs t
wenzelm@18929
   925
          in (xs', Abs (the_default x x', T, t')) end
berghofe@14081
   926
      | rename xs (t $ u) =
berghofe@14081
   927
          let
berghofe@14081
   928
            val (xs', t') = rename xs t;
berghofe@14081
   929
            val (xs'', u') = rename xs' u
berghofe@14081
   930
          in (xs'', t' $ u') end
berghofe@14081
   931
      | rename xs t = (xs, t);
berghofe@14081
   932
  in case rename xs prop of
wenzelm@26627
   933
      ([], prop') => equal_elim (reflexive (cert prop')) thm
berghofe@14081
   934
    | _ => error "More names than abstractions in theorem"
berghofe@14081
   935
  end;
berghofe@14081
   936
berghofe@14081
   937
wenzelm@11975
   938
wenzelm@18225
   939
(** multi_resolve **)
wenzelm@18225
   940
wenzelm@18225
   941
local
wenzelm@18225
   942
wenzelm@18225
   943
fun res th i rule =
wenzelm@18225
   944
  Thm.biresolution false [(false, th)] i rule handle THM _ => Seq.empty;
wenzelm@18225
   945
wenzelm@18225
   946
fun multi_res _ [] rule = Seq.single rule
wenzelm@18225
   947
  | multi_res i (th :: ths) rule = Seq.maps (res th i) (multi_res (i + 1) ths rule);
wenzelm@18225
   948
wenzelm@18225
   949
in
wenzelm@18225
   950
wenzelm@18225
   951
val multi_resolve = multi_res 1;
wenzelm@18225
   952
fun multi_resolves facts rules = Seq.maps (multi_resolve facts) (Seq.of_list rules);
wenzelm@18225
   953
wenzelm@18225
   954
end;
wenzelm@18225
   955
wenzelm@11975
   956
end;
wenzelm@5903
   957
wenzelm@5903
   958
structure BasicDrule: BASIC_DRULE = Drule;
wenzelm@5903
   959
open BasicDrule;