src/HOL/Ord.ML
author paulson
Thu Sep 23 13:06:31 1999 +0200 (1999-09-23)
changeset 7584 5be4bb8e4e3f
parent 7494 45905028bb1d
child 7617 e783adccf39e
permissions -rw-r--r--
tidied; added lemma restrict_to_left
clasohm@1465
     1
(*  Title:      HOL/Ord.ML
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Tobias Nipkow, Cambridge University Computer Laboratory
clasohm@923
     4
    Copyright   1993  University of Cambridge
clasohm@923
     5
clasohm@923
     6
The type class for ordered types
clasohm@923
     7
*)
clasohm@923
     8
paulson@5449
     9
(*Tell Blast_tac about overloading of < and <= to reduce the risk of
paulson@5449
    10
  its applying a rule for the wrong type*)
paulson@5449
    11
Blast.overloaded ("op <", domain_type); 
paulson@5449
    12
Blast.overloaded ("op <=", domain_type);
paulson@5449
    13
nipkow@2608
    14
(** mono **)
clasohm@923
    15
paulson@5316
    16
val [prem] = Goalw [mono_def]
clasohm@923
    17
    "[| !!A B. A <= B ==> f(A) <= f(B) |] ==> mono(f)";
clasohm@923
    18
by (REPEAT (ares_tac [allI, impI, prem] 1));
clasohm@923
    19
qed "monoI";
wenzelm@6956
    20
AddXIs [monoI];
clasohm@923
    21
paulson@5316
    22
Goalw [mono_def] "[| mono(f);  A <= B |] ==> f(A) <= f(B)";
paulson@5316
    23
by (Fast_tac 1);
clasohm@923
    24
qed "monoD";
wenzelm@6956
    25
AddXDs [monoD];
clasohm@923
    26
nipkow@2608
    27
nipkow@2608
    28
section "Orders";
nipkow@2608
    29
paulson@5538
    30
(** Reflexivity **)
paulson@5538
    31
nipkow@6115
    32
AddIffs [order_refl];
nipkow@2608
    33
paulson@4600
    34
(*This form is useful with the classical reasoner*)
wenzelm@5069
    35
Goal "!!x::'a::order. x = y ==> x <= y";
paulson@4600
    36
by (etac ssubst 1);
paulson@4600
    37
by (rtac order_refl 1);
paulson@4600
    38
qed "order_eq_refl";
paulson@4600
    39
wenzelm@5069
    40
Goal "~ x < (x::'a::order)";
wenzelm@4089
    41
by (simp_tac (simpset() addsimps [order_less_le]) 1);
nipkow@2608
    42
qed "order_less_irrefl";
paulson@5449
    43
Addsimps [order_less_irrefl];
nipkow@2608
    44
wenzelm@5069
    45
Goal "(x::'a::order) <= y = (x < y | x = y)";
wenzelm@4089
    46
by (simp_tac (simpset() addsimps [order_less_le]) 1);
paulson@5449
    47
   (*NOT suitable for AddIffs, since it can cause PROOF FAILED*)
paulson@5449
    48
by (blast_tac (claset() addSIs [order_refl]) 1);
nipkow@2608
    49
qed "order_le_less";
nipkow@2608
    50
paulson@5538
    51
(** Asymmetry **)
paulson@5538
    52
paulson@5538
    53
Goal "(x::'a::order) < y ==> ~ (y<x)";
paulson@5538
    54
by (asm_full_simp_tac (simpset() addsimps [order_less_le, order_antisym]) 1);
paulson@5538
    55
qed "order_less_not_sym";
paulson@5538
    56
paulson@5538
    57
(* [| n<m;  ~P ==> m<n |] ==> P *)
paulson@5538
    58
bind_thm ("order_less_asym", order_less_not_sym RS swap);
paulson@5538
    59
nipkow@6073
    60
(* Transitivity *)
nipkow@6073
    61
nipkow@6073
    62
Goal "!!x::'a::order. [| x < y; y < z |] ==> x < z";
nipkow@6073
    63
by (asm_full_simp_tac (simpset() addsimps [order_less_le]) 1);
nipkow@6073
    64
by (blast_tac (claset() addIs [order_trans,order_antisym]) 1);
nipkow@6073
    65
qed "order_less_trans";
nipkow@6073
    66
wenzelm@6780
    67
Goal "!!x::'a::order. [| x <= y; y < z |] ==> x < z";
wenzelm@6780
    68
by (asm_full_simp_tac (simpset() addsimps [order_less_le]) 1);
wenzelm@6780
    69
by (blast_tac (claset() addIs [order_trans,order_antisym]) 1);
wenzelm@6780
    70
qed "order_le_less_trans";
wenzelm@6780
    71
wenzelm@6780
    72
Goal "!!x::'a::order. [| x < y; y <= z |] ==> x < z";
wenzelm@6780
    73
by (asm_full_simp_tac (simpset() addsimps [order_less_le]) 1);
wenzelm@6780
    74
by (blast_tac (claset() addIs [order_trans,order_antisym]) 1);
wenzelm@6780
    75
qed "order_less_le_trans";
wenzelm@6780
    76
paulson@5538
    77
paulson@5538
    78
(** Useful for simplification, but too risky to include by default. **)
paulson@5538
    79
paulson@5538
    80
Goal "(x::'a::order) < y ==>  (~ y < x) = True";
paulson@5538
    81
by (blast_tac (claset() addEs [order_less_asym]) 1);
paulson@5538
    82
qed "order_less_imp_not_less";
paulson@5538
    83
paulson@5538
    84
Goal "(x::'a::order) < y ==>  (y < x --> P) = True";
paulson@5538
    85
by (blast_tac (claset() addEs [order_less_asym]) 1);
paulson@5538
    86
qed "order_less_imp_triv";
paulson@5538
    87
paulson@5538
    88
Goal "(x::'a::order) < y ==>  (x = y) = False";
paulson@5538
    89
by Auto_tac;
paulson@5538
    90
qed "order_less_imp_not_eq";
paulson@5538
    91
paulson@5538
    92
Goal "(x::'a::order) < y ==>  (y = x) = False";
paulson@5538
    93
by Auto_tac;
paulson@5538
    94
qed "order_less_imp_not_eq2";
paulson@5538
    95
paulson@5538
    96
nipkow@2608
    97
(** min **)
nipkow@2608
    98
paulson@5143
    99
val prems = Goalw [min_def] "(!!x. least <= x) ==> min least x = least";
paulson@5143
   100
by (simp_tac (simpset() addsimps prems) 1);
nipkow@2608
   101
qed "min_leastL";
nipkow@2608
   102
paulson@5316
   103
val prems = Goalw [min_def]
nipkow@2608
   104
 "(!!x::'a::order. least <= x) ==> min x least = least";
paulson@2935
   105
by (cut_facts_tac prems 1);
paulson@2935
   106
by (Asm_simp_tac 1);
wenzelm@4089
   107
by (blast_tac (claset() addIs [order_antisym]) 1);
nipkow@2608
   108
qed "min_leastR";
nipkow@4640
   109
nipkow@4640
   110
nipkow@4640
   111
section "Linear/Total Orders";
nipkow@4640
   112
wenzelm@5069
   113
Goal "!!x::'a::linorder. x<y | x=y | y<x";
nipkow@4640
   114
by (simp_tac (simpset() addsimps [order_less_le]) 1);
wenzelm@5132
   115
by (cut_facts_tac [linorder_linear] 1);
nipkow@4640
   116
by (Blast_tac 1);
nipkow@4640
   117
qed "linorder_less_linear";
nipkow@4640
   118
nipkow@6128
   119
Goal "!!x::'a::linorder. (~ x < y) = (y <= x)";
nipkow@6128
   120
by (simp_tac (simpset() addsimps [order_less_le]) 1);
nipkow@6128
   121
by (cut_facts_tac [linorder_linear] 1);
nipkow@6128
   122
by (blast_tac (claset() addIs [order_antisym]) 1);
nipkow@6128
   123
qed "linorder_not_less";
nipkow@6128
   124
nipkow@6128
   125
Goal "!!x::'a::linorder. (~ x <= y) = (y < x)";
nipkow@6128
   126
by (simp_tac (simpset() addsimps [order_less_le]) 1);
nipkow@6128
   127
by (cut_facts_tac [linorder_linear] 1);
nipkow@6128
   128
by (blast_tac (claset() addIs [order_antisym]) 1);
nipkow@6128
   129
qed "linorder_not_le";
nipkow@6128
   130
nipkow@6128
   131
Goal "!!x::'a::linorder. (x ~= y) = (x<y | y<x)";
nipkow@6128
   132
by (cut_inst_tac [("x","x"),("y","y")] linorder_less_linear 1);
nipkow@6128
   133
by Auto_tac;
nipkow@6128
   134
qed "linorder_neq_iff";
nipkow@6128
   135
nipkow@6128
   136
(* eliminates ~= in premises *)
nipkow@6128
   137
bind_thm("linorder_neqE", linorder_neq_iff RS iffD1 RS disjE);
nipkow@6128
   138
nipkow@6128
   139
(** min & max **)
nipkow@6128
   140
nipkow@6433
   141
Goalw [min_def] "min (x::'a::order) x = x";
paulson@6814
   142
by (Simp_tac 1);
nipkow@6433
   143
qed "min_same";
nipkow@6433
   144
Addsimps [min_same];
nipkow@6433
   145
nipkow@6433
   146
Goalw [max_def] "max (x::'a::order) x = x";
paulson@6814
   147
by (Simp_tac 1);
nipkow@6433
   148
qed "max_same";
nipkow@6433
   149
Addsimps [max_same];
nipkow@6433
   150
wenzelm@5069
   151
Goalw [max_def] "!!z::'a::linorder. (z <= max x y) = (z <= x | z <= y)";
nipkow@4686
   152
by (Simp_tac 1);
wenzelm@5132
   153
by (cut_facts_tac [linorder_linear] 1);
nipkow@4640
   154
by (blast_tac (claset() addIs [order_trans]) 1);
nipkow@4640
   155
qed "le_max_iff_disj";
nipkow@4640
   156
oheimb@7494
   157
qed_goal "le_maxI1" Ord.thy "(x::'a::linorder) <= max x y" 
oheimb@7494
   158
	(K [rtac (le_max_iff_disj RS iffD2) 1, rtac (order_refl RS disjI1) 1]);
oheimb@7494
   159
qed_goal "le_maxI2" Ord.thy "(y::'a::linorder) <= max x y" 
oheimb@7494
   160
	(K [rtac (le_max_iff_disj RS iffD2) 1, rtac (order_refl RS disjI2) 1]);
oheimb@7494
   161
AddSIs[le_maxI1, le_maxI2];
oheimb@7494
   162
nipkow@6073
   163
Goalw [max_def] "!!z::'a::linorder. (z < max x y) = (z < x | z < y)";
nipkow@6073
   164
by (simp_tac (simpset() addsimps [order_le_less]) 1);
nipkow@6073
   165
by (cut_facts_tac [linorder_less_linear] 1);
nipkow@6073
   166
by (blast_tac (claset() addIs [order_less_trans]) 1);
nipkow@6073
   167
qed "less_max_iff_disj";
nipkow@6073
   168
wenzelm@5069
   169
Goalw [max_def] "!!z::'a::linorder. (max x y <= z) = (x <= z & y <= z)";
nipkow@4686
   170
by (Simp_tac 1);
wenzelm@5132
   171
by (cut_facts_tac [linorder_linear] 1);
nipkow@4640
   172
by (blast_tac (claset() addIs [order_trans]) 1);
nipkow@4640
   173
qed "max_le_iff_conj";
nipkow@5673
   174
Addsimps [max_le_iff_conj];
nipkow@4640
   175
nipkow@6433
   176
Goalw [max_def] "!!z::'a::linorder. (max x y < z) = (x < z & y < z)";
nipkow@6433
   177
by (simp_tac (simpset() addsimps [order_le_less]) 1);
nipkow@6433
   178
by (cut_facts_tac [linorder_less_linear] 1);
nipkow@6433
   179
by (blast_tac (claset() addIs [order_less_trans]) 1);
nipkow@6433
   180
qed "max_less_iff_conj";
nipkow@6433
   181
Addsimps [max_less_iff_conj];
nipkow@6433
   182
wenzelm@5069
   183
Goalw [min_def] "!!z::'a::linorder. (z <= min x y) = (z <= x & z <= y)";
nipkow@4686
   184
by (Simp_tac 1);
wenzelm@5132
   185
by (cut_facts_tac [linorder_linear] 1);
nipkow@4640
   186
by (blast_tac (claset() addIs [order_trans]) 1);
nipkow@4640
   187
qed "le_min_iff_conj";
nipkow@5673
   188
Addsimps [le_min_iff_conj];
nipkow@5673
   189
(* AddIffs screws up a blast_tac in MiniML *)
nipkow@4640
   190
nipkow@6433
   191
Goalw [min_def] "!!z::'a::linorder. (z < min x y) = (z < x & z < y)";
nipkow@6433
   192
by (simp_tac (simpset() addsimps [order_le_less]) 1);
nipkow@6433
   193
by (cut_facts_tac [linorder_less_linear] 1);
nipkow@6433
   194
by (blast_tac (claset() addIs [order_less_trans]) 1);
nipkow@6433
   195
qed "min_less_iff_conj";
nipkow@6433
   196
Addsimps [min_less_iff_conj];
nipkow@6433
   197
wenzelm@5069
   198
Goalw [min_def] "!!z::'a::linorder. (min x y <= z) = (x <= z | y <= z)";
nipkow@4686
   199
by (Simp_tac 1);
wenzelm@5132
   200
by (cut_facts_tac [linorder_linear] 1);
nipkow@4640
   201
by (blast_tac (claset() addIs [order_trans]) 1);
nipkow@4640
   202
qed "min_le_iff_disj";
nipkow@6157
   203
nipkow@6157
   204
Goalw [min_def]
nipkow@6157
   205
 "P(min (i::'a::linorder) j) = ((i <= j --> P(i)) & (~ i <= j --> P(j)))";
paulson@6301
   206
by (Simp_tac 1);
nipkow@6157
   207
qed "split_min";
nipkow@6157
   208
nipkow@6157
   209
Goalw [max_def]
nipkow@6157
   210
 "P(max (i::'a::linorder) j) = ((i <= j --> P(j)) & (~ i <= j --> P(i)))";
paulson@6301
   211
by (Simp_tac 1);
nipkow@6157
   212
qed "split_max";