src/HOL/Complete_Lattices.thy
author hoelzl
Tue Nov 05 09:44:57 2013 +0100 (2013-11-05)
changeset 54257 5c7a3b6b05a9
parent 54147 97a8ff4e4ac9
child 54259 71c701dc5bf9
permissions -rw-r--r--
generalize SUP and INF to the syntactic type classes Sup and Inf
haftmann@44103
     1
 (*  Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel; Florian Haftmann, TU Muenchen *)
wenzelm@11979
     2
haftmann@44104
     3
header {* Complete lattices *}
haftmann@32077
     4
haftmann@44860
     5
theory Complete_Lattices
haftmann@32139
     6
imports Set
haftmann@32139
     7
begin
haftmann@32077
     8
haftmann@32077
     9
notation
haftmann@34007
    10
  less_eq (infix "\<sqsubseteq>" 50) and
haftmann@46691
    11
  less (infix "\<sqsubset>" 50)
haftmann@32077
    12
haftmann@32139
    13
haftmann@32879
    14
subsection {* Syntactic infimum and supremum operations *}
haftmann@32879
    15
haftmann@32879
    16
class Inf =
haftmann@32879
    17
  fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
hoelzl@54257
    18
begin
hoelzl@54257
    19
hoelzl@54257
    20
definition INFI :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
hoelzl@54257
    21
  INF_def: "INFI A f = \<Sqinter>(f ` A)"
hoelzl@54257
    22
hoelzl@54257
    23
end
haftmann@32879
    24
haftmann@32879
    25
class Sup =
haftmann@32879
    26
  fixes Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
hoelzl@54257
    27
begin
haftmann@32879
    28
hoelzl@54257
    29
definition SUPR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
hoelzl@54257
    30
  SUP_def: "SUPR A f = \<Squnion>(f ` A)"
hoelzl@54257
    31
hoelzl@54257
    32
end
hoelzl@54257
    33
hoelzl@54257
    34
text {*
hoelzl@54257
    35
  Note: must use names @{const INFI} and @{const SUPR} here instead of
hoelzl@54257
    36
  @{text INF} and @{text SUP} to allow the following syntax coexist
hoelzl@54257
    37
  with the plain constant names.
hoelzl@54257
    38
*}
hoelzl@54257
    39
hoelzl@54257
    40
syntax
hoelzl@54257
    41
  "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3INF _./ _)" [0, 10] 10)
hoelzl@54257
    42
  "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3INF _:_./ _)" [0, 0, 10] 10)
hoelzl@54257
    43
  "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3SUP _./ _)" [0, 10] 10)
hoelzl@54257
    44
  "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3SUP _:_./ _)" [0, 0, 10] 10)
hoelzl@54257
    45
hoelzl@54257
    46
syntax (xsymbols)
hoelzl@54257
    47
  "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Sqinter>_./ _)" [0, 10] 10)
hoelzl@54257
    48
  "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
hoelzl@54257
    49
  "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Squnion>_./ _)" [0, 10] 10)
hoelzl@54257
    50
  "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
hoelzl@54257
    51
hoelzl@54257
    52
translations
hoelzl@54257
    53
  "INF x y. B"   == "INF x. INF y. B"
hoelzl@54257
    54
  "INF x. B"     == "CONST INFI CONST UNIV (%x. B)"
hoelzl@54257
    55
  "INF x. B"     == "INF x:CONST UNIV. B"
hoelzl@54257
    56
  "INF x:A. B"   == "CONST INFI A (%x. B)"
hoelzl@54257
    57
  "SUP x y. B"   == "SUP x. SUP y. B"
hoelzl@54257
    58
  "SUP x. B"     == "CONST SUPR CONST UNIV (%x. B)"
hoelzl@54257
    59
  "SUP x. B"     == "SUP x:CONST UNIV. B"
hoelzl@54257
    60
  "SUP x:A. B"   == "CONST SUPR A (%x. B)"
hoelzl@54257
    61
hoelzl@54257
    62
print_translation {*
hoelzl@54257
    63
  [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INFI} @{syntax_const "_INF"},
hoelzl@54257
    64
    Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax SUPR} @{syntax_const "_SUP"}]
hoelzl@54257
    65
*} -- {* to avoid eta-contraction of body *}
haftmann@46691
    66
haftmann@32139
    67
subsection {* Abstract complete lattices *}
haftmann@32139
    68
haftmann@52729
    69
text {* A complete lattice always has a bottom and a top,
haftmann@52729
    70
so we include them into the following type class,
haftmann@52729
    71
along with assumptions that define bottom and top
haftmann@52729
    72
in terms of infimum and supremum. *}
haftmann@52729
    73
haftmann@52729
    74
class complete_lattice = lattice + Inf + Sup + bot + top +
haftmann@32077
    75
  assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> x"
haftmann@32077
    76
     and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x) \<Longrightarrow> z \<sqsubseteq> \<Sqinter>A"
haftmann@32077
    77
  assumes Sup_upper: "x \<in> A \<Longrightarrow> x \<sqsubseteq> \<Squnion>A"
haftmann@32077
    78
     and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<sqsubseteq> z) \<Longrightarrow> \<Squnion>A \<sqsubseteq> z"
haftmann@52729
    79
  assumes Inf_empty [simp]: "\<Sqinter>{} = \<top>"
haftmann@52729
    80
  assumes Sup_empty [simp]: "\<Squnion>{} = \<bottom>"
haftmann@32077
    81
begin
haftmann@32077
    82
haftmann@52729
    83
subclass bounded_lattice
haftmann@52729
    84
proof
haftmann@52729
    85
  fix a
haftmann@52729
    86
  show "\<bottom> \<le> a" by (auto intro: Sup_least simp only: Sup_empty [symmetric])
haftmann@52729
    87
  show "a \<le> \<top>" by (auto intro: Inf_greatest simp only: Inf_empty [symmetric])
haftmann@52729
    88
qed
haftmann@52729
    89
haftmann@32678
    90
lemma dual_complete_lattice:
krauss@44845
    91
  "class.complete_lattice Sup Inf sup (op \<ge>) (op >) inf \<top> \<bottom>"
haftmann@52729
    92
  by (auto intro!: class.complete_lattice.intro dual_lattice)
haftmann@52729
    93
    (unfold_locales, (fact Inf_empty Sup_empty
haftmann@34007
    94
        Sup_upper Sup_least Inf_lower Inf_greatest)+)
haftmann@32678
    95
haftmann@44040
    96
end
haftmann@44040
    97
haftmann@44040
    98
context complete_lattice
haftmann@44040
    99
begin
haftmann@32077
   100
blanchet@54147
   101
lemma INF_foundation_dual:
hoelzl@54257
   102
  "Sup.SUPR Inf = INFI"
hoelzl@54257
   103
  by (simp add: fun_eq_iff INF_def Sup.SUP_def)
haftmann@44040
   104
blanchet@54147
   105
lemma SUP_foundation_dual:
hoelzl@54257
   106
  "Inf.INFI Sup = SUPR" by (simp add: fun_eq_iff SUP_def Inf.INF_def)
haftmann@44040
   107
hoelzl@51328
   108
lemma Sup_eqI:
hoelzl@51328
   109
  "(\<And>y. y \<in> A \<Longrightarrow> y \<le> x) \<Longrightarrow> (\<And>y. (\<And>z. z \<in> A \<Longrightarrow> z \<le> y) \<Longrightarrow> x \<le> y) \<Longrightarrow> \<Squnion>A = x"
hoelzl@51328
   110
  by (blast intro: antisym Sup_least Sup_upper)
hoelzl@51328
   111
hoelzl@51328
   112
lemma Inf_eqI:
hoelzl@51328
   113
  "(\<And>i. i \<in> A \<Longrightarrow> x \<le> i) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> y \<le> i) \<Longrightarrow> y \<le> x) \<Longrightarrow> \<Sqinter>A = x"
hoelzl@51328
   114
  by (blast intro: antisym Inf_greatest Inf_lower)
hoelzl@51328
   115
hoelzl@51328
   116
lemma SUP_eqI:
hoelzl@51328
   117
  "(\<And>i. i \<in> A \<Longrightarrow> f i \<le> x) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> f i \<le> y) \<Longrightarrow> x \<le> y) \<Longrightarrow> (\<Squnion>i\<in>A. f i) = x"
hoelzl@51328
   118
  unfolding SUP_def by (rule Sup_eqI) auto
hoelzl@51328
   119
hoelzl@51328
   120
lemma INF_eqI:
hoelzl@51328
   121
  "(\<And>i. i \<in> A \<Longrightarrow> x \<le> f i) \<Longrightarrow> (\<And>y. (\<And>i. i \<in> A \<Longrightarrow> f i \<ge> y) \<Longrightarrow> x \<ge> y) \<Longrightarrow> (\<Sqinter>i\<in>A. f i) = x"
hoelzl@51328
   122
  unfolding INF_def by (rule Inf_eqI) auto
hoelzl@51328
   123
haftmann@44103
   124
lemma INF_lower: "i \<in> A \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<sqsubseteq> f i"
haftmann@44040
   125
  by (auto simp add: INF_def intro: Inf_lower)
haftmann@44040
   126
haftmann@44103
   127
lemma INF_greatest: "(\<And>i. i \<in> A \<Longrightarrow> u \<sqsubseteq> f i) \<Longrightarrow> u \<sqsubseteq> (\<Sqinter>i\<in>A. f i)"
haftmann@44103
   128
  by (auto simp add: INF_def intro: Inf_greatest)
haftmann@44103
   129
haftmann@44103
   130
lemma SUP_upper: "i \<in> A \<Longrightarrow> f i \<sqsubseteq> (\<Squnion>i\<in>A. f i)"
haftmann@44040
   131
  by (auto simp add: SUP_def intro: Sup_upper)
haftmann@44040
   132
haftmann@44103
   133
lemma SUP_least: "(\<And>i. i \<in> A \<Longrightarrow> f i \<sqsubseteq> u) \<Longrightarrow> (\<Squnion>i\<in>A. f i) \<sqsubseteq> u"
haftmann@44040
   134
  by (auto simp add: SUP_def intro: Sup_least)
haftmann@44040
   135
haftmann@44040
   136
lemma Inf_lower2: "u \<in> A \<Longrightarrow> u \<sqsubseteq> v \<Longrightarrow> \<Sqinter>A \<sqsubseteq> v"
haftmann@44040
   137
  using Inf_lower [of u A] by auto
haftmann@44040
   138
haftmann@44103
   139
lemma INF_lower2: "i \<in> A \<Longrightarrow> f i \<sqsubseteq> u \<Longrightarrow> (\<Sqinter>i\<in>A. f i) \<sqsubseteq> u"
haftmann@44103
   140
  using INF_lower [of i A f] by auto
haftmann@44040
   141
haftmann@44040
   142
lemma Sup_upper2: "u \<in> A \<Longrightarrow> v \<sqsubseteq> u \<Longrightarrow> v \<sqsubseteq> \<Squnion>A"
haftmann@44040
   143
  using Sup_upper [of u A] by auto
haftmann@44040
   144
haftmann@44103
   145
lemma SUP_upper2: "i \<in> A \<Longrightarrow> u \<sqsubseteq> f i \<Longrightarrow> u \<sqsubseteq> (\<Squnion>i\<in>A. f i)"
haftmann@44103
   146
  using SUP_upper [of i A f] by auto
haftmann@44040
   147
noschinl@44918
   148
lemma le_Inf_iff: "b \<sqsubseteq> \<Sqinter>A \<longleftrightarrow> (\<forall>a\<in>A. b \<sqsubseteq> a)"
haftmann@44040
   149
  by (auto intro: Inf_greatest dest: Inf_lower)
haftmann@44040
   150
noschinl@44918
   151
lemma le_INF_iff: "u \<sqsubseteq> (\<Sqinter>i\<in>A. f i) \<longleftrightarrow> (\<forall>i\<in>A. u \<sqsubseteq> f i)"
haftmann@44040
   152
  by (auto simp add: INF_def le_Inf_iff)
haftmann@44040
   153
noschinl@44918
   154
lemma Sup_le_iff: "\<Squnion>A \<sqsubseteq> b \<longleftrightarrow> (\<forall>a\<in>A. a \<sqsubseteq> b)"
haftmann@44040
   155
  by (auto intro: Sup_least dest: Sup_upper)
haftmann@44040
   156
noschinl@44918
   157
lemma SUP_le_iff: "(\<Squnion>i\<in>A. f i) \<sqsubseteq> u \<longleftrightarrow> (\<forall>i\<in>A. f i \<sqsubseteq> u)"
haftmann@44040
   158
  by (auto simp add: SUP_def Sup_le_iff)
haftmann@32077
   159
haftmann@52729
   160
lemma Inf_insert [simp]: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A"
haftmann@52729
   161
  by (auto intro: le_infI le_infI1 le_infI2 antisym Inf_greatest Inf_lower)
haftmann@52729
   162
haftmann@52729
   163
lemma INF_insert: "(\<Sqinter>x\<in>insert a A. f x) = f a \<sqinter> INFI A f"
haftmann@52729
   164
  by (simp add: INF_def)
haftmann@52729
   165
haftmann@52729
   166
lemma Sup_insert [simp]: "\<Squnion>insert a A = a \<squnion> \<Squnion>A"
haftmann@52729
   167
  by (auto intro: le_supI le_supI1 le_supI2 antisym Sup_least Sup_upper)
haftmann@52729
   168
haftmann@52729
   169
lemma SUP_insert: "(\<Squnion>x\<in>insert a A. f x) = f a \<squnion> SUPR A f"
haftmann@52729
   170
  by (simp add: SUP_def)
haftmann@32077
   171
huffman@44067
   172
lemma INF_empty [simp]: "(\<Sqinter>x\<in>{}. f x) = \<top>"
haftmann@44040
   173
  by (simp add: INF_def)
haftmann@44040
   174
huffman@44067
   175
lemma SUP_empty [simp]: "(\<Squnion>x\<in>{}. f x) = \<bottom>"
haftmann@44040
   176
  by (simp add: SUP_def)
haftmann@44040
   177
haftmann@41080
   178
lemma Inf_UNIV [simp]:
haftmann@41080
   179
  "\<Sqinter>UNIV = \<bottom>"
haftmann@44040
   180
  by (auto intro!: antisym Inf_lower)
haftmann@41080
   181
haftmann@41080
   182
lemma Sup_UNIV [simp]:
haftmann@41080
   183
  "\<Squnion>UNIV = \<top>"
haftmann@44040
   184
  by (auto intro!: antisym Sup_upper)
haftmann@41080
   185
noschinl@44918
   186
lemma INF_image [simp]: "(\<Sqinter>x\<in>f`A. g x) = (\<Sqinter>x\<in>A. g (f x))"
huffman@44068
   187
  by (simp add: INF_def image_image)
huffman@44068
   188
noschinl@44918
   189
lemma SUP_image [simp]: "(\<Squnion>x\<in>f`A. g x) = (\<Squnion>x\<in>A. g (f x))"
huffman@44068
   190
  by (simp add: SUP_def image_image)
huffman@44068
   191
haftmann@44040
   192
lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<sqsubseteq> a}"
haftmann@44040
   193
  by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
haftmann@44040
   194
haftmann@44040
   195
lemma Sup_Inf:  "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<sqsubseteq> b}"
haftmann@44040
   196
  by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
haftmann@44040
   197
haftmann@43899
   198
lemma Inf_superset_mono: "B \<subseteq> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> \<Sqinter>B"
haftmann@43899
   199
  by (auto intro: Inf_greatest Inf_lower)
haftmann@43899
   200
haftmann@43899
   201
lemma Sup_subset_mono: "A \<subseteq> B \<Longrightarrow> \<Squnion>A \<sqsubseteq> \<Squnion>B"
haftmann@43899
   202
  by (auto intro: Sup_least Sup_upper)
haftmann@43899
   203
haftmann@44041
   204
lemma INF_cong:
haftmann@44041
   205
  "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Sqinter>x\<in>A. C x) = (\<Sqinter>x\<in>B. D x)"
haftmann@44041
   206
  by (simp add: INF_def image_def)
haftmann@44041
   207
haftmann@44041
   208
lemma SUP_cong:
haftmann@44041
   209
  "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Squnion>x\<in>A. C x) = (\<Squnion>x\<in>B. D x)"
haftmann@44041
   210
  by (simp add: SUP_def image_def)
haftmann@44041
   211
hoelzl@38705
   212
lemma Inf_mono:
hoelzl@41971
   213
  assumes "\<And>b. b \<in> B \<Longrightarrow> \<exists>a\<in>A. a \<sqsubseteq> b"
haftmann@43741
   214
  shows "\<Sqinter>A \<sqsubseteq> \<Sqinter>B"
hoelzl@38705
   215
proof (rule Inf_greatest)
hoelzl@38705
   216
  fix b assume "b \<in> B"
hoelzl@41971
   217
  with assms obtain a where "a \<in> A" and "a \<sqsubseteq> b" by blast
haftmann@43741
   218
  from `a \<in> A` have "\<Sqinter>A \<sqsubseteq> a" by (rule Inf_lower)
haftmann@43741
   219
  with `a \<sqsubseteq> b` show "\<Sqinter>A \<sqsubseteq> b" by auto
hoelzl@38705
   220
qed
hoelzl@38705
   221
haftmann@44041
   222
lemma INF_mono:
haftmann@44041
   223
  "(\<And>m. m \<in> B \<Longrightarrow> \<exists>n\<in>A. f n \<sqsubseteq> g m) \<Longrightarrow> (\<Sqinter>n\<in>A. f n) \<sqsubseteq> (\<Sqinter>n\<in>B. g n)"
noschinl@44918
   224
  unfolding INF_def by (rule Inf_mono) fast
haftmann@44041
   225
haftmann@41082
   226
lemma Sup_mono:
hoelzl@41971
   227
  assumes "\<And>a. a \<in> A \<Longrightarrow> \<exists>b\<in>B. a \<sqsubseteq> b"
haftmann@43741
   228
  shows "\<Squnion>A \<sqsubseteq> \<Squnion>B"
haftmann@41082
   229
proof (rule Sup_least)
haftmann@41082
   230
  fix a assume "a \<in> A"
hoelzl@41971
   231
  with assms obtain b where "b \<in> B" and "a \<sqsubseteq> b" by blast
haftmann@43741
   232
  from `b \<in> B` have "b \<sqsubseteq> \<Squnion>B" by (rule Sup_upper)
haftmann@43741
   233
  with `a \<sqsubseteq> b` show "a \<sqsubseteq> \<Squnion>B" by auto
haftmann@41082
   234
qed
haftmann@32077
   235
haftmann@44041
   236
lemma SUP_mono:
haftmann@44041
   237
  "(\<And>n. n \<in> A \<Longrightarrow> \<exists>m\<in>B. f n \<sqsubseteq> g m) \<Longrightarrow> (\<Squnion>n\<in>A. f n) \<sqsubseteq> (\<Squnion>n\<in>B. g n)"
noschinl@44918
   238
  unfolding SUP_def by (rule Sup_mono) fast
haftmann@44041
   239
haftmann@44041
   240
lemma INF_superset_mono:
haftmann@44041
   241
  "B \<subseteq> A \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> f x \<sqsubseteq> g x) \<Longrightarrow> (\<Sqinter>x\<in>A. f x) \<sqsubseteq> (\<Sqinter>x\<in>B. g x)"
haftmann@44041
   242
  -- {* The last inclusion is POSITIVE! *}
haftmann@44041
   243
  by (blast intro: INF_mono dest: subsetD)
haftmann@44041
   244
haftmann@44041
   245
lemma SUP_subset_mono:
haftmann@44041
   246
  "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<sqsubseteq> g x) \<Longrightarrow> (\<Squnion>x\<in>A. f x) \<sqsubseteq> (\<Squnion>x\<in>B. g x)"
haftmann@44041
   247
  by (blast intro: SUP_mono dest: subsetD)
haftmann@44041
   248
haftmann@43868
   249
lemma Inf_less_eq:
haftmann@43868
   250
  assumes "\<And>v. v \<in> A \<Longrightarrow> v \<sqsubseteq> u"
haftmann@43868
   251
    and "A \<noteq> {}"
haftmann@43868
   252
  shows "\<Sqinter>A \<sqsubseteq> u"
haftmann@43868
   253
proof -
haftmann@43868
   254
  from `A \<noteq> {}` obtain v where "v \<in> A" by blast
wenzelm@53374
   255
  moreover from `v \<in> A` assms(1) have "v \<sqsubseteq> u" by blast
haftmann@43868
   256
  ultimately show ?thesis by (rule Inf_lower2)
haftmann@43868
   257
qed
haftmann@43868
   258
haftmann@43868
   259
lemma less_eq_Sup:
haftmann@43868
   260
  assumes "\<And>v. v \<in> A \<Longrightarrow> u \<sqsubseteq> v"
haftmann@43868
   261
    and "A \<noteq> {}"
haftmann@43868
   262
  shows "u \<sqsubseteq> \<Squnion>A"
haftmann@43868
   263
proof -
haftmann@43868
   264
  from `A \<noteq> {}` obtain v where "v \<in> A" by blast
wenzelm@53374
   265
  moreover from `v \<in> A` assms(1) have "u \<sqsubseteq> v" by blast
haftmann@43868
   266
  ultimately show ?thesis by (rule Sup_upper2)
haftmann@43868
   267
qed
haftmann@43868
   268
hoelzl@51328
   269
lemma SUPR_eq:
hoelzl@51328
   270
  assumes "\<And>i. i \<in> A \<Longrightarrow> \<exists>j\<in>B. f i \<le> g j"
hoelzl@51328
   271
  assumes "\<And>j. j \<in> B \<Longrightarrow> \<exists>i\<in>A. g j \<le> f i"
hoelzl@51328
   272
  shows "(SUP i:A. f i) = (SUP j:B. g j)"
hoelzl@51328
   273
  by (intro antisym SUP_least) (blast intro: SUP_upper2 dest: assms)+
hoelzl@51328
   274
hoelzl@51328
   275
lemma INFI_eq:
hoelzl@51328
   276
  assumes "\<And>i. i \<in> A \<Longrightarrow> \<exists>j\<in>B. f i \<ge> g j"
hoelzl@51328
   277
  assumes "\<And>j. j \<in> B \<Longrightarrow> \<exists>i\<in>A. g j \<ge> f i"
hoelzl@51328
   278
  shows "(INF i:A. f i) = (INF j:B. g j)"
hoelzl@51328
   279
  by (intro antisym INF_greatest) (blast intro: INF_lower2 dest: assms)+
hoelzl@51328
   280
haftmann@43899
   281
lemma less_eq_Inf_inter: "\<Sqinter>A \<squnion> \<Sqinter>B \<sqsubseteq> \<Sqinter>(A \<inter> B)"
haftmann@43868
   282
  by (auto intro: Inf_greatest Inf_lower)
haftmann@43868
   283
haftmann@43899
   284
lemma Sup_inter_less_eq: "\<Squnion>(A \<inter> B) \<sqsubseteq> \<Squnion>A \<sqinter> \<Squnion>B "
haftmann@43868
   285
  by (auto intro: Sup_least Sup_upper)
haftmann@43868
   286
haftmann@43868
   287
lemma Inf_union_distrib: "\<Sqinter>(A \<union> B) = \<Sqinter>A \<sqinter> \<Sqinter>B"
haftmann@43868
   288
  by (rule antisym) (auto intro: Inf_greatest Inf_lower le_infI1 le_infI2)
haftmann@43868
   289
haftmann@44041
   290
lemma INF_union:
haftmann@44041
   291
  "(\<Sqinter>i \<in> A \<union> B. M i) = (\<Sqinter>i \<in> A. M i) \<sqinter> (\<Sqinter>i\<in>B. M i)"
haftmann@44103
   292
  by (auto intro!: antisym INF_mono intro: le_infI1 le_infI2 INF_greatest INF_lower)
haftmann@44041
   293
haftmann@43868
   294
lemma Sup_union_distrib: "\<Squnion>(A \<union> B) = \<Squnion>A \<squnion> \<Squnion>B"
haftmann@43868
   295
  by (rule antisym) (auto intro: Sup_least Sup_upper le_supI1 le_supI2)
haftmann@43868
   296
haftmann@44041
   297
lemma SUP_union:
haftmann@44041
   298
  "(\<Squnion>i \<in> A \<union> B. M i) = (\<Squnion>i \<in> A. M i) \<squnion> (\<Squnion>i\<in>B. M i)"
haftmann@44103
   299
  by (auto intro!: antisym SUP_mono intro: le_supI1 le_supI2 SUP_least SUP_upper)
haftmann@44041
   300
haftmann@44041
   301
lemma INF_inf_distrib: "(\<Sqinter>a\<in>A. f a) \<sqinter> (\<Sqinter>a\<in>A. g a) = (\<Sqinter>a\<in>A. f a \<sqinter> g a)"
haftmann@44103
   302
  by (rule antisym) (rule INF_greatest, auto intro: le_infI1 le_infI2 INF_lower INF_mono)
haftmann@44041
   303
noschinl@44918
   304
lemma SUP_sup_distrib: "(\<Squnion>a\<in>A. f a) \<squnion> (\<Squnion>a\<in>A. g a) = (\<Squnion>a\<in>A. f a \<squnion> g a)" (is "?L = ?R")
noschinl@44918
   305
proof (rule antisym)
noschinl@44918
   306
  show "?L \<le> ?R" by (auto intro: le_supI1 le_supI2 SUP_upper SUP_mono)
noschinl@44918
   307
next
noschinl@44918
   308
  show "?R \<le> ?L" by (rule SUP_least) (auto intro: le_supI1 le_supI2 SUP_upper)
noschinl@44918
   309
qed
haftmann@44041
   310
blanchet@54147
   311
lemma Inf_top_conv [simp]:
haftmann@43868
   312
  "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
haftmann@43868
   313
  "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
haftmann@43868
   314
proof -
haftmann@43868
   315
  show "\<Sqinter>A = \<top> \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)"
haftmann@43868
   316
  proof
haftmann@43868
   317
    assume "\<forall>x\<in>A. x = \<top>"
haftmann@43868
   318
    then have "A = {} \<or> A = {\<top>}" by auto
noschinl@44919
   319
    then show "\<Sqinter>A = \<top>" by auto
haftmann@43868
   320
  next
haftmann@43868
   321
    assume "\<Sqinter>A = \<top>"
haftmann@43868
   322
    show "\<forall>x\<in>A. x = \<top>"
haftmann@43868
   323
    proof (rule ccontr)
haftmann@43868
   324
      assume "\<not> (\<forall>x\<in>A. x = \<top>)"
haftmann@43868
   325
      then obtain x where "x \<in> A" and "x \<noteq> \<top>" by blast
haftmann@43868
   326
      then obtain B where "A = insert x B" by blast
noschinl@44919
   327
      with `\<Sqinter>A = \<top>` `x \<noteq> \<top>` show False by simp
haftmann@43868
   328
    qed
haftmann@43868
   329
  qed
haftmann@43868
   330
  then show "\<top> = \<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<top>)" by auto
haftmann@43868
   331
qed
haftmann@43868
   332
noschinl@44918
   333
lemma INF_top_conv [simp]:
haftmann@44041
   334
 "(\<Sqinter>x\<in>A. B x) = \<top> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)"
haftmann@44041
   335
 "\<top> = (\<Sqinter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<top>)"
noschinl@44919
   336
  by (auto simp add: INF_def)
haftmann@44041
   337
blanchet@54147
   338
lemma Sup_bot_conv [simp]:
haftmann@43868
   339
  "\<Squnion>A = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" (is ?P)
haftmann@43868
   340
  "\<bottom> = \<Squnion>A \<longleftrightarrow> (\<forall>x\<in>A. x = \<bottom>)" (is ?Q)
huffman@44920
   341
  using dual_complete_lattice
huffman@44920
   342
  by (rule complete_lattice.Inf_top_conv)+
haftmann@43868
   343
noschinl@44918
   344
lemma SUP_bot_conv [simp]:
haftmann@44041
   345
 "(\<Squnion>x\<in>A. B x) = \<bottom> \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)"
haftmann@44041
   346
 "\<bottom> = (\<Squnion>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = \<bottom>)"
noschinl@44919
   347
  by (auto simp add: SUP_def)
haftmann@44041
   348
haftmann@43865
   349
lemma INF_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Sqinter>i\<in>A. f) = f"
haftmann@44103
   350
  by (auto intro: antisym INF_lower INF_greatest)
haftmann@32077
   351
haftmann@43870
   352
lemma SUP_const [simp]: "A \<noteq> {} \<Longrightarrow> (\<Squnion>i\<in>A. f) = f"
haftmann@44103
   353
  by (auto intro: antisym SUP_upper SUP_least)
haftmann@43870
   354
noschinl@44918
   355
lemma INF_top [simp]: "(\<Sqinter>x\<in>A. \<top>) = \<top>"
huffman@44921
   356
  by (cases "A = {}") simp_all
haftmann@43900
   357
noschinl@44918
   358
lemma SUP_bot [simp]: "(\<Squnion>x\<in>A. \<bottom>) = \<bottom>"
huffman@44921
   359
  by (cases "A = {}") simp_all
haftmann@43900
   360
haftmann@43865
   361
lemma INF_commute: "(\<Sqinter>i\<in>A. \<Sqinter>j\<in>B. f i j) = (\<Sqinter>j\<in>B. \<Sqinter>i\<in>A. f i j)"
haftmann@44103
   362
  by (iprover intro: INF_lower INF_greatest order_trans antisym)
haftmann@43865
   363
haftmann@43870
   364
lemma SUP_commute: "(\<Squnion>i\<in>A. \<Squnion>j\<in>B. f i j) = (\<Squnion>j\<in>B. \<Squnion>i\<in>A. f i j)"
haftmann@44103
   365
  by (iprover intro: SUP_upper SUP_least order_trans antisym)
haftmann@43870
   366
haftmann@43871
   367
lemma INF_absorb:
haftmann@43868
   368
  assumes "k \<in> I"
haftmann@43868
   369
  shows "A k \<sqinter> (\<Sqinter>i\<in>I. A i) = (\<Sqinter>i\<in>I. A i)"
haftmann@43868
   370
proof -
haftmann@43868
   371
  from assms obtain J where "I = insert k J" by blast
haftmann@43868
   372
  then show ?thesis by (simp add: INF_insert)
haftmann@43868
   373
qed
haftmann@43868
   374
haftmann@43871
   375
lemma SUP_absorb:
haftmann@43871
   376
  assumes "k \<in> I"
haftmann@43871
   377
  shows "A k \<squnion> (\<Squnion>i\<in>I. A i) = (\<Squnion>i\<in>I. A i)"
haftmann@43871
   378
proof -
haftmann@43871
   379
  from assms obtain J where "I = insert k J" by blast
haftmann@43871
   380
  then show ?thesis by (simp add: SUP_insert)
haftmann@43871
   381
qed
haftmann@43871
   382
haftmann@43871
   383
lemma INF_constant:
haftmann@43868
   384
  "(\<Sqinter>y\<in>A. c) = (if A = {} then \<top> else c)"
huffman@44921
   385
  by simp
haftmann@43868
   386
haftmann@43871
   387
lemma SUP_constant:
haftmann@43871
   388
  "(\<Squnion>y\<in>A. c) = (if A = {} then \<bottom> else c)"
huffman@44921
   389
  by simp
haftmann@43871
   390
haftmann@43943
   391
lemma less_INF_D:
haftmann@43943
   392
  assumes "y < (\<Sqinter>i\<in>A. f i)" "i \<in> A" shows "y < f i"
haftmann@43943
   393
proof -
haftmann@43943
   394
  note `y < (\<Sqinter>i\<in>A. f i)`
haftmann@43943
   395
  also have "(\<Sqinter>i\<in>A. f i) \<le> f i" using `i \<in> A`
haftmann@44103
   396
    by (rule INF_lower)
haftmann@43943
   397
  finally show "y < f i" .
haftmann@43943
   398
qed
haftmann@43943
   399
haftmann@43943
   400
lemma SUP_lessD:
haftmann@43943
   401
  assumes "(\<Squnion>i\<in>A. f i) < y" "i \<in> A" shows "f i < y"
haftmann@43943
   402
proof -
haftmann@43943
   403
  have "f i \<le> (\<Squnion>i\<in>A. f i)" using `i \<in> A`
haftmann@44103
   404
    by (rule SUP_upper)
haftmann@43943
   405
  also note `(\<Squnion>i\<in>A. f i) < y`
haftmann@43943
   406
  finally show "f i < y" .
haftmann@43943
   407
qed
haftmann@43943
   408
haftmann@43873
   409
lemma INF_UNIV_bool_expand:
haftmann@43868
   410
  "(\<Sqinter>b. A b) = A True \<sqinter> A False"
huffman@44921
   411
  by (simp add: UNIV_bool INF_insert inf_commute)
haftmann@43868
   412
haftmann@43873
   413
lemma SUP_UNIV_bool_expand:
haftmann@43871
   414
  "(\<Squnion>b. A b) = A True \<squnion> A False"
huffman@44921
   415
  by (simp add: UNIV_bool SUP_insert sup_commute)
haftmann@43871
   416
hoelzl@51328
   417
lemma Inf_le_Sup: "A \<noteq> {} \<Longrightarrow> Inf A \<le> Sup A"
hoelzl@51328
   418
  by (blast intro: Sup_upper2 Inf_lower ex_in_conv)
hoelzl@51328
   419
hoelzl@51328
   420
lemma INF_le_SUP: "A \<noteq> {} \<Longrightarrow> INFI A f \<le> SUPR A f"
hoelzl@51328
   421
  unfolding INF_def SUP_def by (rule Inf_le_Sup) auto
hoelzl@51328
   422
haftmann@32077
   423
end
haftmann@32077
   424
haftmann@44024
   425
class complete_distrib_lattice = complete_lattice +
haftmann@44039
   426
  assumes sup_Inf: "a \<squnion> \<Sqinter>B = (\<Sqinter>b\<in>B. a \<squnion> b)"
haftmann@44024
   427
  assumes inf_Sup: "a \<sqinter> \<Squnion>B = (\<Squnion>b\<in>B. a \<sqinter> b)"
haftmann@44024
   428
begin
haftmann@44024
   429
haftmann@44039
   430
lemma sup_INF:
haftmann@44039
   431
  "a \<squnion> (\<Sqinter>b\<in>B. f b) = (\<Sqinter>b\<in>B. a \<squnion> f b)"
haftmann@44039
   432
  by (simp add: INF_def sup_Inf image_image)
haftmann@44039
   433
haftmann@44039
   434
lemma inf_SUP:
haftmann@44039
   435
  "a \<sqinter> (\<Squnion>b\<in>B. f b) = (\<Squnion>b\<in>B. a \<sqinter> f b)"
haftmann@44039
   436
  by (simp add: SUP_def inf_Sup image_image)
haftmann@44039
   437
haftmann@44032
   438
lemma dual_complete_distrib_lattice:
krauss@44845
   439
  "class.complete_distrib_lattice Sup Inf sup (op \<ge>) (op >) inf \<top> \<bottom>"
haftmann@44024
   440
  apply (rule class.complete_distrib_lattice.intro)
haftmann@44024
   441
  apply (fact dual_complete_lattice)
haftmann@44024
   442
  apply (rule class.complete_distrib_lattice_axioms.intro)
haftmann@44032
   443
  apply (simp_all only: INF_foundation_dual SUP_foundation_dual inf_Sup sup_Inf)
haftmann@44032
   444
  done
haftmann@44024
   445
haftmann@44322
   446
subclass distrib_lattice proof
haftmann@44024
   447
  fix a b c
haftmann@44024
   448
  from sup_Inf have "a \<squnion> \<Sqinter>{b, c} = (\<Sqinter>d\<in>{b, c}. a \<squnion> d)" .
noschinl@44919
   449
  then show "a \<squnion> b \<sqinter> c = (a \<squnion> b) \<sqinter> (a \<squnion> c)" by (simp add: INF_def)
haftmann@44024
   450
qed
haftmann@44024
   451
haftmann@44039
   452
lemma Inf_sup:
haftmann@44039
   453
  "\<Sqinter>B \<squnion> a = (\<Sqinter>b\<in>B. b \<squnion> a)"
haftmann@44039
   454
  by (simp add: sup_Inf sup_commute)
haftmann@44039
   455
haftmann@44039
   456
lemma Sup_inf:
haftmann@44039
   457
  "\<Squnion>B \<sqinter> a = (\<Squnion>b\<in>B. b \<sqinter> a)"
haftmann@44039
   458
  by (simp add: inf_Sup inf_commute)
haftmann@44039
   459
haftmann@44039
   460
lemma INF_sup: 
haftmann@44039
   461
  "(\<Sqinter>b\<in>B. f b) \<squnion> a = (\<Sqinter>b\<in>B. f b \<squnion> a)"
haftmann@44039
   462
  by (simp add: sup_INF sup_commute)
haftmann@44039
   463
haftmann@44039
   464
lemma SUP_inf:
haftmann@44039
   465
  "(\<Squnion>b\<in>B. f b) \<sqinter> a = (\<Squnion>b\<in>B. f b \<sqinter> a)"
haftmann@44039
   466
  by (simp add: inf_SUP inf_commute)
haftmann@44039
   467
haftmann@44039
   468
lemma Inf_sup_eq_top_iff:
haftmann@44039
   469
  "(\<Sqinter>B \<squnion> a = \<top>) \<longleftrightarrow> (\<forall>b\<in>B. b \<squnion> a = \<top>)"
haftmann@44039
   470
  by (simp only: Inf_sup INF_top_conv)
haftmann@44039
   471
haftmann@44039
   472
lemma Sup_inf_eq_bot_iff:
haftmann@44039
   473
  "(\<Squnion>B \<sqinter> a = \<bottom>) \<longleftrightarrow> (\<forall>b\<in>B. b \<sqinter> a = \<bottom>)"
haftmann@44039
   474
  by (simp only: Sup_inf SUP_bot_conv)
haftmann@44039
   475
haftmann@44039
   476
lemma INF_sup_distrib2:
haftmann@44039
   477
  "(\<Sqinter>a\<in>A. f a) \<squnion> (\<Sqinter>b\<in>B. g b) = (\<Sqinter>a\<in>A. \<Sqinter>b\<in>B. f a \<squnion> g b)"
haftmann@44039
   478
  by (subst INF_commute) (simp add: sup_INF INF_sup)
haftmann@44039
   479
haftmann@44039
   480
lemma SUP_inf_distrib2:
haftmann@44039
   481
  "(\<Squnion>a\<in>A. f a) \<sqinter> (\<Squnion>b\<in>B. g b) = (\<Squnion>a\<in>A. \<Squnion>b\<in>B. f a \<sqinter> g b)"
haftmann@44039
   482
  by (subst SUP_commute) (simp add: inf_SUP SUP_inf)
haftmann@44039
   483
haftmann@44024
   484
end
haftmann@44024
   485
haftmann@44032
   486
class complete_boolean_algebra = boolean_algebra + complete_distrib_lattice
haftmann@43873
   487
begin
haftmann@43873
   488
haftmann@43943
   489
lemma dual_complete_boolean_algebra:
krauss@44845
   490
  "class.complete_boolean_algebra Sup Inf sup (op \<ge>) (op >) inf \<top> \<bottom> (\<lambda>x y. x \<squnion> - y) uminus"
haftmann@44032
   491
  by (rule class.complete_boolean_algebra.intro, rule dual_complete_distrib_lattice, rule dual_boolean_algebra)
haftmann@43943
   492
haftmann@43873
   493
lemma uminus_Inf:
haftmann@43873
   494
  "- (\<Sqinter>A) = \<Squnion>(uminus ` A)"
haftmann@43873
   495
proof (rule antisym)
haftmann@43873
   496
  show "- \<Sqinter>A \<le> \<Squnion>(uminus ` A)"
haftmann@43873
   497
    by (rule compl_le_swap2, rule Inf_greatest, rule compl_le_swap2, rule Sup_upper) simp
haftmann@43873
   498
  show "\<Squnion>(uminus ` A) \<le> - \<Sqinter>A"
haftmann@43873
   499
    by (rule Sup_least, rule compl_le_swap1, rule Inf_lower) auto
haftmann@43873
   500
qed
haftmann@43873
   501
haftmann@44041
   502
lemma uminus_INF: "- (\<Sqinter>x\<in>A. B x) = (\<Squnion>x\<in>A. - B x)"
haftmann@44041
   503
  by (simp add: INF_def SUP_def uminus_Inf image_image)
haftmann@44041
   504
haftmann@43873
   505
lemma uminus_Sup:
haftmann@43873
   506
  "- (\<Squnion>A) = \<Sqinter>(uminus ` A)"
haftmann@43873
   507
proof -
haftmann@43873
   508
  have "\<Squnion>A = - \<Sqinter>(uminus ` A)" by (simp add: image_image uminus_Inf)
haftmann@43873
   509
  then show ?thesis by simp
haftmann@43873
   510
qed
haftmann@43873
   511
  
haftmann@43873
   512
lemma uminus_SUP: "- (\<Squnion>x\<in>A. B x) = (\<Sqinter>x\<in>A. - B x)"
haftmann@43873
   513
  by (simp add: INF_def SUP_def uminus_Sup image_image)
haftmann@43873
   514
haftmann@43873
   515
end
haftmann@43873
   516
haftmann@43940
   517
class complete_linorder = linorder + complete_lattice
haftmann@43940
   518
begin
haftmann@43940
   519
haftmann@43943
   520
lemma dual_complete_linorder:
krauss@44845
   521
  "class.complete_linorder Sup Inf sup (op \<ge>) (op >) inf \<top> \<bottom>"
haftmann@43943
   522
  by (rule class.complete_linorder.intro, rule dual_complete_lattice, rule dual_linorder)
haftmann@43943
   523
haftmann@51386
   524
lemma complete_linorder_inf_min: "inf = min"
haftmann@51540
   525
  by (auto intro: antisym simp add: min_def fun_eq_iff)
haftmann@51386
   526
haftmann@51386
   527
lemma complete_linorder_sup_max: "sup = max"
haftmann@51540
   528
  by (auto intro: antisym simp add: max_def fun_eq_iff)
haftmann@51386
   529
noschinl@44918
   530
lemma Inf_less_iff:
haftmann@43940
   531
  "\<Sqinter>S \<sqsubset> a \<longleftrightarrow> (\<exists>x\<in>S. x \<sqsubset> a)"
haftmann@43940
   532
  unfolding not_le [symmetric] le_Inf_iff by auto
haftmann@43940
   533
noschinl@44918
   534
lemma INF_less_iff:
haftmann@44041
   535
  "(\<Sqinter>i\<in>A. f i) \<sqsubset> a \<longleftrightarrow> (\<exists>x\<in>A. f x \<sqsubset> a)"
haftmann@44041
   536
  unfolding INF_def Inf_less_iff by auto
haftmann@44041
   537
noschinl@44918
   538
lemma less_Sup_iff:
haftmann@43940
   539
  "a \<sqsubset> \<Squnion>S \<longleftrightarrow> (\<exists>x\<in>S. a \<sqsubset> x)"
haftmann@43940
   540
  unfolding not_le [symmetric] Sup_le_iff by auto
haftmann@43940
   541
noschinl@44918
   542
lemma less_SUP_iff:
haftmann@43940
   543
  "a \<sqsubset> (\<Squnion>i\<in>A. f i) \<longleftrightarrow> (\<exists>x\<in>A. a \<sqsubset> f x)"
haftmann@43940
   544
  unfolding SUP_def less_Sup_iff by auto
haftmann@43940
   545
noschinl@44918
   546
lemma Sup_eq_top_iff [simp]:
haftmann@43943
   547
  "\<Squnion>A = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < i)"
haftmann@43943
   548
proof
haftmann@43943
   549
  assume *: "\<Squnion>A = \<top>"
haftmann@43943
   550
  show "(\<forall>x<\<top>. \<exists>i\<in>A. x < i)" unfolding * [symmetric]
haftmann@43943
   551
  proof (intro allI impI)
haftmann@43943
   552
    fix x assume "x < \<Squnion>A" then show "\<exists>i\<in>A. x < i"
haftmann@43943
   553
      unfolding less_Sup_iff by auto
haftmann@43943
   554
  qed
haftmann@43943
   555
next
haftmann@43943
   556
  assume *: "\<forall>x<\<top>. \<exists>i\<in>A. x < i"
haftmann@43943
   557
  show "\<Squnion>A = \<top>"
haftmann@43943
   558
  proof (rule ccontr)
haftmann@43943
   559
    assume "\<Squnion>A \<noteq> \<top>"
haftmann@43943
   560
    with top_greatest [of "\<Squnion>A"]
haftmann@43943
   561
    have "\<Squnion>A < \<top>" unfolding le_less by auto
haftmann@43943
   562
    then have "\<Squnion>A < \<Squnion>A"
haftmann@43943
   563
      using * unfolding less_Sup_iff by auto
haftmann@43943
   564
    then show False by auto
haftmann@43943
   565
  qed
haftmann@43943
   566
qed
haftmann@43943
   567
noschinl@44918
   568
lemma SUP_eq_top_iff [simp]:
haftmann@44041
   569
  "(\<Squnion>i\<in>A. f i) = \<top> \<longleftrightarrow> (\<forall>x<\<top>. \<exists>i\<in>A. x < f i)"
noschinl@44919
   570
  unfolding SUP_def by auto
haftmann@44041
   571
noschinl@44918
   572
lemma Inf_eq_bot_iff [simp]:
haftmann@43943
   573
  "\<Sqinter>A = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. i < x)"
huffman@44920
   574
  using dual_complete_linorder
huffman@44920
   575
  by (rule complete_linorder.Sup_eq_top_iff)
haftmann@43943
   576
noschinl@44918
   577
lemma INF_eq_bot_iff [simp]:
haftmann@43967
   578
  "(\<Sqinter>i\<in>A. f i) = \<bottom> \<longleftrightarrow> (\<forall>x>\<bottom>. \<exists>i\<in>A. f i < x)"
noschinl@44919
   579
  unfolding INF_def by auto
haftmann@43967
   580
hoelzl@51328
   581
lemma le_Sup_iff: "x \<le> \<Squnion>A \<longleftrightarrow> (\<forall>y<x. \<exists>a\<in>A. y < a)"
hoelzl@51328
   582
proof safe
hoelzl@51328
   583
  fix y assume "x \<le> \<Squnion>A" "y < x"
hoelzl@51328
   584
  then have "y < \<Squnion>A" by auto
hoelzl@51328
   585
  then show "\<exists>a\<in>A. y < a"
hoelzl@51328
   586
    unfolding less_Sup_iff .
hoelzl@51328
   587
qed (auto elim!: allE[of _ "\<Squnion>A"] simp add: not_le[symmetric] Sup_upper)
hoelzl@51328
   588
hoelzl@51328
   589
lemma le_SUP_iff: "x \<le> SUPR A f \<longleftrightarrow> (\<forall>y<x. \<exists>i\<in>A. y < f i)"
hoelzl@51328
   590
  unfolding le_Sup_iff SUP_def by simp
hoelzl@51328
   591
hoelzl@51328
   592
lemma Inf_le_iff: "\<Sqinter>A \<le> x \<longleftrightarrow> (\<forall>y>x. \<exists>a\<in>A. y > a)"
hoelzl@51328
   593
proof safe
hoelzl@51328
   594
  fix y assume "x \<ge> \<Sqinter>A" "y > x"
hoelzl@51328
   595
  then have "y > \<Sqinter>A" by auto
hoelzl@51328
   596
  then show "\<exists>a\<in>A. y > a"
hoelzl@51328
   597
    unfolding Inf_less_iff .
hoelzl@51328
   598
qed (auto elim!: allE[of _ "\<Sqinter>A"] simp add: not_le[symmetric] Inf_lower)
hoelzl@51328
   599
hoelzl@51328
   600
lemma INF_le_iff:
hoelzl@51328
   601
  "INFI A f \<le> x \<longleftrightarrow> (\<forall>y>x. \<exists>i\<in>A. y > f i)"
hoelzl@51328
   602
  unfolding Inf_le_iff INF_def by simp
hoelzl@51328
   603
haftmann@51386
   604
subclass complete_distrib_lattice
haftmann@51386
   605
proof
haftmann@51386
   606
  fix a and B
haftmann@51386
   607
  show "a \<squnion> \<Sqinter>B = (\<Sqinter>b\<in>B. a \<squnion> b)" and "a \<sqinter> \<Squnion>B = (\<Squnion>b\<in>B. a \<sqinter> b)"
haftmann@51386
   608
    by (safe intro!: INF_eqI [symmetric] sup_mono Inf_lower SUP_eqI [symmetric] inf_mono Sup_upper)
haftmann@51386
   609
      (auto simp: not_less [symmetric] Inf_less_iff less_Sup_iff
haftmann@51386
   610
        le_max_iff_disj complete_linorder_sup_max min_le_iff_disj complete_linorder_inf_min)
haftmann@51386
   611
qed
haftmann@51386
   612
haftmann@43940
   613
end
haftmann@43940
   614
hoelzl@51341
   615
haftmann@46631
   616
subsection {* Complete lattice on @{typ bool} *}
haftmann@32077
   617
haftmann@44024
   618
instantiation bool :: complete_lattice
haftmann@32077
   619
begin
haftmann@32077
   620
haftmann@32077
   621
definition
haftmann@46154
   622
  [simp, code]: "\<Sqinter>A \<longleftrightarrow> False \<notin> A"
haftmann@32077
   623
haftmann@32077
   624
definition
haftmann@46154
   625
  [simp, code]: "\<Squnion>A \<longleftrightarrow> True \<in> A"
haftmann@32077
   626
haftmann@32077
   627
instance proof
haftmann@44322
   628
qed (auto intro: bool_induct)
haftmann@32077
   629
haftmann@32077
   630
end
haftmann@32077
   631
haftmann@49905
   632
lemma not_False_in_image_Ball [simp]:
haftmann@49905
   633
  "False \<notin> P ` A \<longleftrightarrow> Ball A P"
haftmann@49905
   634
  by auto
haftmann@49905
   635
haftmann@49905
   636
lemma True_in_image_Bex [simp]:
haftmann@49905
   637
  "True \<in> P ` A \<longleftrightarrow> Bex A P"
haftmann@49905
   638
  by auto
haftmann@49905
   639
haftmann@43873
   640
lemma INF_bool_eq [simp]:
haftmann@32120
   641
  "INFI = Ball"
haftmann@49905
   642
  by (simp add: fun_eq_iff INF_def)
haftmann@32120
   643
haftmann@43873
   644
lemma SUP_bool_eq [simp]:
haftmann@32120
   645
  "SUPR = Bex"
haftmann@49905
   646
  by (simp add: fun_eq_iff SUP_def)
haftmann@32120
   647
haftmann@44032
   648
instance bool :: complete_boolean_algebra proof
haftmann@44322
   649
qed (auto intro: bool_induct)
haftmann@44024
   650
haftmann@46631
   651
haftmann@46631
   652
subsection {* Complete lattice on @{typ "_ \<Rightarrow> _"} *}
haftmann@46631
   653
haftmann@32077
   654
instantiation "fun" :: (type, complete_lattice) complete_lattice
haftmann@32077
   655
begin
haftmann@32077
   656
haftmann@32077
   657
definition
haftmann@44024
   658
  "\<Sqinter>A = (\<lambda>x. \<Sqinter>f\<in>A. f x)"
haftmann@41080
   659
noschinl@46882
   660
lemma Inf_apply [simp, code]:
haftmann@44024
   661
  "(\<Sqinter>A) x = (\<Sqinter>f\<in>A. f x)"
haftmann@41080
   662
  by (simp add: Inf_fun_def)
haftmann@32077
   663
haftmann@32077
   664
definition
haftmann@44024
   665
  "\<Squnion>A = (\<lambda>x. \<Squnion>f\<in>A. f x)"
haftmann@41080
   666
noschinl@46882
   667
lemma Sup_apply [simp, code]:
haftmann@44024
   668
  "(\<Squnion>A) x = (\<Squnion>f\<in>A. f x)"
haftmann@41080
   669
  by (simp add: Sup_fun_def)
haftmann@32077
   670
haftmann@32077
   671
instance proof
noschinl@46884
   672
qed (auto simp add: le_fun_def intro: INF_lower INF_greatest SUP_upper SUP_least)
haftmann@32077
   673
haftmann@32077
   674
end
haftmann@32077
   675
noschinl@46882
   676
lemma INF_apply [simp]:
haftmann@41080
   677
  "(\<Sqinter>y\<in>A. f y) x = (\<Sqinter>y\<in>A. f y x)"
noschinl@46884
   678
  by (auto intro: arg_cong [of _ _ Inf] simp add: INF_def)
hoelzl@38705
   679
noschinl@46882
   680
lemma SUP_apply [simp]:
haftmann@41080
   681
  "(\<Squnion>y\<in>A. f y) x = (\<Squnion>y\<in>A. f y x)"
noschinl@46884
   682
  by (auto intro: arg_cong [of _ _ Sup] simp add: SUP_def)
haftmann@32077
   683
haftmann@44024
   684
instance "fun" :: (type, complete_distrib_lattice) complete_distrib_lattice proof
noschinl@46884
   685
qed (auto simp add: INF_def SUP_def inf_Sup sup_Inf image_image)
haftmann@44024
   686
haftmann@43873
   687
instance "fun" :: (type, complete_boolean_algebra) complete_boolean_algebra ..
haftmann@43873
   688
haftmann@46631
   689
haftmann@46631
   690
subsection {* Complete lattice on unary and binary predicates *}
haftmann@46631
   691
haftmann@46631
   692
lemma INF1_iff: "(\<Sqinter>x\<in>A. B x) b = (\<forall>x\<in>A. B x b)"
noschinl@46884
   693
  by simp
haftmann@46631
   694
haftmann@46631
   695
lemma INF2_iff: "(\<Sqinter>x\<in>A. B x) b c = (\<forall>x\<in>A. B x b c)"
noschinl@46884
   696
  by simp
haftmann@46631
   697
haftmann@46631
   698
lemma INF1_I: "(\<And>x. x \<in> A \<Longrightarrow> B x b) \<Longrightarrow> (\<Sqinter>x\<in>A. B x) b"
noschinl@46884
   699
  by auto
haftmann@46631
   700
haftmann@46631
   701
lemma INF2_I: "(\<And>x. x \<in> A \<Longrightarrow> B x b c) \<Longrightarrow> (\<Sqinter>x\<in>A. B x) b c"
noschinl@46884
   702
  by auto
haftmann@46631
   703
haftmann@46631
   704
lemma INF1_D: "(\<Sqinter>x\<in>A. B x) b \<Longrightarrow> a \<in> A \<Longrightarrow> B a b"
noschinl@46884
   705
  by auto
haftmann@46631
   706
haftmann@46631
   707
lemma INF2_D: "(\<Sqinter>x\<in>A. B x) b c \<Longrightarrow> a \<in> A \<Longrightarrow> B a b c"
noschinl@46884
   708
  by auto
haftmann@46631
   709
haftmann@46631
   710
lemma INF1_E: "(\<Sqinter>x\<in>A. B x) b \<Longrightarrow> (B a b \<Longrightarrow> R) \<Longrightarrow> (a \<notin> A \<Longrightarrow> R) \<Longrightarrow> R"
noschinl@46884
   711
  by auto
haftmann@46631
   712
haftmann@46631
   713
lemma INF2_E: "(\<Sqinter>x\<in>A. B x) b c \<Longrightarrow> (B a b c \<Longrightarrow> R) \<Longrightarrow> (a \<notin> A \<Longrightarrow> R) \<Longrightarrow> R"
noschinl@46884
   714
  by auto
haftmann@46631
   715
haftmann@46631
   716
lemma SUP1_iff: "(\<Squnion>x\<in>A. B x) b = (\<exists>x\<in>A. B x b)"
noschinl@46884
   717
  by simp
haftmann@46631
   718
haftmann@46631
   719
lemma SUP2_iff: "(\<Squnion>x\<in>A. B x) b c = (\<exists>x\<in>A. B x b c)"
noschinl@46884
   720
  by simp
haftmann@46631
   721
haftmann@46631
   722
lemma SUP1_I: "a \<in> A \<Longrightarrow> B a b \<Longrightarrow> (\<Squnion>x\<in>A. B x) b"
noschinl@46884
   723
  by auto
haftmann@46631
   724
haftmann@46631
   725
lemma SUP2_I: "a \<in> A \<Longrightarrow> B a b c \<Longrightarrow> (\<Squnion>x\<in>A. B x) b c"
noschinl@46884
   726
  by auto
haftmann@46631
   727
haftmann@46631
   728
lemma SUP1_E: "(\<Squnion>x\<in>A. B x) b \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> B x b \<Longrightarrow> R) \<Longrightarrow> R"
noschinl@46884
   729
  by auto
haftmann@46631
   730
haftmann@46631
   731
lemma SUP2_E: "(\<Squnion>x\<in>A. B x) b c \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> B x b c \<Longrightarrow> R) \<Longrightarrow> R"
noschinl@46884
   732
  by auto
haftmann@46631
   733
haftmann@46631
   734
haftmann@46631
   735
subsection {* Complete lattice on @{typ "_ set"} *}
haftmann@46631
   736
haftmann@45960
   737
instantiation "set" :: (type) complete_lattice
haftmann@45960
   738
begin
haftmann@45960
   739
haftmann@45960
   740
definition
haftmann@45960
   741
  "\<Sqinter>A = {x. \<Sqinter>((\<lambda>B. x \<in> B) ` A)}"
haftmann@45960
   742
haftmann@45960
   743
definition
haftmann@45960
   744
  "\<Squnion>A = {x. \<Squnion>((\<lambda>B. x \<in> B) ` A)}"
haftmann@45960
   745
haftmann@45960
   746
instance proof
haftmann@51386
   747
qed (auto simp add: less_eq_set_def Inf_set_def Sup_set_def le_fun_def)
haftmann@45960
   748
haftmann@45960
   749
end
haftmann@45960
   750
haftmann@45960
   751
instance "set" :: (type) complete_boolean_algebra
haftmann@45960
   752
proof
haftmann@45960
   753
qed (auto simp add: INF_def SUP_def Inf_set_def Sup_set_def image_def)
haftmann@45960
   754
  
haftmann@32077
   755
haftmann@46631
   756
subsubsection {* Inter *}
haftmann@41082
   757
haftmann@41082
   758
abbreviation Inter :: "'a set set \<Rightarrow> 'a set" where
haftmann@41082
   759
  "Inter S \<equiv> \<Sqinter>S"
haftmann@41082
   760
  
haftmann@41082
   761
notation (xsymbols)
haftmann@52141
   762
  Inter  ("\<Inter>_" [900] 900)
haftmann@41082
   763
haftmann@41082
   764
lemma Inter_eq:
haftmann@41082
   765
  "\<Inter>A = {x. \<forall>B \<in> A. x \<in> B}"
haftmann@41082
   766
proof (rule set_eqI)
haftmann@41082
   767
  fix x
haftmann@41082
   768
  have "(\<forall>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<forall>B\<in>A. x \<in> B)"
haftmann@41082
   769
    by auto
haftmann@41082
   770
  then show "x \<in> \<Inter>A \<longleftrightarrow> x \<in> {x. \<forall>B \<in> A. x \<in> B}"
haftmann@45960
   771
    by (simp add: Inf_set_def image_def)
haftmann@41082
   772
qed
haftmann@41082
   773
blanchet@54147
   774
lemma Inter_iff [simp]: "A \<in> \<Inter>C \<longleftrightarrow> (\<forall>X\<in>C. A \<in> X)"
haftmann@41082
   775
  by (unfold Inter_eq) blast
haftmann@41082
   776
haftmann@43741
   777
lemma InterI [intro!]: "(\<And>X. X \<in> C \<Longrightarrow> A \<in> X) \<Longrightarrow> A \<in> \<Inter>C"
haftmann@41082
   778
  by (simp add: Inter_eq)
haftmann@41082
   779
haftmann@41082
   780
text {*
haftmann@41082
   781
  \medskip A ``destruct'' rule -- every @{term X} in @{term C}
haftmann@43741
   782
  contains @{term A} as an element, but @{prop "A \<in> X"} can hold when
haftmann@43741
   783
  @{prop "X \<in> C"} does not!  This rule is analogous to @{text spec}.
haftmann@41082
   784
*}
haftmann@41082
   785
haftmann@43741
   786
lemma InterD [elim, Pure.elim]: "A \<in> \<Inter>C \<Longrightarrow> X \<in> C \<Longrightarrow> A \<in> X"
haftmann@41082
   787
  by auto
haftmann@41082
   788
haftmann@43741
   789
lemma InterE [elim]: "A \<in> \<Inter>C \<Longrightarrow> (X \<notin> C \<Longrightarrow> R) \<Longrightarrow> (A \<in> X \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@41082
   790
  -- {* ``Classical'' elimination rule -- does not require proving
haftmann@43741
   791
    @{prop "X \<in> C"}. *}
haftmann@41082
   792
  by (unfold Inter_eq) blast
haftmann@41082
   793
haftmann@43741
   794
lemma Inter_lower: "B \<in> A \<Longrightarrow> \<Inter>A \<subseteq> B"
haftmann@43740
   795
  by (fact Inf_lower)
haftmann@43740
   796
haftmann@41082
   797
lemma Inter_subset:
haftmann@43755
   798
  "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> B) \<Longrightarrow> A \<noteq> {} \<Longrightarrow> \<Inter>A \<subseteq> B"
haftmann@43740
   799
  by (fact Inf_less_eq)
haftmann@41082
   800
haftmann@43755
   801
lemma Inter_greatest: "(\<And>X. X \<in> A \<Longrightarrow> C \<subseteq> X) \<Longrightarrow> C \<subseteq> Inter A"
haftmann@43740
   802
  by (fact Inf_greatest)
haftmann@41082
   803
huffman@44067
   804
lemma Inter_empty: "\<Inter>{} = UNIV"
huffman@44067
   805
  by (fact Inf_empty) (* already simp *)
haftmann@41082
   806
huffman@44067
   807
lemma Inter_UNIV: "\<Inter>UNIV = {}"
huffman@44067
   808
  by (fact Inf_UNIV) (* already simp *)
haftmann@41082
   809
huffman@44920
   810
lemma Inter_insert: "\<Inter>(insert a B) = a \<inter> \<Inter>B"
huffman@44920
   811
  by (fact Inf_insert) (* already simp *)
haftmann@41082
   812
haftmann@41082
   813
lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)"
haftmann@43899
   814
  by (fact less_eq_Inf_inter)
haftmann@41082
   815
haftmann@41082
   816
lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B"
haftmann@43756
   817
  by (fact Inf_union_distrib)
haftmann@43756
   818
blanchet@54147
   819
lemma Inter_UNIV_conv [simp]:
haftmann@43741
   820
  "\<Inter>A = UNIV \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)"
haftmann@43741
   821
  "UNIV = \<Inter>A \<longleftrightarrow> (\<forall>x\<in>A. x = UNIV)"
haftmann@43801
   822
  by (fact Inf_top_conv)+
haftmann@41082
   823
haftmann@43741
   824
lemma Inter_anti_mono: "B \<subseteq> A \<Longrightarrow> \<Inter>A \<subseteq> \<Inter>B"
haftmann@43899
   825
  by (fact Inf_superset_mono)
haftmann@41082
   826
haftmann@41082
   827
haftmann@46631
   828
subsubsection {* Intersections of families *}
haftmann@41082
   829
haftmann@41082
   830
abbreviation INTER :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
haftmann@41082
   831
  "INTER \<equiv> INFI"
haftmann@41082
   832
haftmann@43872
   833
text {*
haftmann@43872
   834
  Note: must use name @{const INTER} here instead of @{text INT}
haftmann@43872
   835
  to allow the following syntax coexist with the plain constant name.
haftmann@43872
   836
*}
haftmann@43872
   837
haftmann@41082
   838
syntax
haftmann@41082
   839
  "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3INT _./ _)" [0, 10] 10)
haftmann@41082
   840
  "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3INT _:_./ _)" [0, 0, 10] 10)
haftmann@41082
   841
haftmann@41082
   842
syntax (xsymbols)
haftmann@41082
   843
  "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>_./ _)" [0, 10] 10)
haftmann@41082
   844
  "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@41082
   845
haftmann@41082
   846
syntax (latex output)
haftmann@41082
   847
  "_INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
haftmann@41082
   848
  "_INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
haftmann@41082
   849
haftmann@41082
   850
translations
haftmann@41082
   851
  "INT x y. B"  == "INT x. INT y. B"
haftmann@41082
   852
  "INT x. B"    == "CONST INTER CONST UNIV (%x. B)"
haftmann@41082
   853
  "INT x. B"    == "INT x:CONST UNIV. B"
haftmann@41082
   854
  "INT x:A. B"  == "CONST INTER A (%x. B)"
haftmann@41082
   855
haftmann@41082
   856
print_translation {*
wenzelm@42284
   857
  [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INTER} @{syntax_const "_INTER"}]
haftmann@41082
   858
*} -- {* to avoid eta-contraction of body *}
haftmann@41082
   859
haftmann@44085
   860
lemma INTER_eq:
haftmann@41082
   861
  "(\<Inter>x\<in>A. B x) = {y. \<forall>x\<in>A. y \<in> B x}"
haftmann@44085
   862
  by (auto simp add: INF_def)
haftmann@41082
   863
haftmann@41082
   864
lemma Inter_image_eq [simp]:
haftmann@41082
   865
  "\<Inter>(B`A) = (\<Inter>x\<in>A. B x)"
haftmann@43872
   866
  by (rule sym) (fact INF_def)
haftmann@41082
   867
haftmann@43817
   868
lemma INT_iff [simp]: "b \<in> (\<Inter>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. b \<in> B x)"
haftmann@44085
   869
  by (auto simp add: INF_def image_def)
haftmann@41082
   870
haftmann@43817
   871
lemma INT_I [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> b \<in> B x) \<Longrightarrow> b \<in> (\<Inter>x\<in>A. B x)"
haftmann@44085
   872
  by (auto simp add: INF_def image_def)
haftmann@41082
   873
haftmann@43852
   874
lemma INT_D [elim, Pure.elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> a \<in> A \<Longrightarrow> b \<in> B a"
haftmann@41082
   875
  by auto
haftmann@41082
   876
haftmann@43852
   877
lemma INT_E [elim]: "b \<in> (\<Inter>x\<in>A. B x) \<Longrightarrow> (b \<in> B a \<Longrightarrow> R) \<Longrightarrow> (a \<notin> A \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@43852
   878
  -- {* "Classical" elimination -- by the Excluded Middle on @{prop "a\<in>A"}. *}
haftmann@44085
   879
  by (auto simp add: INF_def image_def)
haftmann@41082
   880
haftmann@41082
   881
lemma INT_cong [cong]:
haftmann@43854
   882
  "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Inter>x\<in>A. C x) = (\<Inter>x\<in>B. D x)"
haftmann@43865
   883
  by (fact INF_cong)
haftmann@41082
   884
haftmann@41082
   885
lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
haftmann@41082
   886
  by blast
haftmann@41082
   887
haftmann@41082
   888
lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
haftmann@41082
   889
  by blast
haftmann@41082
   890
haftmann@43817
   891
lemma INT_lower: "a \<in> A \<Longrightarrow> (\<Inter>x\<in>A. B x) \<subseteq> B a"
haftmann@44103
   892
  by (fact INF_lower)
haftmann@41082
   893
haftmann@43817
   894
lemma INT_greatest: "(\<And>x. x \<in> A \<Longrightarrow> C \<subseteq> B x) \<Longrightarrow> C \<subseteq> (\<Inter>x\<in>A. B x)"
haftmann@44103
   895
  by (fact INF_greatest)
haftmann@41082
   896
huffman@44067
   897
lemma INT_empty: "(\<Inter>x\<in>{}. B x) = UNIV"
haftmann@44085
   898
  by (fact INF_empty)
haftmann@43854
   899
haftmann@43817
   900
lemma INT_absorb: "k \<in> I \<Longrightarrow> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)"
haftmann@43872
   901
  by (fact INF_absorb)
haftmann@41082
   902
haftmann@43854
   903
lemma INT_subset_iff: "B \<subseteq> (\<Inter>i\<in>I. A i) \<longleftrightarrow> (\<forall>i\<in>I. B \<subseteq> A i)"
haftmann@41082
   904
  by (fact le_INF_iff)
haftmann@41082
   905
haftmann@41082
   906
lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> INTER A B"
haftmann@43865
   907
  by (fact INF_insert)
haftmann@43865
   908
haftmann@43865
   909
lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)"
haftmann@43865
   910
  by (fact INF_union)
haftmann@43865
   911
haftmann@43865
   912
lemma INT_insert_distrib:
haftmann@43865
   913
  "u \<in> A \<Longrightarrow> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)"
haftmann@43865
   914
  by blast
haftmann@43854
   915
haftmann@41082
   916
lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
haftmann@43865
   917
  by (fact INF_constant)
haftmann@43865
   918
huffman@44920
   919
lemma INTER_UNIV_conv:
haftmann@43817
   920
 "(UNIV = (\<Inter>x\<in>A. B x)) = (\<forall>x\<in>A. B x = UNIV)"
haftmann@43817
   921
 "((\<Inter>x\<in>A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)"
huffman@44920
   922
  by (fact INF_top_conv)+ (* already simp *)
haftmann@43865
   923
haftmann@43865
   924
lemma INT_bool_eq: "(\<Inter>b. A b) = A True \<inter> A False"
haftmann@43873
   925
  by (fact INF_UNIV_bool_expand)
haftmann@43865
   926
haftmann@43865
   927
lemma INT_anti_mono:
haftmann@43900
   928
  "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow> (\<Inter>x\<in>B. f x) \<subseteq> (\<Inter>x\<in>A. g x)"
haftmann@43865
   929
  -- {* The last inclusion is POSITIVE! *}
haftmann@43940
   930
  by (fact INF_superset_mono)
haftmann@41082
   931
haftmann@41082
   932
lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))"
haftmann@41082
   933
  by blast
haftmann@41082
   934
haftmann@43817
   935
lemma vimage_INT: "f -` (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. f -` B x)"
haftmann@41082
   936
  by blast
haftmann@41082
   937
haftmann@41082
   938
haftmann@46631
   939
subsubsection {* Union *}
haftmann@32115
   940
haftmann@32587
   941
abbreviation Union :: "'a set set \<Rightarrow> 'a set" where
haftmann@32587
   942
  "Union S \<equiv> \<Squnion>S"
haftmann@32115
   943
haftmann@32115
   944
notation (xsymbols)
haftmann@52141
   945
  Union  ("\<Union>_" [900] 900)
haftmann@32115
   946
haftmann@32135
   947
lemma Union_eq:
haftmann@32135
   948
  "\<Union>A = {x. \<exists>B \<in> A. x \<in> B}"
nipkow@39302
   949
proof (rule set_eqI)
haftmann@32115
   950
  fix x
haftmann@32135
   951
  have "(\<exists>Q\<in>{P. \<exists>B\<in>A. P \<longleftrightarrow> x \<in> B}. Q) \<longleftrightarrow> (\<exists>B\<in>A. x \<in> B)"
haftmann@32115
   952
    by auto
haftmann@32135
   953
  then show "x \<in> \<Union>A \<longleftrightarrow> x \<in> {x. \<exists>B\<in>A. x \<in> B}"
haftmann@45960
   954
    by (simp add: Sup_set_def image_def)
haftmann@32115
   955
qed
haftmann@32115
   956
blanchet@54147
   957
lemma Union_iff [simp]:
haftmann@32115
   958
  "A \<in> \<Union>C \<longleftrightarrow> (\<exists>X\<in>C. A\<in>X)"
haftmann@32115
   959
  by (unfold Union_eq) blast
haftmann@32115
   960
haftmann@32115
   961
lemma UnionI [intro]:
haftmann@32115
   962
  "X \<in> C \<Longrightarrow> A \<in> X \<Longrightarrow> A \<in> \<Union>C"
haftmann@32115
   963
  -- {* The order of the premises presupposes that @{term C} is rigid;
haftmann@32115
   964
    @{term A} may be flexible. *}
haftmann@32115
   965
  by auto
haftmann@32115
   966
haftmann@32115
   967
lemma UnionE [elim!]:
haftmann@43817
   968
  "A \<in> \<Union>C \<Longrightarrow> (\<And>X. A \<in> X \<Longrightarrow> X \<in> C \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@32115
   969
  by auto
haftmann@32115
   970
haftmann@43817
   971
lemma Union_upper: "B \<in> A \<Longrightarrow> B \<subseteq> \<Union>A"
haftmann@43901
   972
  by (fact Sup_upper)
haftmann@32135
   973
haftmann@43817
   974
lemma Union_least: "(\<And>X. X \<in> A \<Longrightarrow> X \<subseteq> C) \<Longrightarrow> \<Union>A \<subseteq> C"
haftmann@43901
   975
  by (fact Sup_least)
haftmann@32135
   976
huffman@44920
   977
lemma Union_empty: "\<Union>{} = {}"
huffman@44920
   978
  by (fact Sup_empty) (* already simp *)
haftmann@32135
   979
huffman@44920
   980
lemma Union_UNIV: "\<Union>UNIV = UNIV"
huffman@44920
   981
  by (fact Sup_UNIV) (* already simp *)
haftmann@32135
   982
huffman@44920
   983
lemma Union_insert: "\<Union>insert a B = a \<union> \<Union>B"
huffman@44920
   984
  by (fact Sup_insert) (* already simp *)
haftmann@32135
   985
haftmann@43817
   986
lemma Union_Un_distrib [simp]: "\<Union>(A \<union> B) = \<Union>A \<union> \<Union>B"
haftmann@43901
   987
  by (fact Sup_union_distrib)
haftmann@32135
   988
haftmann@32135
   989
lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B"
haftmann@43901
   990
  by (fact Sup_inter_less_eq)
haftmann@32135
   991
blanchet@54147
   992
lemma Union_empty_conv: "(\<Union>A = {}) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
huffman@44920
   993
  by (fact Sup_bot_conv) (* already simp *)
haftmann@32135
   994
blanchet@54147
   995
lemma empty_Union_conv: "({} = \<Union>A) \<longleftrightarrow> (\<forall>x\<in>A. x = {})"
huffman@44920
   996
  by (fact Sup_bot_conv) (* already simp *)
haftmann@32135
   997
haftmann@32135
   998
lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)"
haftmann@32135
   999
  by blast
haftmann@32135
  1000
haftmann@32135
  1001
lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A"
haftmann@32135
  1002
  by blast
haftmann@32135
  1003
haftmann@43817
  1004
lemma Union_mono: "A \<subseteq> B \<Longrightarrow> \<Union>A \<subseteq> \<Union>B"
haftmann@43901
  1005
  by (fact Sup_subset_mono)
haftmann@32135
  1006
haftmann@32115
  1007
haftmann@46631
  1008
subsubsection {* Unions of families *}
haftmann@32077
  1009
haftmann@32606
  1010
abbreviation UNION :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
haftmann@32606
  1011
  "UNION \<equiv> SUPR"
haftmann@32077
  1012
haftmann@43872
  1013
text {*
haftmann@43872
  1014
  Note: must use name @{const UNION} here instead of @{text UN}
haftmann@43872
  1015
  to allow the following syntax coexist with the plain constant name.
haftmann@43872
  1016
*}
haftmann@43872
  1017
haftmann@32077
  1018
syntax
wenzelm@35115
  1019
  "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3UN _./ _)" [0, 10] 10)
huffman@36364
  1020
  "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3UN _:_./ _)" [0, 0, 10] 10)
haftmann@32077
  1021
haftmann@32077
  1022
syntax (xsymbols)
wenzelm@35115
  1023
  "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>_./ _)" [0, 10] 10)
huffman@36364
  1024
  "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>_\<in>_./ _)" [0, 0, 10] 10)
haftmann@32077
  1025
haftmann@32077
  1026
syntax (latex output)
wenzelm@35115
  1027
  "_UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
huffman@36364
  1028
  "_UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 0, 10] 10)
haftmann@32077
  1029
haftmann@32077
  1030
translations
haftmann@32077
  1031
  "UN x y. B"   == "UN x. UN y. B"
haftmann@32077
  1032
  "UN x. B"     == "CONST UNION CONST UNIV (%x. B)"
haftmann@32077
  1033
  "UN x. B"     == "UN x:CONST UNIV. B"
haftmann@32077
  1034
  "UN x:A. B"   == "CONST UNION A (%x. B)"
haftmann@32077
  1035
haftmann@32077
  1036
text {*
haftmann@32077
  1037
  Note the difference between ordinary xsymbol syntax of indexed
wenzelm@53015
  1038
  unions and intersections (e.g.\ @{text"\<Union>a\<^sub>1\<in>A\<^sub>1. B"})
wenzelm@53015
  1039
  and their \LaTeX\ rendition: @{term"\<Union>a\<^sub>1\<in>A\<^sub>1. B"}. The
haftmann@32077
  1040
  former does not make the index expression a subscript of the
haftmann@32077
  1041
  union/intersection symbol because this leads to problems with nested
haftmann@32077
  1042
  subscripts in Proof General.
haftmann@32077
  1043
*}
haftmann@32077
  1044
wenzelm@35115
  1045
print_translation {*
wenzelm@42284
  1046
  [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax UNION} @{syntax_const "_UNION"}]
wenzelm@35115
  1047
*} -- {* to avoid eta-contraction of body *}
haftmann@32077
  1048
blanchet@54147
  1049
lemma UNION_eq:
haftmann@32135
  1050
  "(\<Union>x\<in>A. B x) = {y. \<exists>x\<in>A. y \<in> B x}"
haftmann@44085
  1051
  by (auto simp add: SUP_def)
huffman@44920
  1052
haftmann@45960
  1053
lemma bind_UNION [code]:
haftmann@45960
  1054
  "Set.bind A f = UNION A f"
haftmann@45960
  1055
  by (simp add: bind_def UNION_eq)
haftmann@45960
  1056
haftmann@46036
  1057
lemma member_bind [simp]:
haftmann@46036
  1058
  "x \<in> Set.bind P f \<longleftrightarrow> x \<in> UNION P f "
haftmann@46036
  1059
  by (simp add: bind_UNION)
haftmann@46036
  1060
haftmann@32115
  1061
lemma Union_image_eq [simp]:
haftmann@43817
  1062
  "\<Union>(B ` A) = (\<Union>x\<in>A. B x)"
huffman@44920
  1063
  by (rule sym) (fact SUP_def)
huffman@44920
  1064
haftmann@46036
  1065
lemma UN_iff [simp]: "b \<in> (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<exists>x\<in>A. b \<in> B x)"
haftmann@44085
  1066
  by (auto simp add: SUP_def image_def)
wenzelm@11979
  1067
haftmann@43852
  1068
lemma UN_I [intro]: "a \<in> A \<Longrightarrow> b \<in> B a \<Longrightarrow> b \<in> (\<Union>x\<in>A. B x)"
wenzelm@11979
  1069
  -- {* The order of the premises presupposes that @{term A} is rigid;
wenzelm@11979
  1070
    @{term b} may be flexible. *}
wenzelm@11979
  1071
  by auto
wenzelm@11979
  1072
haftmann@43852
  1073
lemma UN_E [elim!]: "b \<in> (\<Union>x\<in>A. B x) \<Longrightarrow> (\<And>x. x\<in>A \<Longrightarrow> b \<in> B x \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@44085
  1074
  by (auto simp add: SUP_def image_def)
clasohm@923
  1075
wenzelm@11979
  1076
lemma UN_cong [cong]:
haftmann@43900
  1077
  "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> (\<Union>x\<in>A. C x) = (\<Union>x\<in>B. D x)"
haftmann@43900
  1078
  by (fact SUP_cong)
wenzelm@11979
  1079
berghofe@29691
  1080
lemma strong_UN_cong:
haftmann@43900
  1081
  "A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> C x = D x) \<Longrightarrow> (\<Union>x\<in>A. C x) = (\<Union>x\<in>B. D x)"
haftmann@43900
  1082
  by (unfold simp_implies_def) (fact UN_cong)
berghofe@29691
  1083
haftmann@43817
  1084
lemma image_eq_UN: "f ` A = (\<Union>x\<in>A. {f x})"
haftmann@32077
  1085
  by blast
haftmann@32077
  1086
haftmann@43817
  1087
lemma UN_upper: "a \<in> A \<Longrightarrow> B a \<subseteq> (\<Union>x\<in>A. B x)"
haftmann@44103
  1088
  by (fact SUP_upper)
haftmann@32135
  1089
haftmann@43817
  1090
lemma UN_least: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C) \<Longrightarrow> (\<Union>x\<in>A. B x) \<subseteq> C"
haftmann@44103
  1091
  by (fact SUP_least)
haftmann@32135
  1092
blanchet@54147
  1093
lemma Collect_bex_eq: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
haftmann@32135
  1094
  by blast
haftmann@32135
  1095
haftmann@43817
  1096
lemma UN_insert_distrib: "u \<in> A \<Longrightarrow> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)"
haftmann@32135
  1097
  by blast
haftmann@32135
  1098
blanchet@54147
  1099
lemma UN_empty: "(\<Union>x\<in>{}. B x) = {}"
haftmann@44085
  1100
  by (fact SUP_empty)
haftmann@32135
  1101
huffman@44920
  1102
lemma UN_empty2: "(\<Union>x\<in>A. {}) = {}"
huffman@44920
  1103
  by (fact SUP_bot) (* already simp *)
haftmann@32135
  1104
haftmann@43817
  1105
lemma UN_absorb: "k \<in> I \<Longrightarrow> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)"
haftmann@43900
  1106
  by (fact SUP_absorb)
haftmann@32135
  1107
haftmann@32135
  1108
lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> UNION A B"
haftmann@43900
  1109
  by (fact SUP_insert)
haftmann@32135
  1110
haftmann@44085
  1111
lemma UN_Un [simp]: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)"
haftmann@43900
  1112
  by (fact SUP_union)
haftmann@32135
  1113
haftmann@43967
  1114
lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)"
haftmann@32135
  1115
  by blast
haftmann@32135
  1116
haftmann@32135
  1117
lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)"
huffman@35629
  1118
  by (fact SUP_le_iff)
haftmann@32135
  1119
haftmann@32135
  1120
lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
haftmann@43900
  1121
  by (fact SUP_constant)
haftmann@32135
  1122
haftmann@43944
  1123
lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)"
haftmann@32135
  1124
  by blast
haftmann@32135
  1125
huffman@44920
  1126
lemma UNION_empty_conv:
haftmann@43817
  1127
  "{} = (\<Union>x\<in>A. B x) \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
haftmann@43817
  1128
  "(\<Union>x\<in>A. B x) = {} \<longleftrightarrow> (\<forall>x\<in>A. B x = {})"
huffman@44920
  1129
  by (fact SUP_bot_conv)+ (* already simp *)
haftmann@32135
  1130
blanchet@54147
  1131
lemma Collect_ex_eq: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
haftmann@32135
  1132
  by blast
haftmann@32135
  1133
haftmann@43900
  1134
lemma ball_UN: "(\<forall>z \<in> UNION A B. P z) \<longleftrightarrow> (\<forall>x\<in>A. \<forall>z \<in> B x. P z)"
haftmann@32135
  1135
  by blast
haftmann@32135
  1136
haftmann@43900
  1137
lemma bex_UN: "(\<exists>z \<in> UNION A B. P z) \<longleftrightarrow> (\<exists>x\<in>A. \<exists>z\<in>B x. P z)"
haftmann@32135
  1138
  by blast
haftmann@32135
  1139
haftmann@32135
  1140
lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)"
haftmann@32135
  1141
  by (auto simp add: split_if_mem2)
haftmann@32135
  1142
haftmann@43817
  1143
lemma UN_bool_eq: "(\<Union>b. A b) = (A True \<union> A False)"
haftmann@43900
  1144
  by (fact SUP_UNIV_bool_expand)
haftmann@32135
  1145
haftmann@32135
  1146
lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)"
haftmann@32135
  1147
  by blast
haftmann@32135
  1148
haftmann@32135
  1149
lemma UN_mono:
haftmann@43817
  1150
  "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<subseteq> g x) \<Longrightarrow>
haftmann@32135
  1151
    (\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)"
haftmann@43940
  1152
  by (fact SUP_subset_mono)
haftmann@32135
  1153
haftmann@43817
  1154
lemma vimage_Union: "f -` (\<Union>A) = (\<Union>X\<in>A. f -` X)"
haftmann@32135
  1155
  by blast
haftmann@32135
  1156
haftmann@43817
  1157
lemma vimage_UN: "f -` (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. f -` B x)"
haftmann@32135
  1158
  by blast
haftmann@32135
  1159
haftmann@43817
  1160
lemma vimage_eq_UN: "f -` B = (\<Union>y\<in>B. f -` {y})"
haftmann@32135
  1161
  -- {* NOT suitable for rewriting *}
haftmann@32135
  1162
  by blast
haftmann@32135
  1163
haftmann@43817
  1164
lemma image_UN: "f ` UNION A B = (\<Union>x\<in>A. f ` B x)"
haftmann@43817
  1165
  by blast
haftmann@32135
  1166
haftmann@45013
  1167
lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
haftmann@45013
  1168
  by blast
haftmann@45013
  1169
wenzelm@11979
  1170
haftmann@46631
  1171
subsubsection {* Distributive laws *}
wenzelm@12897
  1172
wenzelm@12897
  1173
lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)"
haftmann@44032
  1174
  by (fact inf_Sup)
wenzelm@12897
  1175
haftmann@44039
  1176
lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)"
haftmann@44039
  1177
  by (fact sup_Inf)
haftmann@44039
  1178
wenzelm@12897
  1179
lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)"
haftmann@44039
  1180
  by (fact Sup_inf)
haftmann@44039
  1181
haftmann@44039
  1182
lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)"
haftmann@44039
  1183
  by (rule sym) (rule INF_inf_distrib)
haftmann@44039
  1184
haftmann@44039
  1185
lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)"
haftmann@44039
  1186
  by (rule sym) (rule SUP_sup_distrib)
haftmann@44039
  1187
haftmann@44039
  1188
lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A ` C) \<inter> \<Inter>(B ` C)"
haftmann@44039
  1189
  by (simp only: INT_Int_distrib INF_def)
wenzelm@12897
  1190
haftmann@43817
  1191
lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A ` C) \<union> \<Union>(B ` C)"
wenzelm@12897
  1192
  -- {* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: *}
wenzelm@12897
  1193
  -- {* Union of a family of unions *}
haftmann@44039
  1194
  by (simp only: UN_Un_distrib SUP_def)
wenzelm@12897
  1195
haftmann@44039
  1196
lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)"
haftmann@44039
  1197
  by (fact sup_INF)
wenzelm@12897
  1198
wenzelm@12897
  1199
lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)"
wenzelm@12897
  1200
  -- {* Halmos, Naive Set Theory, page 35. *}
haftmann@44039
  1201
  by (fact inf_SUP)
wenzelm@12897
  1202
wenzelm@12897
  1203
lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)"
haftmann@44039
  1204
  by (fact SUP_inf_distrib2)
wenzelm@12897
  1205
wenzelm@12897
  1206
lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)"
haftmann@44039
  1207
  by (fact INF_sup_distrib2)
haftmann@44039
  1208
haftmann@44039
  1209
lemma Union_disjoint: "(\<Union>C \<inter> A = {}) \<longleftrightarrow> (\<forall>B\<in>C. B \<inter> A = {})"
haftmann@44039
  1210
  by (fact Sup_inf_eq_bot_iff)
wenzelm@12897
  1211
wenzelm@12897
  1212
haftmann@46631
  1213
subsubsection {* Complement *}
haftmann@32135
  1214
haftmann@43873
  1215
lemma Compl_INT [simp]: "- (\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)"
haftmann@43873
  1216
  by (fact uminus_INF)
wenzelm@12897
  1217
haftmann@43873
  1218
lemma Compl_UN [simp]: "- (\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)"
haftmann@43873
  1219
  by (fact uminus_SUP)
wenzelm@12897
  1220
wenzelm@12897
  1221
haftmann@46631
  1222
subsubsection {* Miniscoping and maxiscoping *}
wenzelm@12897
  1223
paulson@13860
  1224
text {* \medskip Miniscoping: pushing in quantifiers and big Unions
paulson@13860
  1225
           and Intersections. *}
wenzelm@12897
  1226
wenzelm@12897
  1227
lemma UN_simps [simp]:
haftmann@43817
  1228
  "\<And>a B C. (\<Union>x\<in>C. insert a (B x)) = (if C={} then {} else insert a (\<Union>x\<in>C. B x))"
haftmann@44032
  1229
  "\<And>A B C. (\<Union>x\<in>C. A x \<union> B) = ((if C={} then {} else (\<Union>x\<in>C. A x) \<union> B))"
haftmann@43852
  1230
  "\<And>A B C. (\<Union>x\<in>C. A \<union> B x) = ((if C={} then {} else A \<union> (\<Union>x\<in>C. B x)))"
haftmann@44032
  1231
  "\<And>A B C. (\<Union>x\<in>C. A x \<inter> B) = ((\<Union>x\<in>C. A x) \<inter> B)"
haftmann@43852
  1232
  "\<And>A B C. (\<Union>x\<in>C. A \<inter> B x) = (A \<inter>(\<Union>x\<in>C. B x))"
haftmann@43852
  1233
  "\<And>A B C. (\<Union>x\<in>C. A x - B) = ((\<Union>x\<in>C. A x) - B)"
haftmann@43852
  1234
  "\<And>A B C. (\<Union>x\<in>C. A - B x) = (A - (\<Inter>x\<in>C. B x))"
haftmann@43852
  1235
  "\<And>A B. (\<Union>x\<in>\<Union>A. B x) = (\<Union>y\<in>A. \<Union>x\<in>y. B x)"
haftmann@43852
  1236
  "\<And>A B C. (\<Union>z\<in>UNION A B. C z) = (\<Union>x\<in>A. \<Union>z\<in>B x. C z)"
haftmann@43831
  1237
  "\<And>A B f. (\<Union>x\<in>f`A. B x) = (\<Union>a\<in>A. B (f a))"
wenzelm@12897
  1238
  by auto
wenzelm@12897
  1239
wenzelm@12897
  1240
lemma INT_simps [simp]:
haftmann@44032
  1241
  "\<And>A B C. (\<Inter>x\<in>C. A x \<inter> B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) \<inter> B)"
haftmann@43831
  1242
  "\<And>A B C. (\<Inter>x\<in>C. A \<inter> B x) = (if C={} then UNIV else A \<inter>(\<Inter>x\<in>C. B x))"
haftmann@43852
  1243
  "\<And>A B C. (\<Inter>x\<in>C. A x - B) = (if C={} then UNIV else (\<Inter>x\<in>C. A x) - B)"
haftmann@43852
  1244
  "\<And>A B C. (\<Inter>x\<in>C. A - B x) = (if C={} then UNIV else A - (\<Union>x\<in>C. B x))"
haftmann@43817
  1245
  "\<And>a B C. (\<Inter>x\<in>C. insert a (B x)) = insert a (\<Inter>x\<in>C. B x)"
haftmann@43852
  1246
  "\<And>A B C. (\<Inter>x\<in>C. A x \<union> B) = ((\<Inter>x\<in>C. A x) \<union> B)"
haftmann@43852
  1247
  "\<And>A B C. (\<Inter>x\<in>C. A \<union> B x) = (A \<union> (\<Inter>x\<in>C. B x))"
haftmann@43852
  1248
  "\<And>A B. (\<Inter>x\<in>\<Union>A. B x) = (\<Inter>y\<in>A. \<Inter>x\<in>y. B x)"
haftmann@43852
  1249
  "\<And>A B C. (\<Inter>z\<in>UNION A B. C z) = (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z)"
haftmann@43852
  1250
  "\<And>A B f. (\<Inter>x\<in>f`A. B x) = (\<Inter>a\<in>A. B (f a))"
wenzelm@12897
  1251
  by auto
wenzelm@12897
  1252
blanchet@54147
  1253
lemma UN_ball_bex_simps [simp]:
haftmann@43852
  1254
  "\<And>A P. (\<forall>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<forall>y\<in>A. \<forall>x\<in>y. P x)"
haftmann@43967
  1255
  "\<And>A B P. (\<forall>x\<in>UNION A B. P x) = (\<forall>a\<in>A. \<forall>x\<in> B a. P x)"
haftmann@43852
  1256
  "\<And>A P. (\<exists>x\<in>\<Union>A. P x) \<longleftrightarrow> (\<exists>y\<in>A. \<exists>x\<in>y. P x)"
haftmann@43852
  1257
  "\<And>A B P. (\<exists>x\<in>UNION A B. P x) \<longleftrightarrow> (\<exists>a\<in>A. \<exists>x\<in>B a. P x)"
wenzelm@12897
  1258
  by auto
wenzelm@12897
  1259
haftmann@43943
  1260
paulson@13860
  1261
text {* \medskip Maxiscoping: pulling out big Unions and Intersections. *}
paulson@13860
  1262
paulson@13860
  1263
lemma UN_extend_simps:
haftmann@43817
  1264
  "\<And>a B C. insert a (\<Union>x\<in>C. B x) = (if C={} then {a} else (\<Union>x\<in>C. insert a (B x)))"
haftmann@44032
  1265
  "\<And>A B C. (\<Union>x\<in>C. A x) \<union> B = (if C={} then B else (\<Union>x\<in>C. A x \<union> B))"
haftmann@43852
  1266
  "\<And>A B C. A \<union> (\<Union>x\<in>C. B x) = (if C={} then A else (\<Union>x\<in>C. A \<union> B x))"
haftmann@43852
  1267
  "\<And>A B C. ((\<Union>x\<in>C. A x) \<inter> B) = (\<Union>x\<in>C. A x \<inter> B)"
haftmann@43852
  1268
  "\<And>A B C. (A \<inter> (\<Union>x\<in>C. B x)) = (\<Union>x\<in>C. A \<inter> B x)"
haftmann@43817
  1269
  "\<And>A B C. ((\<Union>x\<in>C. A x) - B) = (\<Union>x\<in>C. A x - B)"
haftmann@43817
  1270
  "\<And>A B C. (A - (\<Inter>x\<in>C. B x)) = (\<Union>x\<in>C. A - B x)"
haftmann@43852
  1271
  "\<And>A B. (\<Union>y\<in>A. \<Union>x\<in>y. B x) = (\<Union>x\<in>\<Union>A. B x)"
haftmann@43852
  1272
  "\<And>A B C. (\<Union>x\<in>A. \<Union>z\<in>B x. C z) = (\<Union>z\<in>UNION A B. C z)"
haftmann@43831
  1273
  "\<And>A B f. (\<Union>a\<in>A. B (f a)) = (\<Union>x\<in>f`A. B x)"
paulson@13860
  1274
  by auto
paulson@13860
  1275
paulson@13860
  1276
lemma INT_extend_simps:
haftmann@43852
  1277
  "\<And>A B C. (\<Inter>x\<in>C. A x) \<inter> B = (if C={} then B else (\<Inter>x\<in>C. A x \<inter> B))"
haftmann@43852
  1278
  "\<And>A B C. A \<inter> (\<Inter>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A \<inter> B x))"
haftmann@43852
  1279
  "\<And>A B C. (\<Inter>x\<in>C. A x) - B = (if C={} then UNIV - B else (\<Inter>x\<in>C. A x - B))"
haftmann@43852
  1280
  "\<And>A B C. A - (\<Union>x\<in>C. B x) = (if C={} then A else (\<Inter>x\<in>C. A - B x))"
haftmann@43817
  1281
  "\<And>a B C. insert a (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. insert a (B x))"
haftmann@43852
  1282
  "\<And>A B C. ((\<Inter>x\<in>C. A x) \<union> B) = (\<Inter>x\<in>C. A x \<union> B)"
haftmann@43852
  1283
  "\<And>A B C. A \<union> (\<Inter>x\<in>C. B x) = (\<Inter>x\<in>C. A \<union> B x)"
haftmann@43852
  1284
  "\<And>A B. (\<Inter>y\<in>A. \<Inter>x\<in>y. B x) = (\<Inter>x\<in>\<Union>A. B x)"
haftmann@43852
  1285
  "\<And>A B C. (\<Inter>x\<in>A. \<Inter>z\<in>B x. C z) = (\<Inter>z\<in>UNION A B. C z)"
haftmann@43852
  1286
  "\<And>A B f. (\<Inter>a\<in>A. B (f a)) = (\<Inter>x\<in>f`A. B x)"
paulson@13860
  1287
  by auto
paulson@13860
  1288
haftmann@43872
  1289
text {* Finally *}
haftmann@43872
  1290
haftmann@32135
  1291
no_notation
haftmann@46691
  1292
  less_eq (infix "\<sqsubseteq>" 50) and
haftmann@46691
  1293
  less (infix "\<sqsubset>" 50)
haftmann@32135
  1294
haftmann@30596
  1295
lemmas mem_simps =
haftmann@30596
  1296
  insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff
haftmann@30596
  1297
  mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff
haftmann@30596
  1298
  -- {* Each of these has ALREADY been added @{text "[simp]"} above. *}
wenzelm@21669
  1299
wenzelm@11979
  1300
end
haftmann@49905
  1301