src/HOL/Fun.thy
author hoelzl
Tue Nov 05 09:44:57 2013 +0100 (2013-11-05)
changeset 54257 5c7a3b6b05a9
parent 54147 97a8ff4e4ac9
child 54578 9387251b6a46
permissions -rw-r--r--
generalize SUP and INF to the syntactic type classes Sup and Inf
clasohm@1475
     1
(*  Title:      HOL/Fun.thy
clasohm@1475
     2
    Author:     Tobias Nipkow, Cambridge University Computer Laboratory
clasohm@923
     3
    Copyright   1994  University of Cambridge
huffman@18154
     4
*)
clasohm@923
     5
huffman@18154
     6
header {* Notions about functions *}
clasohm@923
     7
paulson@15510
     8
theory Fun
haftmann@44860
     9
imports Complete_Lattices
wenzelm@46950
    10
keywords "enriched_type" :: thy_goal
nipkow@15131
    11
begin
nipkow@2912
    12
haftmann@26147
    13
lemma apply_inverse:
haftmann@26357
    14
  "f x = u \<Longrightarrow> (\<And>x. P x \<Longrightarrow> g (f x) = x) \<Longrightarrow> P x \<Longrightarrow> x = g u"
haftmann@26147
    15
  by auto
nipkow@2912
    16
wenzelm@12258
    17
haftmann@26147
    18
subsection {* The Identity Function @{text id} *}
paulson@6171
    19
haftmann@44277
    20
definition id :: "'a \<Rightarrow> 'a" where
haftmann@22744
    21
  "id = (\<lambda>x. x)"
nipkow@13910
    22
haftmann@26147
    23
lemma id_apply [simp]: "id x = x"
haftmann@26147
    24
  by (simp add: id_def)
haftmann@26147
    25
huffman@47579
    26
lemma image_id [simp]: "image id = id"
huffman@47579
    27
  by (simp add: id_def fun_eq_iff)
haftmann@26147
    28
huffman@47579
    29
lemma vimage_id [simp]: "vimage id = id"
huffman@47579
    30
  by (simp add: id_def fun_eq_iff)
haftmann@26147
    31
haftmann@52435
    32
code_printing
haftmann@52435
    33
  constant id \<rightharpoonup> (Haskell) "id"
haftmann@52435
    34
haftmann@26147
    35
haftmann@26147
    36
subsection {* The Composition Operator @{text "f \<circ> g"} *}
haftmann@26147
    37
haftmann@44277
    38
definition comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o" 55) where
haftmann@22744
    39
  "f o g = (\<lambda>x. f (g x))"
oheimb@11123
    40
wenzelm@21210
    41
notation (xsymbols)
wenzelm@19656
    42
  comp  (infixl "\<circ>" 55)
wenzelm@19656
    43
wenzelm@21210
    44
notation (HTML output)
wenzelm@19656
    45
  comp  (infixl "\<circ>" 55)
wenzelm@19656
    46
haftmann@49739
    47
lemma comp_apply [simp]: "(f o g) x = f (g x)"
haftmann@49739
    48
  by (simp add: comp_def)
paulson@13585
    49
haftmann@49739
    50
lemma comp_assoc: "(f o g) o h = f o (g o h)"
haftmann@49739
    51
  by (simp add: fun_eq_iff)
paulson@13585
    52
haftmann@49739
    53
lemma id_comp [simp]: "id o g = g"
haftmann@49739
    54
  by (simp add: fun_eq_iff)
paulson@13585
    55
haftmann@49739
    56
lemma comp_id [simp]: "f o id = f"
haftmann@49739
    57
  by (simp add: fun_eq_iff)
haftmann@49739
    58
haftmann@49739
    59
lemma comp_eq_dest:
haftmann@34150
    60
  "a o b = c o d \<Longrightarrow> a (b v) = c (d v)"
haftmann@49739
    61
  by (simp add: fun_eq_iff)
haftmann@34150
    62
haftmann@49739
    63
lemma comp_eq_elim:
haftmann@34150
    64
  "a o b = c o d \<Longrightarrow> ((\<And>v. a (b v) = c (d v)) \<Longrightarrow> R) \<Longrightarrow> R"
haftmann@49739
    65
  by (simp add: fun_eq_iff) 
haftmann@34150
    66
haftmann@49739
    67
lemma image_comp:
haftmann@49739
    68
  "(f o g) ` r = f ` (g ` r)"
paulson@33044
    69
  by auto
paulson@33044
    70
haftmann@49739
    71
lemma vimage_comp:
haftmann@49739
    72
  "(g \<circ> f) -` x = f -` (g -` x)"
haftmann@49739
    73
  by auto
haftmann@49739
    74
haftmann@49739
    75
lemma INF_comp:
haftmann@49739
    76
  "INFI A (g \<circ> f) = INFI (f ` A) g"
haftmann@49739
    77
  by (simp add: INF_def image_comp)
haftmann@49739
    78
haftmann@49739
    79
lemma SUP_comp:
haftmann@49739
    80
  "SUPR A (g \<circ> f) = SUPR (f ` A) g"
haftmann@49739
    81
  by (simp add: SUP_def image_comp)
paulson@13585
    82
haftmann@52435
    83
code_printing
haftmann@52435
    84
  constant comp \<rightharpoonup> (SML) infixl 5 "o" and (Haskell) infixr 9 "."
haftmann@52435
    85
paulson@13585
    86
haftmann@26588
    87
subsection {* The Forward Composition Operator @{text fcomp} *}
haftmann@26357
    88
haftmann@44277
    89
definition fcomp :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "\<circ>>" 60) where
haftmann@37751
    90
  "f \<circ>> g = (\<lambda>x. g (f x))"
haftmann@26357
    91
haftmann@37751
    92
lemma fcomp_apply [simp]:  "(f \<circ>> g) x = g (f x)"
haftmann@26357
    93
  by (simp add: fcomp_def)
haftmann@26357
    94
haftmann@37751
    95
lemma fcomp_assoc: "(f \<circ>> g) \<circ>> h = f \<circ>> (g \<circ>> h)"
haftmann@26357
    96
  by (simp add: fcomp_def)
haftmann@26357
    97
haftmann@37751
    98
lemma id_fcomp [simp]: "id \<circ>> g = g"
haftmann@26357
    99
  by (simp add: fcomp_def)
haftmann@26357
   100
haftmann@37751
   101
lemma fcomp_id [simp]: "f \<circ>> id = f"
haftmann@26357
   102
  by (simp add: fcomp_def)
haftmann@26357
   103
haftmann@52435
   104
code_printing
haftmann@52435
   105
  constant fcomp \<rightharpoonup> (Eval) infixl 1 "#>"
haftmann@31202
   106
haftmann@37751
   107
no_notation fcomp (infixl "\<circ>>" 60)
haftmann@26588
   108
haftmann@26357
   109
haftmann@40602
   110
subsection {* Mapping functions *}
haftmann@40602
   111
haftmann@40602
   112
definition map_fun :: "('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'c \<Rightarrow> 'd" where
haftmann@40602
   113
  "map_fun f g h = g \<circ> h \<circ> f"
haftmann@40602
   114
haftmann@40602
   115
lemma map_fun_apply [simp]:
haftmann@40602
   116
  "map_fun f g h x = g (h (f x))"
haftmann@40602
   117
  by (simp add: map_fun_def)
haftmann@40602
   118
haftmann@40602
   119
hoelzl@40702
   120
subsection {* Injectivity and Bijectivity *}
hoelzl@39076
   121
hoelzl@39076
   122
definition inj_on :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool" where -- "injective"
hoelzl@39076
   123
  "inj_on f A \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. f x = f y \<longrightarrow> x = y)"
haftmann@26147
   124
hoelzl@39076
   125
definition bij_betw :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool" where -- "bijective"
hoelzl@39076
   126
  "bij_betw f A B \<longleftrightarrow> inj_on f A \<and> f ` A = B"
haftmann@26147
   127
hoelzl@40702
   128
text{*A common special case: functions injective, surjective or bijective over
hoelzl@40702
   129
the entire domain type.*}
haftmann@26147
   130
haftmann@26147
   131
abbreviation
hoelzl@39076
   132
  "inj f \<equiv> inj_on f UNIV"
haftmann@26147
   133
hoelzl@40702
   134
abbreviation surj :: "('a \<Rightarrow> 'b) \<Rightarrow> bool" where -- "surjective"
hoelzl@40702
   135
  "surj f \<equiv> (range f = UNIV)"
paulson@13585
   136
hoelzl@39076
   137
abbreviation
hoelzl@39076
   138
  "bij f \<equiv> bij_betw f UNIV UNIV"
haftmann@26147
   139
nipkow@43705
   140
text{* The negated case: *}
nipkow@43705
   141
translations
nipkow@43705
   142
"\<not> CONST surj f" <= "CONST range f \<noteq> CONST UNIV"
nipkow@43705
   143
haftmann@26147
   144
lemma injI:
haftmann@26147
   145
  assumes "\<And>x y. f x = f y \<Longrightarrow> x = y"
haftmann@26147
   146
  shows "inj f"
haftmann@26147
   147
  using assms unfolding inj_on_def by auto
paulson@13585
   148
berghofe@13637
   149
theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)"
berghofe@13637
   150
  by (unfold inj_on_def, blast)
berghofe@13637
   151
paulson@13585
   152
lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y"
paulson@13585
   153
by (simp add: inj_on_def)
paulson@13585
   154
nipkow@32988
   155
lemma inj_on_eq_iff: "inj_on f A ==> x:A ==> y:A ==> (f(x) = f(y)) = (x=y)"
paulson@13585
   156
by (force simp add: inj_on_def)
paulson@13585
   157
hoelzl@40703
   158
lemma inj_on_cong:
hoelzl@40703
   159
  "(\<And> a. a : A \<Longrightarrow> f a = g a) \<Longrightarrow> inj_on f A = inj_on g A"
hoelzl@40703
   160
unfolding inj_on_def by auto
hoelzl@40703
   161
hoelzl@40703
   162
lemma inj_on_strict_subset:
hoelzl@40703
   163
  "\<lbrakk> inj_on f B; A < B \<rbrakk> \<Longrightarrow> f`A < f`B"
hoelzl@40703
   164
unfolding inj_on_def unfolding image_def by blast
hoelzl@40703
   165
haftmann@38620
   166
lemma inj_comp:
haftmann@38620
   167
  "inj f \<Longrightarrow> inj g \<Longrightarrow> inj (f \<circ> g)"
haftmann@38620
   168
  by (simp add: inj_on_def)
haftmann@38620
   169
haftmann@38620
   170
lemma inj_fun: "inj f \<Longrightarrow> inj (\<lambda>x y. f x)"
nipkow@39302
   171
  by (simp add: inj_on_def fun_eq_iff)
haftmann@38620
   172
nipkow@32988
   173
lemma inj_eq: "inj f ==> (f(x) = f(y)) = (x=y)"
nipkow@32988
   174
by (simp add: inj_on_eq_iff)
nipkow@32988
   175
haftmann@26147
   176
lemma inj_on_id[simp]: "inj_on id A"
hoelzl@39076
   177
  by (simp add: inj_on_def)
paulson@13585
   178
haftmann@26147
   179
lemma inj_on_id2[simp]: "inj_on (%x. x) A"
hoelzl@39076
   180
by (simp add: inj_on_def)
haftmann@26147
   181
bulwahn@46586
   182
lemma inj_on_Int: "inj_on f A \<or> inj_on f B \<Longrightarrow> inj_on f (A \<inter> B)"
hoelzl@40703
   183
unfolding inj_on_def by blast
hoelzl@40703
   184
hoelzl@40703
   185
lemma inj_on_INTER:
hoelzl@40703
   186
  "\<lbrakk>I \<noteq> {}; \<And> i. i \<in> I \<Longrightarrow> inj_on f (A i)\<rbrakk> \<Longrightarrow> inj_on f (\<Inter> i \<in> I. A i)"
hoelzl@40703
   187
unfolding inj_on_def by blast
hoelzl@40703
   188
hoelzl@40703
   189
lemma inj_on_Inter:
hoelzl@40703
   190
  "\<lbrakk>S \<noteq> {}; \<And> A. A \<in> S \<Longrightarrow> inj_on f A\<rbrakk> \<Longrightarrow> inj_on f (Inter S)"
hoelzl@40703
   191
unfolding inj_on_def by blast
hoelzl@40703
   192
hoelzl@40703
   193
lemma inj_on_UNION_chain:
hoelzl@40703
   194
  assumes CH: "\<And> i j. \<lbrakk>i \<in> I; j \<in> I\<rbrakk> \<Longrightarrow> A i \<le> A j \<or> A j \<le> A i" and
hoelzl@40703
   195
         INJ: "\<And> i. i \<in> I \<Longrightarrow> inj_on f (A i)"
hoelzl@40703
   196
  shows "inj_on f (\<Union> i \<in> I. A i)"
haftmann@49905
   197
proof -
haftmann@49905
   198
  {
haftmann@49905
   199
    fix i j x y
haftmann@49905
   200
    assume *: "i \<in> I" "j \<in> I" and **: "x \<in> A i" "y \<in> A j"
haftmann@49905
   201
      and ***: "f x = f y"
haftmann@49905
   202
    have "x = y"
haftmann@49905
   203
    proof -
haftmann@49905
   204
      {
haftmann@49905
   205
        assume "A i \<le> A j"
haftmann@49905
   206
        with ** have "x \<in> A j" by auto
haftmann@49905
   207
        with INJ * ** *** have ?thesis
haftmann@49905
   208
        by(auto simp add: inj_on_def)
haftmann@49905
   209
      }
haftmann@49905
   210
      moreover
haftmann@49905
   211
      {
haftmann@49905
   212
        assume "A j \<le> A i"
haftmann@49905
   213
        with ** have "y \<in> A i" by auto
haftmann@49905
   214
        with INJ * ** *** have ?thesis
haftmann@49905
   215
        by(auto simp add: inj_on_def)
haftmann@49905
   216
      }
haftmann@49905
   217
      ultimately show ?thesis using CH * by blast
haftmann@49905
   218
    qed
haftmann@49905
   219
  }
haftmann@49905
   220
  then show ?thesis by (unfold inj_on_def UNION_eq) auto
hoelzl@40703
   221
qed
hoelzl@40703
   222
hoelzl@40702
   223
lemma surj_id: "surj id"
hoelzl@40702
   224
by simp
haftmann@26147
   225
hoelzl@39101
   226
lemma bij_id[simp]: "bij id"
hoelzl@39076
   227
by (simp add: bij_betw_def)
paulson@13585
   228
paulson@13585
   229
lemma inj_onI:
paulson@13585
   230
    "(!! x y. [|  x:A;  y:A;  f(x) = f(y) |] ==> x=y) ==> inj_on f A"
paulson@13585
   231
by (simp add: inj_on_def)
paulson@13585
   232
paulson@13585
   233
lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A"
paulson@13585
   234
by (auto dest:  arg_cong [of concl: g] simp add: inj_on_def)
paulson@13585
   235
paulson@13585
   236
lemma inj_onD: "[| inj_on f A;  f(x)=f(y);  x:A;  y:A |] ==> x=y"
paulson@13585
   237
by (unfold inj_on_def, blast)
paulson@13585
   238
paulson@13585
   239
lemma inj_on_iff: "[| inj_on f A;  x:A;  y:A |] ==> (f(x)=f(y)) = (x=y)"
paulson@13585
   240
by (blast dest!: inj_onD)
paulson@13585
   241
paulson@13585
   242
lemma comp_inj_on:
paulson@13585
   243
     "[| inj_on f A;  inj_on g (f`A) |] ==> inj_on (g o f) A"
paulson@13585
   244
by (simp add: comp_def inj_on_def)
paulson@13585
   245
nipkow@15303
   246
lemma inj_on_imageI: "inj_on (g o f) A \<Longrightarrow> inj_on g (f ` A)"
nipkow@15303
   247
apply(simp add:inj_on_def image_def)
nipkow@15303
   248
apply blast
nipkow@15303
   249
done
nipkow@15303
   250
nipkow@15439
   251
lemma inj_on_image_iff: "\<lbrakk> ALL x:A. ALL y:A. (g(f x) = g(f y)) = (g x = g y);
nipkow@15439
   252
  inj_on f A \<rbrakk> \<Longrightarrow> inj_on g (f ` A) = inj_on g A"
nipkow@15439
   253
apply(unfold inj_on_def)
nipkow@15439
   254
apply blast
nipkow@15439
   255
done
nipkow@15439
   256
paulson@13585
   257
lemma inj_on_contraD: "[| inj_on f A;  ~x=y;  x:A;  y:A |] ==> ~ f(x)=f(y)"
paulson@13585
   258
by (unfold inj_on_def, blast)
wenzelm@12258
   259
paulson@13585
   260
lemma inj_singleton: "inj (%s. {s})"
paulson@13585
   261
by (simp add: inj_on_def)
paulson@13585
   262
nipkow@15111
   263
lemma inj_on_empty[iff]: "inj_on f {}"
nipkow@15111
   264
by(simp add: inj_on_def)
nipkow@15111
   265
nipkow@15303
   266
lemma subset_inj_on: "[| inj_on f B; A <= B |] ==> inj_on f A"
paulson@13585
   267
by (unfold inj_on_def, blast)
paulson@13585
   268
nipkow@15111
   269
lemma inj_on_Un:
nipkow@15111
   270
 "inj_on f (A Un B) =
nipkow@15111
   271
  (inj_on f A & inj_on f B & f`(A-B) Int f`(B-A) = {})"
nipkow@15111
   272
apply(unfold inj_on_def)
nipkow@15111
   273
apply (blast intro:sym)
nipkow@15111
   274
done
nipkow@15111
   275
nipkow@15111
   276
lemma inj_on_insert[iff]:
nipkow@15111
   277
  "inj_on f (insert a A) = (inj_on f A & f a ~: f`(A-{a}))"
nipkow@15111
   278
apply(unfold inj_on_def)
nipkow@15111
   279
apply (blast intro:sym)
nipkow@15111
   280
done
nipkow@15111
   281
nipkow@15111
   282
lemma inj_on_diff: "inj_on f A ==> inj_on f (A-B)"
nipkow@15111
   283
apply(unfold inj_on_def)
nipkow@15111
   284
apply (blast)
nipkow@15111
   285
done
nipkow@15111
   286
hoelzl@40703
   287
lemma comp_inj_on_iff:
hoelzl@40703
   288
  "inj_on f A \<Longrightarrow> inj_on f' (f ` A) \<longleftrightarrow> inj_on (f' o f) A"
hoelzl@40703
   289
by(auto simp add: comp_inj_on inj_on_def)
hoelzl@40703
   290
hoelzl@40703
   291
lemma inj_on_imageI2:
hoelzl@40703
   292
  "inj_on (f' o f) A \<Longrightarrow> inj_on f A"
hoelzl@40703
   293
by(auto simp add: comp_inj_on inj_on_def)
hoelzl@40703
   294
haftmann@51598
   295
lemma inj_img_insertE:
haftmann@51598
   296
  assumes "inj_on f A"
haftmann@51598
   297
  assumes "x \<notin> B" and "insert x B = f ` A"
haftmann@51598
   298
  obtains x' A' where "x' \<notin> A'" and "A = insert x' A'"
haftmann@51598
   299
    and "x = f x'" and "B = f ` A'" 
haftmann@51598
   300
proof -
haftmann@51598
   301
  from assms have "x \<in> f ` A" by auto
haftmann@51598
   302
  then obtain x' where *: "x' \<in> A" "x = f x'" by auto
haftmann@51598
   303
  then have "A = insert x' (A - {x'})" by auto
haftmann@51598
   304
  with assms * have "B = f ` (A - {x'})"
haftmann@51598
   305
    by (auto dest: inj_on_contraD)
haftmann@51598
   306
  have "x' \<notin> A - {x'}" by simp
haftmann@51598
   307
  from `x' \<notin> A - {x'}` `A = insert x' (A - {x'})` `x = f x'` `B = image f (A - {x'})`
haftmann@51598
   308
  show ?thesis ..
haftmann@51598
   309
qed
haftmann@51598
   310
hoelzl@40702
   311
lemma surj_def: "surj f \<longleftrightarrow> (\<forall>y. \<exists>x. y = f x)"
hoelzl@40702
   312
  by auto
hoelzl@39076
   313
hoelzl@40702
   314
lemma surjI: assumes *: "\<And> x. g (f x) = x" shows "surj g"
hoelzl@40702
   315
  using *[symmetric] by auto
paulson@13585
   316
hoelzl@39076
   317
lemma surjD: "surj f \<Longrightarrow> \<exists>x. y = f x"
hoelzl@39076
   318
  by (simp add: surj_def)
paulson@13585
   319
hoelzl@39076
   320
lemma surjE: "surj f \<Longrightarrow> (\<And>x. y = f x \<Longrightarrow> C) \<Longrightarrow> C"
hoelzl@39076
   321
  by (simp add: surj_def, blast)
paulson@13585
   322
paulson@13585
   323
lemma comp_surj: "[| surj f;  surj g |] ==> surj (g o f)"
paulson@13585
   324
apply (simp add: comp_def surj_def, clarify)
paulson@13585
   325
apply (drule_tac x = y in spec, clarify)
paulson@13585
   326
apply (drule_tac x = x in spec, blast)
paulson@13585
   327
done
paulson@13585
   328
hoelzl@39074
   329
lemma bij_betw_imp_surj: "bij_betw f A UNIV \<Longrightarrow> surj f"
hoelzl@40702
   330
  unfolding bij_betw_def by auto
hoelzl@39074
   331
hoelzl@40703
   332
lemma bij_betw_empty1:
hoelzl@40703
   333
  assumes "bij_betw f {} A"
hoelzl@40703
   334
  shows "A = {}"
hoelzl@40703
   335
using assms unfolding bij_betw_def by blast
hoelzl@40703
   336
hoelzl@40703
   337
lemma bij_betw_empty2:
hoelzl@40703
   338
  assumes "bij_betw f A {}"
hoelzl@40703
   339
  shows "A = {}"
hoelzl@40703
   340
using assms unfolding bij_betw_def by blast
hoelzl@40703
   341
hoelzl@40703
   342
lemma inj_on_imp_bij_betw:
hoelzl@40703
   343
  "inj_on f A \<Longrightarrow> bij_betw f A (f ` A)"
hoelzl@40703
   344
unfolding bij_betw_def by simp
hoelzl@40703
   345
hoelzl@39076
   346
lemma bij_def: "bij f \<longleftrightarrow> inj f \<and> surj f"
hoelzl@40702
   347
  unfolding bij_betw_def ..
hoelzl@39074
   348
paulson@13585
   349
lemma bijI: "[| inj f; surj f |] ==> bij f"
paulson@13585
   350
by (simp add: bij_def)
paulson@13585
   351
paulson@13585
   352
lemma bij_is_inj: "bij f ==> inj f"
paulson@13585
   353
by (simp add: bij_def)
paulson@13585
   354
paulson@13585
   355
lemma bij_is_surj: "bij f ==> surj f"
paulson@13585
   356
by (simp add: bij_def)
paulson@13585
   357
nipkow@26105
   358
lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A"
nipkow@26105
   359
by (simp add: bij_betw_def)
nipkow@26105
   360
nipkow@31438
   361
lemma bij_betw_trans:
nipkow@31438
   362
  "bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (g o f) A C"
nipkow@31438
   363
by(auto simp add:bij_betw_def comp_inj_on)
nipkow@31438
   364
hoelzl@40702
   365
lemma bij_comp: "bij f \<Longrightarrow> bij g \<Longrightarrow> bij (g o f)"
hoelzl@40702
   366
  by (rule bij_betw_trans)
hoelzl@40702
   367
hoelzl@40703
   368
lemma bij_betw_comp_iff:
hoelzl@40703
   369
  "bij_betw f A A' \<Longrightarrow> bij_betw f' A' A'' \<longleftrightarrow> bij_betw (f' o f) A A''"
hoelzl@40703
   370
by(auto simp add: bij_betw_def inj_on_def)
hoelzl@40703
   371
hoelzl@40703
   372
lemma bij_betw_comp_iff2:
hoelzl@40703
   373
  assumes BIJ: "bij_betw f' A' A''" and IM: "f ` A \<le> A'"
hoelzl@40703
   374
  shows "bij_betw f A A' \<longleftrightarrow> bij_betw (f' o f) A A''"
hoelzl@40703
   375
using assms
hoelzl@40703
   376
proof(auto simp add: bij_betw_comp_iff)
hoelzl@40703
   377
  assume *: "bij_betw (f' \<circ> f) A A''"
hoelzl@40703
   378
  thus "bij_betw f A A'"
hoelzl@40703
   379
  using IM
hoelzl@40703
   380
  proof(auto simp add: bij_betw_def)
hoelzl@40703
   381
    assume "inj_on (f' \<circ> f) A"
hoelzl@40703
   382
    thus "inj_on f A" using inj_on_imageI2 by blast
hoelzl@40703
   383
  next
hoelzl@40703
   384
    fix a' assume **: "a' \<in> A'"
hoelzl@40703
   385
    hence "f' a' \<in> A''" using BIJ unfolding bij_betw_def by auto
hoelzl@40703
   386
    then obtain a where 1: "a \<in> A \<and> f'(f a) = f' a'" using *
hoelzl@40703
   387
    unfolding bij_betw_def by force
hoelzl@40703
   388
    hence "f a \<in> A'" using IM by auto
hoelzl@40703
   389
    hence "f a = a'" using BIJ ** 1 unfolding bij_betw_def inj_on_def by auto
hoelzl@40703
   390
    thus "a' \<in> f ` A" using 1 by auto
hoelzl@40703
   391
  qed
hoelzl@40703
   392
qed
hoelzl@40703
   393
nipkow@26105
   394
lemma bij_betw_inv: assumes "bij_betw f A B" shows "EX g. bij_betw g B A"
nipkow@26105
   395
proof -
nipkow@26105
   396
  have i: "inj_on f A" and s: "f ` A = B"
nipkow@26105
   397
    using assms by(auto simp:bij_betw_def)
nipkow@26105
   398
  let ?P = "%b a. a:A \<and> f a = b" let ?g = "%b. The (?P b)"
nipkow@26105
   399
  { fix a b assume P: "?P b a"
nipkow@26105
   400
    hence ex1: "\<exists>a. ?P b a" using s unfolding image_def by blast
nipkow@26105
   401
    hence uex1: "\<exists>!a. ?P b a" by(blast dest:inj_onD[OF i])
nipkow@26105
   402
    hence " ?g b = a" using the1_equality[OF uex1, OF P] P by simp
nipkow@26105
   403
  } note g = this
nipkow@26105
   404
  have "inj_on ?g B"
nipkow@26105
   405
  proof(rule inj_onI)
nipkow@26105
   406
    fix x y assume "x:B" "y:B" "?g x = ?g y"
nipkow@26105
   407
    from s `x:B` obtain a1 where a1: "?P x a1" unfolding image_def by blast
nipkow@26105
   408
    from s `y:B` obtain a2 where a2: "?P y a2" unfolding image_def by blast
nipkow@26105
   409
    from g[OF a1] a1 g[OF a2] a2 `?g x = ?g y` show "x=y" by simp
nipkow@26105
   410
  qed
nipkow@26105
   411
  moreover have "?g ` B = A"
nipkow@26105
   412
  proof(auto simp:image_def)
nipkow@26105
   413
    fix b assume "b:B"
nipkow@26105
   414
    with s obtain a where P: "?P b a" unfolding image_def by blast
nipkow@26105
   415
    thus "?g b \<in> A" using g[OF P] by auto
nipkow@26105
   416
  next
nipkow@26105
   417
    fix a assume "a:A"
nipkow@26105
   418
    then obtain b where P: "?P b a" using s unfolding image_def by blast
nipkow@26105
   419
    then have "b:B" using s unfolding image_def by blast
nipkow@26105
   420
    with g[OF P] show "\<exists>b\<in>B. a = ?g b" by blast
nipkow@26105
   421
  qed
nipkow@26105
   422
  ultimately show ?thesis by(auto simp:bij_betw_def)
nipkow@26105
   423
qed
nipkow@26105
   424
hoelzl@40703
   425
lemma bij_betw_cong:
hoelzl@40703
   426
  "(\<And> a. a \<in> A \<Longrightarrow> f a = g a) \<Longrightarrow> bij_betw f A A' = bij_betw g A A'"
hoelzl@40703
   427
unfolding bij_betw_def inj_on_def by force
hoelzl@40703
   428
hoelzl@40703
   429
lemma bij_betw_id[intro, simp]:
hoelzl@40703
   430
  "bij_betw id A A"
hoelzl@40703
   431
unfolding bij_betw_def id_def by auto
hoelzl@40703
   432
hoelzl@40703
   433
lemma bij_betw_id_iff:
hoelzl@40703
   434
  "bij_betw id A B \<longleftrightarrow> A = B"
hoelzl@40703
   435
by(auto simp add: bij_betw_def)
hoelzl@40703
   436
hoelzl@39075
   437
lemma bij_betw_combine:
hoelzl@39075
   438
  assumes "bij_betw f A B" "bij_betw f C D" "B \<inter> D = {}"
hoelzl@39075
   439
  shows "bij_betw f (A \<union> C) (B \<union> D)"
hoelzl@39075
   440
  using assms unfolding bij_betw_def inj_on_Un image_Un by auto
hoelzl@39075
   441
hoelzl@40703
   442
lemma bij_betw_UNION_chain:
hoelzl@40703
   443
  assumes CH: "\<And> i j. \<lbrakk>i \<in> I; j \<in> I\<rbrakk> \<Longrightarrow> A i \<le> A j \<or> A j \<le> A i" and
hoelzl@40703
   444
         BIJ: "\<And> i. i \<in> I \<Longrightarrow> bij_betw f (A i) (A' i)"
hoelzl@40703
   445
  shows "bij_betw f (\<Union> i \<in> I. A i) (\<Union> i \<in> I. A' i)"
haftmann@49905
   446
proof (unfold bij_betw_def, auto)
hoelzl@40703
   447
  have "\<And> i. i \<in> I \<Longrightarrow> inj_on f (A i)"
hoelzl@40703
   448
  using BIJ bij_betw_def[of f] by auto
hoelzl@40703
   449
  thus "inj_on f (\<Union> i \<in> I. A i)"
hoelzl@40703
   450
  using CH inj_on_UNION_chain[of I A f] by auto
hoelzl@40703
   451
next
hoelzl@40703
   452
  fix i x
hoelzl@40703
   453
  assume *: "i \<in> I" "x \<in> A i"
hoelzl@40703
   454
  hence "f x \<in> A' i" using BIJ bij_betw_def[of f] by auto
hoelzl@40703
   455
  thus "\<exists>j \<in> I. f x \<in> A' j" using * by blast
hoelzl@40703
   456
next
hoelzl@40703
   457
  fix i x'
hoelzl@40703
   458
  assume *: "i \<in> I" "x' \<in> A' i"
hoelzl@40703
   459
  hence "\<exists>x \<in> A i. x' = f x" using BIJ bij_betw_def[of f] by blast
haftmann@49905
   460
  then have "\<exists>j \<in> I. \<exists>x \<in> A j. x' = f x"
haftmann@49905
   461
    using * by blast
haftmann@49905
   462
  then show "x' \<in> f ` (\<Union>x\<in>I. A x)" by (simp add: image_def)
hoelzl@40703
   463
qed
hoelzl@40703
   464
hoelzl@40703
   465
lemma bij_betw_subset:
hoelzl@40703
   466
  assumes BIJ: "bij_betw f A A'" and
hoelzl@40703
   467
          SUB: "B \<le> A" and IM: "f ` B = B'"
hoelzl@40703
   468
  shows "bij_betw f B B'"
hoelzl@40703
   469
using assms
hoelzl@40703
   470
by(unfold bij_betw_def inj_on_def, auto simp add: inj_on_def)
hoelzl@40703
   471
paulson@13585
   472
lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A"
hoelzl@40702
   473
by simp
paulson@13585
   474
hoelzl@42903
   475
lemma surj_vimage_empty:
hoelzl@42903
   476
  assumes "surj f" shows "f -` A = {} \<longleftrightarrow> A = {}"
hoelzl@42903
   477
  using surj_image_vimage_eq[OF `surj f`, of A]
nipkow@44890
   478
  by (intro iffI) fastforce+
hoelzl@42903
   479
paulson@13585
   480
lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A"
paulson@13585
   481
by (simp add: inj_on_def, blast)
paulson@13585
   482
paulson@13585
   483
lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A"
hoelzl@40702
   484
by (blast intro: sym)
paulson@13585
   485
paulson@13585
   486
lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A"
paulson@13585
   487
by (unfold inj_on_def, blast)
paulson@13585
   488
paulson@13585
   489
lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)"
paulson@13585
   490
apply (unfold bij_def)
paulson@13585
   491
apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD)
paulson@13585
   492
done
paulson@13585
   493
Andreas@53927
   494
lemma inj_on_image_eq_iff: "\<lbrakk> inj_on f C; A \<subseteq> C; B \<subseteq> C \<rbrakk> \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B"
Andreas@53927
   495
by(fastforce simp add: inj_on_def)
Andreas@53927
   496
nipkow@31438
   497
lemma inj_on_Un_image_eq_iff: "inj_on f (A \<union> B) \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B"
Andreas@53927
   498
by(erule inj_on_image_eq_iff) simp_all
nipkow@31438
   499
paulson@13585
   500
lemma inj_on_image_Int:
paulson@13585
   501
   "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A Int B) = f`A Int f`B"
paulson@13585
   502
apply (simp add: inj_on_def, blast)
paulson@13585
   503
done
paulson@13585
   504
paulson@13585
   505
lemma inj_on_image_set_diff:
paulson@13585
   506
   "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A-B) = f`A - f`B"
paulson@13585
   507
apply (simp add: inj_on_def, blast)
paulson@13585
   508
done
paulson@13585
   509
paulson@13585
   510
lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B"
paulson@13585
   511
by (simp add: inj_on_def, blast)
paulson@13585
   512
paulson@13585
   513
lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B"
paulson@13585
   514
by (simp add: inj_on_def, blast)
paulson@13585
   515
paulson@13585
   516
lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)"
paulson@13585
   517
by (blast dest: injD)
paulson@13585
   518
paulson@13585
   519
lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)"
paulson@13585
   520
by (simp add: inj_on_def, blast)
paulson@13585
   521
paulson@13585
   522
lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)"
paulson@13585
   523
by (blast dest: injD)
paulson@13585
   524
paulson@13585
   525
(*injectivity's required.  Left-to-right inclusion holds even if A is empty*)
paulson@13585
   526
lemma image_INT:
paulson@13585
   527
   "[| inj_on f C;  ALL x:A. B x <= C;  j:A |]
paulson@13585
   528
    ==> f ` (INTER A B) = (INT x:A. f ` B x)"
paulson@13585
   529
apply (simp add: inj_on_def, blast)
paulson@13585
   530
done
paulson@13585
   531
paulson@13585
   532
(*Compare with image_INT: no use of inj_on, and if f is surjective then
paulson@13585
   533
  it doesn't matter whether A is empty*)
paulson@13585
   534
lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)"
paulson@13585
   535
apply (simp add: bij_def)
paulson@13585
   536
apply (simp add: inj_on_def surj_def, blast)
paulson@13585
   537
done
paulson@13585
   538
paulson@13585
   539
lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)"
hoelzl@40702
   540
by auto
paulson@13585
   541
paulson@13585
   542
lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)"
paulson@13585
   543
by (auto simp add: inj_on_def)
paulson@5852
   544
paulson@13585
   545
lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)"
paulson@13585
   546
apply (simp add: bij_def)
paulson@13585
   547
apply (rule equalityI)
paulson@13585
   548
apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset)
paulson@13585
   549
done
paulson@13585
   550
haftmann@41657
   551
lemma inj_vimage_singleton: "inj f \<Longrightarrow> f -` {a} \<subseteq> {THE x. f x = a}"
haftmann@41657
   552
  -- {* The inverse image of a singleton under an injective function
haftmann@41657
   553
         is included in a singleton. *}
haftmann@41657
   554
  apply (auto simp add: inj_on_def)
haftmann@41657
   555
  apply (blast intro: the_equality [symmetric])
haftmann@41657
   556
  done
haftmann@41657
   557
hoelzl@43991
   558
lemma inj_on_vimage_singleton:
hoelzl@43991
   559
  "inj_on f A \<Longrightarrow> f -` {a} \<inter> A \<subseteq> {THE x. x \<in> A \<and> f x = a}"
hoelzl@43991
   560
  by (auto simp add: inj_on_def intro: the_equality [symmetric])
hoelzl@43991
   561
hoelzl@35584
   562
lemma (in ordered_ab_group_add) inj_uminus[simp, intro]: "inj_on uminus A"
hoelzl@35580
   563
  by (auto intro!: inj_onI)
paulson@13585
   564
hoelzl@35584
   565
lemma (in linorder) strict_mono_imp_inj_on: "strict_mono f \<Longrightarrow> inj_on f A"
hoelzl@35584
   566
  by (auto intro!: inj_onI dest: strict_mono_eq)
hoelzl@35584
   567
haftmann@41657
   568
paulson@13585
   569
subsection{*Function Updating*}
paulson@13585
   570
haftmann@44277
   571
definition fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)" where
haftmann@26147
   572
  "fun_upd f a b == % x. if x=a then b else f x"
haftmann@26147
   573
wenzelm@41229
   574
nonterminal updbinds and updbind
wenzelm@41229
   575
haftmann@26147
   576
syntax
haftmann@26147
   577
  "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
haftmann@26147
   578
  ""         :: "updbind => updbinds"             ("_")
haftmann@26147
   579
  "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
wenzelm@35115
   580
  "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000, 0] 900)
haftmann@26147
   581
haftmann@26147
   582
translations
wenzelm@35115
   583
  "_Update f (_updbinds b bs)" == "_Update (_Update f b) bs"
wenzelm@35115
   584
  "f(x:=y)" == "CONST fun_upd f x y"
haftmann@26147
   585
haftmann@26147
   586
(* Hint: to define the sum of two functions (or maps), use sum_case.
haftmann@26147
   587
         A nice infix syntax could be defined (in Datatype.thy or below) by
wenzelm@35115
   588
notation
wenzelm@35115
   589
  sum_case  (infixr "'(+')"80)
haftmann@26147
   590
*)
haftmann@26147
   591
paulson@13585
   592
lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)"
paulson@13585
   593
apply (simp add: fun_upd_def, safe)
paulson@13585
   594
apply (erule subst)
paulson@13585
   595
apply (rule_tac [2] ext, auto)
paulson@13585
   596
done
paulson@13585
   597
wenzelm@45603
   598
lemma fun_upd_idem: "f x = y ==> f(x:=y) = f"
wenzelm@45603
   599
  by (simp only: fun_upd_idem_iff)
paulson@13585
   600
wenzelm@45603
   601
lemma fun_upd_triv [iff]: "f(x := f x) = f"
wenzelm@45603
   602
  by (simp only: fun_upd_idem)
paulson@13585
   603
paulson@13585
   604
lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)"
paulson@17084
   605
by (simp add: fun_upd_def)
paulson@13585
   606
paulson@13585
   607
(* fun_upd_apply supersedes these two,   but they are useful
paulson@13585
   608
   if fun_upd_apply is intentionally removed from the simpset *)
paulson@13585
   609
lemma fun_upd_same: "(f(x:=y)) x = y"
paulson@13585
   610
by simp
paulson@13585
   611
paulson@13585
   612
lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z"
paulson@13585
   613
by simp
paulson@13585
   614
paulson@13585
   615
lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)"
nipkow@39302
   616
by (simp add: fun_eq_iff)
paulson@13585
   617
paulson@13585
   618
lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)"
paulson@13585
   619
by (rule ext, auto)
paulson@13585
   620
nipkow@15303
   621
lemma inj_on_fun_updI: "\<lbrakk> inj_on f A; y \<notin> f`A \<rbrakk> \<Longrightarrow> inj_on (f(x:=y)) A"
nipkow@44890
   622
by (fastforce simp:inj_on_def image_def)
nipkow@15303
   623
paulson@15510
   624
lemma fun_upd_image:
paulson@15510
   625
     "f(x:=y) ` A = (if x \<in> A then insert y (f ` (A-{x})) else f ` A)"
paulson@15510
   626
by auto
paulson@15510
   627
nipkow@31080
   628
lemma fun_upd_comp: "f \<circ> (g(x := y)) = (f \<circ> g)(x := f y)"
huffman@44921
   629
  by auto
nipkow@31080
   630
nipkow@44744
   631
lemma UNION_fun_upd:
nipkow@44744
   632
  "UNION J (A(i:=B)) = (UNION (J-{i}) A \<union> (if i\<in>J then B else {}))"
nipkow@44744
   633
by (auto split: if_splits)
nipkow@44744
   634
haftmann@26147
   635
haftmann@26147
   636
subsection {* @{text override_on} *}
haftmann@26147
   637
haftmann@44277
   638
definition override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b" where
haftmann@26147
   639
  "override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)"
nipkow@13910
   640
nipkow@15691
   641
lemma override_on_emptyset[simp]: "override_on f g {} = f"
nipkow@15691
   642
by(simp add:override_on_def)
nipkow@13910
   643
nipkow@15691
   644
lemma override_on_apply_notin[simp]: "a ~: A ==> (override_on f g A) a = f a"
nipkow@15691
   645
by(simp add:override_on_def)
nipkow@13910
   646
nipkow@15691
   647
lemma override_on_apply_in[simp]: "a : A ==> (override_on f g A) a = g a"
nipkow@15691
   648
by(simp add:override_on_def)
nipkow@13910
   649
haftmann@26147
   650
haftmann@26147
   651
subsection {* @{text swap} *}
paulson@15510
   652
haftmann@44277
   653
definition swap :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)" where
haftmann@22744
   654
  "swap a b f = f (a := f b, b:= f a)"
paulson@15510
   655
huffman@34101
   656
lemma swap_self [simp]: "swap a a f = f"
nipkow@15691
   657
by (simp add: swap_def)
paulson@15510
   658
paulson@15510
   659
lemma swap_commute: "swap a b f = swap b a f"
paulson@15510
   660
by (rule ext, simp add: fun_upd_def swap_def)
paulson@15510
   661
paulson@15510
   662
lemma swap_nilpotent [simp]: "swap a b (swap a b f) = f"
paulson@15510
   663
by (rule ext, simp add: fun_upd_def swap_def)
paulson@15510
   664
huffman@34145
   665
lemma swap_triple:
huffman@34145
   666
  assumes "a \<noteq> c" and "b \<noteq> c"
huffman@34145
   667
  shows "swap a b (swap b c (swap a b f)) = swap a c f"
nipkow@39302
   668
  using assms by (simp add: fun_eq_iff swap_def)
huffman@34145
   669
huffman@34101
   670
lemma comp_swap: "f \<circ> swap a b g = swap a b (f \<circ> g)"
huffman@34101
   671
by (rule ext, simp add: fun_upd_def swap_def)
huffman@34101
   672
hoelzl@39076
   673
lemma swap_image_eq [simp]:
hoelzl@39076
   674
  assumes "a \<in> A" "b \<in> A" shows "swap a b f ` A = f ` A"
hoelzl@39076
   675
proof -
hoelzl@39076
   676
  have subset: "\<And>f. swap a b f ` A \<subseteq> f ` A"
hoelzl@39076
   677
    using assms by (auto simp: image_iff swap_def)
hoelzl@39076
   678
  then have "swap a b (swap a b f) ` A \<subseteq> (swap a b f) ` A" .
hoelzl@39076
   679
  with subset[of f] show ?thesis by auto
hoelzl@39076
   680
qed
hoelzl@39076
   681
paulson@15510
   682
lemma inj_on_imp_inj_on_swap:
hoelzl@39076
   683
  "\<lbrakk>inj_on f A; a \<in> A; b \<in> A\<rbrakk> \<Longrightarrow> inj_on (swap a b f) A"
hoelzl@39076
   684
  by (simp add: inj_on_def swap_def, blast)
paulson@15510
   685
paulson@15510
   686
lemma inj_on_swap_iff [simp]:
hoelzl@39076
   687
  assumes A: "a \<in> A" "b \<in> A" shows "inj_on (swap a b f) A \<longleftrightarrow> inj_on f A"
hoelzl@39075
   688
proof
paulson@15510
   689
  assume "inj_on (swap a b f) A"
hoelzl@39075
   690
  with A have "inj_on (swap a b (swap a b f)) A"
hoelzl@39075
   691
    by (iprover intro: inj_on_imp_inj_on_swap)
hoelzl@39075
   692
  thus "inj_on f A" by simp
paulson@15510
   693
next
paulson@15510
   694
  assume "inj_on f A"
krauss@34209
   695
  with A show "inj_on (swap a b f) A" by (iprover intro: inj_on_imp_inj_on_swap)
paulson@15510
   696
qed
paulson@15510
   697
hoelzl@39076
   698
lemma surj_imp_surj_swap: "surj f \<Longrightarrow> surj (swap a b f)"
hoelzl@40702
   699
  by simp
paulson@15510
   700
hoelzl@39076
   701
lemma surj_swap_iff [simp]: "surj (swap a b f) \<longleftrightarrow> surj f"
hoelzl@40702
   702
  by simp
haftmann@21547
   703
hoelzl@39076
   704
lemma bij_betw_swap_iff [simp]:
hoelzl@39076
   705
  "\<lbrakk> x \<in> A; y \<in> A \<rbrakk> \<Longrightarrow> bij_betw (swap x y f) A B \<longleftrightarrow> bij_betw f A B"
hoelzl@39076
   706
  by (auto simp: bij_betw_def)
hoelzl@39076
   707
hoelzl@39076
   708
lemma bij_swap_iff [simp]: "bij (swap a b f) \<longleftrightarrow> bij f"
hoelzl@39076
   709
  by simp
hoelzl@39075
   710
wenzelm@36176
   711
hide_const (open) swap
haftmann@21547
   712
haftmann@31949
   713
subsection {* Inversion of injective functions *}
haftmann@31949
   714
nipkow@33057
   715
definition the_inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where
haftmann@44277
   716
  "the_inv_into A f == %x. THE y. y : A & f y = x"
nipkow@32961
   717
nipkow@33057
   718
lemma the_inv_into_f_f:
nipkow@33057
   719
  "[| inj_on f A;  x : A |] ==> the_inv_into A f (f x) = x"
nipkow@33057
   720
apply (simp add: the_inv_into_def inj_on_def)
krauss@34209
   721
apply blast
nipkow@32961
   722
done
nipkow@32961
   723
nipkow@33057
   724
lemma f_the_inv_into_f:
nipkow@33057
   725
  "inj_on f A ==> y : f`A  ==> f (the_inv_into A f y) = y"
nipkow@33057
   726
apply (simp add: the_inv_into_def)
nipkow@32961
   727
apply (rule the1I2)
nipkow@32961
   728
 apply(blast dest: inj_onD)
nipkow@32961
   729
apply blast
nipkow@32961
   730
done
nipkow@32961
   731
nipkow@33057
   732
lemma the_inv_into_into:
nipkow@33057
   733
  "[| inj_on f A; x : f ` A; A <= B |] ==> the_inv_into A f x : B"
nipkow@33057
   734
apply (simp add: the_inv_into_def)
nipkow@32961
   735
apply (rule the1I2)
nipkow@32961
   736
 apply(blast dest: inj_onD)
nipkow@32961
   737
apply blast
nipkow@32961
   738
done
nipkow@32961
   739
nipkow@33057
   740
lemma the_inv_into_onto[simp]:
nipkow@33057
   741
  "inj_on f A ==> the_inv_into A f ` (f ` A) = A"
nipkow@33057
   742
by (fast intro:the_inv_into_into the_inv_into_f_f[symmetric])
nipkow@32961
   743
nipkow@33057
   744
lemma the_inv_into_f_eq:
nipkow@33057
   745
  "[| inj_on f A; f x = y; x : A |] ==> the_inv_into A f y = x"
nipkow@32961
   746
  apply (erule subst)
nipkow@33057
   747
  apply (erule the_inv_into_f_f, assumption)
nipkow@32961
   748
  done
nipkow@32961
   749
nipkow@33057
   750
lemma the_inv_into_comp:
nipkow@32961
   751
  "[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==>
nipkow@33057
   752
  the_inv_into A (f o g) x = (the_inv_into A g o the_inv_into (g ` A) f) x"
nipkow@33057
   753
apply (rule the_inv_into_f_eq)
nipkow@32961
   754
  apply (fast intro: comp_inj_on)
nipkow@33057
   755
 apply (simp add: f_the_inv_into_f the_inv_into_into)
nipkow@33057
   756
apply (simp add: the_inv_into_into)
nipkow@32961
   757
done
nipkow@32961
   758
nipkow@33057
   759
lemma inj_on_the_inv_into:
nipkow@33057
   760
  "inj_on f A \<Longrightarrow> inj_on (the_inv_into A f) (f ` A)"
nipkow@33057
   761
by (auto intro: inj_onI simp: image_def the_inv_into_f_f)
nipkow@32961
   762
nipkow@33057
   763
lemma bij_betw_the_inv_into:
nipkow@33057
   764
  "bij_betw f A B \<Longrightarrow> bij_betw (the_inv_into A f) B A"
nipkow@33057
   765
by (auto simp add: bij_betw_def inj_on_the_inv_into the_inv_into_into)
nipkow@32961
   766
berghofe@32998
   767
abbreviation the_inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where
nipkow@33057
   768
  "the_inv f \<equiv> the_inv_into UNIV f"
berghofe@32998
   769
berghofe@32998
   770
lemma the_inv_f_f:
berghofe@32998
   771
  assumes "inj f"
berghofe@32998
   772
  shows "the_inv f (f x) = x" using assms UNIV_I
nipkow@33057
   773
  by (rule the_inv_into_f_f)
berghofe@32998
   774
haftmann@44277
   775
hoelzl@40703
   776
subsection {* Cantor's Paradox *}
hoelzl@40703
   777
blanchet@54147
   778
lemma Cantors_paradox:
hoelzl@40703
   779
  "\<not>(\<exists>f. f ` A = Pow A)"
hoelzl@40703
   780
proof clarify
hoelzl@40703
   781
  fix f assume "f ` A = Pow A" hence *: "Pow A \<le> f ` A" by blast
hoelzl@40703
   782
  let ?X = "{a \<in> A. a \<notin> f a}"
hoelzl@40703
   783
  have "?X \<in> Pow A" unfolding Pow_def by auto
hoelzl@40703
   784
  with * obtain x where "x \<in> A \<and> f x = ?X" by blast
hoelzl@40703
   785
  thus False by best
hoelzl@40703
   786
qed
haftmann@31949
   787
haftmann@40969
   788
subsection {* Setup *} 
haftmann@40969
   789
haftmann@40969
   790
subsubsection {* Proof tools *}
haftmann@22845
   791
haftmann@22845
   792
text {* simplifies terms of the form
haftmann@22845
   793
  f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *}
haftmann@22845
   794
wenzelm@24017
   795
simproc_setup fun_upd2 ("f(v := w, x := y)") = {* fn _ =>
haftmann@22845
   796
let
haftmann@22845
   797
  fun gen_fun_upd NONE T _ _ = NONE
wenzelm@24017
   798
    | gen_fun_upd (SOME f) T x y = SOME (Const (@{const_name fun_upd}, T) $ f $ x $ y)
haftmann@22845
   799
  fun dest_fun_T1 (Type (_, T :: Ts)) = T
haftmann@22845
   800
  fun find_double (t as Const (@{const_name fun_upd},T) $ f $ x $ y) =
haftmann@22845
   801
    let
haftmann@22845
   802
      fun find (Const (@{const_name fun_upd},T) $ g $ v $ w) =
haftmann@22845
   803
            if v aconv x then SOME g else gen_fun_upd (find g) T v w
haftmann@22845
   804
        | find t = NONE
haftmann@22845
   805
    in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end
wenzelm@24017
   806
wenzelm@51717
   807
  val ss = simpset_of @{context}
wenzelm@51717
   808
wenzelm@51717
   809
  fun proc ctxt ct =
wenzelm@24017
   810
    let
wenzelm@24017
   811
      val t = Thm.term_of ct
wenzelm@24017
   812
    in
wenzelm@24017
   813
      case find_double t of
wenzelm@24017
   814
        (T, NONE) => NONE
wenzelm@24017
   815
      | (T, SOME rhs) =>
wenzelm@27330
   816
          SOME (Goal.prove ctxt [] [] (Logic.mk_equals (t, rhs))
wenzelm@24017
   817
            (fn _ =>
wenzelm@24017
   818
              rtac eq_reflection 1 THEN
wenzelm@24017
   819
              rtac ext 1 THEN
wenzelm@51717
   820
              simp_tac (put_simpset ss ctxt) 1))
wenzelm@24017
   821
    end
wenzelm@24017
   822
in proc end
haftmann@22845
   823
*}
haftmann@22845
   824
haftmann@22845
   825
haftmann@40969
   826
subsubsection {* Functorial structure of types *}
haftmann@40969
   827
wenzelm@48891
   828
ML_file "Tools/enriched_type.ML"
haftmann@40969
   829
haftmann@47488
   830
enriched_type map_fun: map_fun
haftmann@47488
   831
  by (simp_all add: fun_eq_iff)
haftmann@47488
   832
haftmann@47488
   833
enriched_type vimage
haftmann@49739
   834
  by (simp_all add: fun_eq_iff vimage_comp)
haftmann@49739
   835
haftmann@49739
   836
text {* Legacy theorem names *}
haftmann@49739
   837
haftmann@49739
   838
lemmas o_def = comp_def
haftmann@49739
   839
lemmas o_apply = comp_apply
haftmann@49739
   840
lemmas o_assoc = comp_assoc [symmetric]
haftmann@49739
   841
lemmas id_o = id_comp
haftmann@49739
   842
lemmas o_id = comp_id
haftmann@49739
   843
lemmas o_eq_dest = comp_eq_dest
haftmann@49739
   844
lemmas o_eq_elim = comp_eq_elim
haftmann@49739
   845
lemmas image_compose = image_comp
haftmann@49739
   846
lemmas vimage_compose = vimage_comp
haftmann@47488
   847
nipkow@2912
   848
end
haftmann@47488
   849