src/HOL/Parity.thy
author hoelzl
Tue Nov 05 09:44:57 2013 +0100 (2013-11-05)
changeset 54257 5c7a3b6b05a9
parent 54228 229282d53781
child 54489 03ff4d1e6784
permissions -rw-r--r--
generalize SUP and INF to the syntactic type classes Sup and Inf
wenzelm@41959
     1
(*  Title:      HOL/Parity.thy
wenzelm@41959
     2
    Author:     Jeremy Avigad
wenzelm@41959
     3
    Author:     Jacques D. Fleuriot
wenzelm@21256
     4
*)
wenzelm@21256
     5
wenzelm@21256
     6
header {* Even and Odd for int and nat *}
wenzelm@21256
     7
wenzelm@21256
     8
theory Parity
haftmann@30738
     9
imports Main
wenzelm@21256
    10
begin
wenzelm@21256
    11
haftmann@54228
    12
class even_odd = semiring_div_parity
haftmann@54227
    13
begin
wenzelm@21256
    14
haftmann@54228
    15
definition even :: "'a \<Rightarrow> bool"
haftmann@54228
    16
where
haftmann@54228
    17
  even_def [presburger]: "even a \<longleftrightarrow> a mod 2 = 0"
haftmann@54228
    18
haftmann@54228
    19
lemma even_iff_2_dvd [algebra]:
haftmann@54228
    20
  "even a \<longleftrightarrow> 2 dvd a"
haftmann@54228
    21
  by (simp add: even_def dvd_eq_mod_eq_0)
haftmann@54228
    22
haftmann@54228
    23
lemma even_zero [simp]:
haftmann@54228
    24
  "even 0"
haftmann@54228
    25
  by (simp add: even_def)
haftmann@54228
    26
haftmann@54228
    27
lemma even_times_anything:
haftmann@54228
    28
  "even a \<Longrightarrow> even (a * b)"
haftmann@54228
    29
  by (simp add: even_iff_2_dvd)
haftmann@54228
    30
haftmann@54228
    31
lemma anything_times_even:
haftmann@54228
    32
  "even a \<Longrightarrow> even (b * a)"
haftmann@54228
    33
  by (simp add: even_iff_2_dvd)
haftmann@54228
    34
haftmann@54227
    35
abbreviation odd :: "'a \<Rightarrow> bool"
haftmann@54227
    36
where
haftmann@54228
    37
  "odd a \<equiv> \<not> even a"
haftmann@54228
    38
haftmann@54228
    39
lemma odd_times_odd:
haftmann@54228
    40
  "odd a \<Longrightarrow> odd b \<Longrightarrow> odd (a * b)" 
haftmann@54228
    41
  by (auto simp add: even_def mod_mult_left_eq)
haftmann@54228
    42
haftmann@54228
    43
lemma even_product [simp, presburger]:
haftmann@54228
    44
  "even (a * b) \<longleftrightarrow> even a \<or> even b"
haftmann@54228
    45
  apply (auto simp add: even_times_anything anything_times_even)
haftmann@54228
    46
  apply (rule ccontr)
haftmann@54228
    47
  apply (auto simp add: odd_times_odd)
haftmann@54228
    48
  done
haftmann@22390
    49
haftmann@54227
    50
end
haftmann@54227
    51
haftmann@54228
    52
instance nat and int  :: even_odd ..
haftmann@22390
    53
haftmann@54228
    54
lemma even_nat_def [presburger]:
haftmann@54228
    55
  "even x \<longleftrightarrow> even (int x)"
haftmann@54228
    56
  by (auto simp add: even_def int_eq_iff int_mult nat_mult_distrib)
haftmann@54228
    57
  
haftmann@33318
    58
lemma transfer_int_nat_relations:
haftmann@33318
    59
  "even (int x) \<longleftrightarrow> even x"
haftmann@33318
    60
  by (simp add: even_nat_def)
haftmann@33318
    61
haftmann@35644
    62
declare transfer_morphism_int_nat[transfer add return:
haftmann@33318
    63
  transfer_int_nat_relations
haftmann@33318
    64
]
wenzelm@21256
    65
haftmann@54228
    66
lemma odd_one_int [simp]:
haftmann@54228
    67
  "odd (1::int)"
haftmann@54228
    68
  by presburger
nipkow@31148
    69
haftmann@54228
    70
lemma odd_1_nat [simp]:
haftmann@54228
    71
  "odd (1::nat)"
haftmann@54228
    72
  by presburger
nipkow@31148
    73
huffman@47224
    74
lemma even_numeral_int [simp]: "even (numeral (Num.Bit0 k) :: int)"
huffman@47224
    75
  unfolding even_def by simp
huffman@47224
    76
huffman@47224
    77
lemma odd_numeral_int [simp]: "odd (numeral (Num.Bit1 k) :: int)"
huffman@47224
    78
  unfolding even_def by simp
huffman@47224
    79
huffman@47108
    80
(* TODO: proper simp rules for Num.Bit0, Num.Bit1 *)
haftmann@54227
    81
declare even_def [of "neg_numeral v", simp] for v
nipkow@31148
    82
huffman@47224
    83
lemma even_numeral_nat [simp]: "even (numeral (Num.Bit0 k) :: nat)"
huffman@47224
    84
  unfolding even_nat_def by simp
huffman@47224
    85
huffman@47224
    86
lemma odd_numeral_nat [simp]: "odd (numeral (Num.Bit1 k) :: nat)"
huffman@47224
    87
  unfolding even_nat_def by simp
nipkow@31148
    88
wenzelm@21256
    89
subsection {* Even and odd are mutually exclusive *}
wenzelm@21256
    90
haftmann@25600
    91
wenzelm@21256
    92
subsection {* Behavior under integer arithmetic operations *}
wenzelm@21256
    93
wenzelm@21256
    94
lemma even_plus_even: "even (x::int) ==> even y ==> even (x + y)"
nipkow@31148
    95
by presburger
wenzelm@21256
    96
wenzelm@21256
    97
lemma even_plus_odd: "even (x::int) ==> odd y ==> odd (x + y)"
nipkow@31148
    98
by presburger
wenzelm@21256
    99
wenzelm@21256
   100
lemma odd_plus_even: "odd (x::int) ==> even y ==> odd (x + y)"
nipkow@31148
   101
by presburger
wenzelm@21256
   102
chaieb@23522
   103
lemma odd_plus_odd: "odd (x::int) ==> odd y ==> even (x + y)" by presburger
wenzelm@21256
   104
nipkow@31148
   105
lemma even_sum[simp,presburger]:
nipkow@31148
   106
  "even ((x::int) + y) = ((even x & even y) | (odd x & odd y))"
nipkow@31148
   107
by presburger
wenzelm@21256
   108
nipkow@31148
   109
lemma even_neg[simp,presburger,algebra]: "even (-(x::int)) = even x"
nipkow@31148
   110
by presburger
wenzelm@21256
   111
nipkow@31148
   112
lemma even_difference[simp]:
chaieb@23522
   113
    "even ((x::int) - y) = ((even x & even y) | (odd x & odd y))" by presburger
wenzelm@21256
   114
nipkow@31148
   115
lemma even_power[simp,presburger]: "even ((x::int)^n) = (even x & n \<noteq> 0)"
nipkow@31148
   116
by (induct n) auto
wenzelm@21256
   117
nipkow@31148
   118
lemma odd_pow: "odd x ==> odd((x::int)^n)" by simp
wenzelm@21256
   119
wenzelm@21256
   120
wenzelm@21256
   121
subsection {* Equivalent definitions *}
wenzelm@21256
   122
chaieb@23522
   123
lemma two_times_even_div_two: "even (x::int) ==> 2 * (x div 2) = x" 
nipkow@31148
   124
by presburger
wenzelm@21256
   125
nipkow@31148
   126
lemma two_times_odd_div_two_plus_one:
nipkow@31148
   127
  "odd (x::int) ==> 2 * (x div 2) + 1 = x"
nipkow@31148
   128
by presburger
wenzelm@21256
   129
chaieb@23522
   130
lemma even_equiv_def: "even (x::int) = (EX y. x = 2 * y)" by presburger
wenzelm@21256
   131
chaieb@23522
   132
lemma odd_equiv_def: "odd (x::int) = (EX y. x = 2 * y + 1)" by presburger
wenzelm@21256
   133
wenzelm@21256
   134
subsection {* even and odd for nats *}
wenzelm@21256
   135
wenzelm@21256
   136
lemma pos_int_even_equiv_nat_even: "0 \<le> x ==> even x = even (nat x)"
nipkow@31148
   137
by (simp add: even_nat_def)
wenzelm@21256
   138
nipkow@31148
   139
lemma even_product_nat[simp,presburger,algebra]:
nipkow@31148
   140
  "even((x::nat) * y) = (even x | even y)"
nipkow@31148
   141
by (simp add: even_nat_def int_mult)
wenzelm@21256
   142
nipkow@31148
   143
lemma even_sum_nat[simp,presburger,algebra]:
nipkow@31148
   144
  "even ((x::nat) + y) = ((even x & even y) | (odd x & odd y))"
chaieb@23522
   145
by presburger
wenzelm@21256
   146
nipkow@31148
   147
lemma even_difference_nat[simp,presburger,algebra]:
nipkow@31148
   148
  "even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))"
nipkow@31148
   149
by presburger
wenzelm@21256
   150
nipkow@31148
   151
lemma even_Suc[simp,presburger,algebra]: "even (Suc x) = odd x"
nipkow@31148
   152
by presburger
wenzelm@21256
   153
nipkow@31148
   154
lemma even_power_nat[simp,presburger,algebra]:
nipkow@31148
   155
  "even ((x::nat)^y) = (even x & 0 < y)"
nipkow@31148
   156
by (simp add: even_nat_def int_power)
wenzelm@21256
   157
wenzelm@21256
   158
wenzelm@21256
   159
subsection {* Equivalent definitions *}
wenzelm@21256
   160
wenzelm@21256
   161
lemma even_nat_mod_two_eq_zero: "even (x::nat) ==> x mod (Suc (Suc 0)) = 0"
nipkow@31148
   162
by presburger
wenzelm@21256
   163
wenzelm@21256
   164
lemma odd_nat_mod_two_eq_one: "odd (x::nat) ==> x mod (Suc (Suc 0)) = Suc 0"
chaieb@23522
   165
by presburger
wenzelm@21256
   166
wenzelm@21263
   167
lemma even_nat_equiv_def: "even (x::nat) = (x mod Suc (Suc 0) = 0)"
nipkow@31148
   168
by presburger
wenzelm@21256
   169
wenzelm@21256
   170
lemma odd_nat_equiv_def: "odd (x::nat) = (x mod Suc (Suc 0) = Suc 0)"
nipkow@31148
   171
by presburger
wenzelm@21256
   172
wenzelm@21263
   173
lemma even_nat_div_two_times_two: "even (x::nat) ==>
chaieb@23522
   174
    Suc (Suc 0) * (x div Suc (Suc 0)) = x" by presburger
wenzelm@21256
   175
wenzelm@21263
   176
lemma odd_nat_div_two_times_two_plus_one: "odd (x::nat) ==>
chaieb@23522
   177
    Suc( Suc (Suc 0) * (x div Suc (Suc 0))) = x" by presburger
wenzelm@21256
   178
wenzelm@21256
   179
lemma even_nat_equiv_def2: "even (x::nat) = (EX y. x = Suc (Suc 0) * y)"
nipkow@31148
   180
by presburger
wenzelm@21256
   181
wenzelm@21256
   182
lemma odd_nat_equiv_def2: "odd (x::nat) = (EX y. x = Suc(Suc (Suc 0) * y))"
nipkow@31148
   183
by presburger
wenzelm@21256
   184
haftmann@25600
   185
wenzelm@21256
   186
subsection {* Parity and powers *}
wenzelm@21256
   187
haftmann@54228
   188
lemma (in comm_ring_1) neg_power_if:
haftmann@54228
   189
  "(- a) ^ n = (if even n then (a ^ n) else - (a ^ n))"
haftmann@54228
   190
  by (induct n) simp_all
wenzelm@21256
   191
haftmann@54228
   192
lemma (in comm_ring_1)
haftmann@54228
   193
  shows minus_one_even_power [simp]: "even n \<Longrightarrow> (- 1) ^ n = 1"
haftmann@54228
   194
  and minus_one_odd_power [simp]: "odd n \<Longrightarrow> (- 1) ^ n = - 1"
haftmann@54228
   195
  by (simp_all add: neg_power_if del: minus_one)
wenzelm@21256
   196
haftmann@54228
   197
lemma (in comm_ring_1)
haftmann@54228
   198
  shows neg_one_even_power [simp]: "even n \<Longrightarrow> (-1) ^ n = 1"
haftmann@54228
   199
  and neg_one_odd_power [simp]: "odd n \<Longrightarrow> (-1) ^ n = - 1"
haftmann@54228
   200
  by (simp_all add: minus_one [symmetric] del: minus_one)
wenzelm@21256
   201
wenzelm@21263
   202
lemma zero_le_even_power: "even n ==>
huffman@35631
   203
    0 <= (x::'a::{linordered_ring,monoid_mult}) ^ n"
wenzelm@21256
   204
  apply (simp add: even_nat_equiv_def2)
wenzelm@21256
   205
  apply (erule exE)
wenzelm@21256
   206
  apply (erule ssubst)
wenzelm@21256
   207
  apply (subst power_add)
wenzelm@21256
   208
  apply (rule zero_le_square)
wenzelm@21256
   209
  done
wenzelm@21256
   210
wenzelm@21263
   211
lemma zero_le_odd_power: "odd n ==>
haftmann@35028
   212
    (0 <= (x::'a::{linordered_idom}) ^ n) = (0 <= x)"
huffman@35216
   213
apply (auto simp: odd_nat_equiv_def2 power_add zero_le_mult_iff)
haftmann@36722
   214
apply (metis field_power_not_zero divisors_zero order_antisym_conv zero_le_square)
nipkow@30056
   215
done
wenzelm@21256
   216
haftmann@54227
   217
lemma zero_le_power_eq [presburger]: "(0 <= (x::'a::{linordered_idom}) ^ n) =
wenzelm@21256
   218
    (even n | (odd n & 0 <= x))"
wenzelm@21256
   219
  apply auto
wenzelm@21263
   220
  apply (subst zero_le_odd_power [symmetric])
wenzelm@21256
   221
  apply assumption+
wenzelm@21256
   222
  apply (erule zero_le_even_power)
wenzelm@21263
   223
  done
wenzelm@21256
   224
haftmann@35028
   225
lemma zero_less_power_eq[presburger]: "(0 < (x::'a::{linordered_idom}) ^ n) =
wenzelm@21256
   226
    (n = 0 | (even n & x ~= 0) | (odd n & 0 < x))"
chaieb@27668
   227
chaieb@27668
   228
  unfolding order_less_le zero_le_power_eq by auto
wenzelm@21256
   229
haftmann@35028
   230
lemma power_less_zero_eq[presburger]: "((x::'a::{linordered_idom}) ^ n < 0) =
chaieb@27668
   231
    (odd n & x < 0)"
wenzelm@21263
   232
  apply (subst linorder_not_le [symmetric])+
wenzelm@21256
   233
  apply (subst zero_le_power_eq)
wenzelm@21256
   234
  apply auto
wenzelm@21263
   235
  done
wenzelm@21256
   236
haftmann@35028
   237
lemma power_le_zero_eq[presburger]: "((x::'a::{linordered_idom}) ^ n <= 0) =
wenzelm@21256
   238
    (n ~= 0 & ((odd n & x <= 0) | (even n & x = 0)))"
wenzelm@21263
   239
  apply (subst linorder_not_less [symmetric])+
wenzelm@21256
   240
  apply (subst zero_less_power_eq)
wenzelm@21256
   241
  apply auto
wenzelm@21263
   242
  done
wenzelm@21256
   243
wenzelm@21263
   244
lemma power_even_abs: "even n ==>
haftmann@35028
   245
    (abs (x::'a::{linordered_idom}))^n = x^n"
wenzelm@21263
   246
  apply (subst power_abs [symmetric])
wenzelm@21256
   247
  apply (simp add: zero_le_even_power)
wenzelm@21263
   248
  done
wenzelm@21256
   249
wenzelm@21263
   250
lemma power_minus_even [simp]: "even n ==>
haftmann@31017
   251
    (- x)^n = (x^n::'a::{comm_ring_1})"
wenzelm@21256
   252
  apply (subst power_minus)
wenzelm@21256
   253
  apply simp
wenzelm@21263
   254
  done
wenzelm@21256
   255
wenzelm@21263
   256
lemma power_minus_odd [simp]: "odd n ==>
haftmann@31017
   257
    (- x)^n = - (x^n::'a::{comm_ring_1})"
wenzelm@21256
   258
  apply (subst power_minus)
wenzelm@21256
   259
  apply simp
wenzelm@21263
   260
  done
wenzelm@21256
   261
haftmann@35028
   262
lemma power_mono_even: fixes x y :: "'a :: {linordered_idom}"
hoelzl@29803
   263
  assumes "even n" and "\<bar>x\<bar> \<le> \<bar>y\<bar>"
hoelzl@29803
   264
  shows "x^n \<le> y^n"
hoelzl@29803
   265
proof -
hoelzl@29803
   266
  have "0 \<le> \<bar>x\<bar>" by auto
hoelzl@29803
   267
  with `\<bar>x\<bar> \<le> \<bar>y\<bar>`
hoelzl@29803
   268
  have "\<bar>x\<bar>^n \<le> \<bar>y\<bar>^n" by (rule power_mono)
hoelzl@29803
   269
  thus ?thesis unfolding power_even_abs[OF `even n`] .
hoelzl@29803
   270
qed
hoelzl@29803
   271
hoelzl@29803
   272
lemma odd_pos: "odd (n::nat) \<Longrightarrow> 0 < n" by presburger
hoelzl@29803
   273
haftmann@35028
   274
lemma power_mono_odd: fixes x y :: "'a :: {linordered_idom}"
hoelzl@29803
   275
  assumes "odd n" and "x \<le> y"
hoelzl@29803
   276
  shows "x^n \<le> y^n"
hoelzl@29803
   277
proof (cases "y < 0")
hoelzl@29803
   278
  case True with `x \<le> y` have "-y \<le> -x" and "0 \<le> -y" by auto
hoelzl@29803
   279
  hence "(-y)^n \<le> (-x)^n" by (rule power_mono)
hoelzl@29803
   280
  thus ?thesis unfolding power_minus_odd[OF `odd n`] by auto
hoelzl@29803
   281
next
hoelzl@29803
   282
  case False
hoelzl@29803
   283
  show ?thesis
hoelzl@29803
   284
  proof (cases "x < 0")
hoelzl@29803
   285
    case True hence "n \<noteq> 0" and "x \<le> 0" using `odd n`[THEN odd_pos] by auto
hoelzl@29803
   286
    hence "x^n \<le> 0" unfolding power_le_zero_eq using `odd n` by auto
hoelzl@29803
   287
    moreover
hoelzl@29803
   288
    from `\<not> y < 0` have "0 \<le> y" by auto
hoelzl@29803
   289
    hence "0 \<le> y^n" by auto
hoelzl@29803
   290
    ultimately show ?thesis by auto
hoelzl@29803
   291
  next
hoelzl@29803
   292
    case False hence "0 \<le> x" by auto
hoelzl@29803
   293
    with `x \<le> y` show ?thesis using power_mono by auto
hoelzl@29803
   294
  qed
hoelzl@29803
   295
qed
wenzelm@21263
   296
haftmann@25600
   297
haftmann@25600
   298
subsection {* More Even/Odd Results *}
haftmann@25600
   299
 
chaieb@27668
   300
lemma even_mult_two_ex: "even(n) = (\<exists>m::nat. n = 2*m)" by presburger
chaieb@27668
   301
lemma odd_Suc_mult_two_ex: "odd(n) = (\<exists>m. n = Suc (2*m))" by presburger
chaieb@27668
   302
lemma even_add [simp]: "even(m + n::nat) = (even m = even n)"  by presburger
haftmann@25600
   303
chaieb@27668
   304
lemma odd_add [simp]: "odd(m + n::nat) = (odd m \<noteq> odd n)" by presburger
haftmann@25600
   305
chaieb@27668
   306
lemma lemma_even_div2 [simp]: "even (n::nat) ==> (n + 1) div 2 = n div 2" by presburger
haftmann@25600
   307
haftmann@25600
   308
lemma lemma_not_even_div2 [simp]: "~even n ==> (n + 1) div 2 = Suc (n div 2)"
chaieb@27668
   309
by presburger
haftmann@25600
   310
chaieb@27668
   311
lemma even_num_iff: "0 < n ==> even n = (~ even(n - 1 :: nat))"  by presburger
chaieb@27668
   312
lemma even_even_mod_4_iff: "even (n::nat) = even (n mod 4)" by presburger
haftmann@25600
   313
chaieb@27668
   314
lemma lemma_odd_mod_4_div_2: "n mod 4 = (3::nat) ==> odd((n - 1) div 2)" by presburger
haftmann@25600
   315
haftmann@25600
   316
lemma lemma_even_mod_4_div_2: "n mod 4 = (1::nat) ==> even ((n - 1) div 2)"
chaieb@27668
   317
  by presburger
haftmann@25600
   318
wenzelm@21263
   319
text {* Simplify, when the exponent is a numeral *}
wenzelm@21256
   320
huffman@47108
   321
lemmas zero_le_power_eq_numeral [simp] =
haftmann@54227
   322
  zero_le_power_eq [of _ "numeral w"] for w
wenzelm@21256
   323
huffman@47108
   324
lemmas zero_less_power_eq_numeral [simp] =
haftmann@54227
   325
  zero_less_power_eq [of _ "numeral w"] for w
wenzelm@21256
   326
huffman@47108
   327
lemmas power_le_zero_eq_numeral [simp] =
haftmann@54227
   328
  power_le_zero_eq [of _ "numeral w"] for w
wenzelm@21256
   329
huffman@47108
   330
lemmas power_less_zero_eq_numeral [simp] =
haftmann@54227
   331
  power_less_zero_eq [of _ "numeral w"] for w
wenzelm@21256
   332
huffman@47108
   333
lemmas zero_less_power_nat_eq_numeral [simp] =
haftmann@54227
   334
  nat_zero_less_power_iff [of _ "numeral w"] for w
wenzelm@21256
   335
haftmann@54227
   336
lemmas power_eq_0_iff_numeral [simp] =
haftmann@54227
   337
  power_eq_0_iff [of _ "numeral w"] for w
wenzelm@21256
   338
haftmann@54227
   339
lemmas power_even_abs_numeral [simp] =
haftmann@54227
   340
  power_even_abs [of "numeral w" _] for w
wenzelm@21256
   341
wenzelm@21256
   342
wenzelm@21256
   343
subsection {* An Equivalence for @{term [source] "0 \<le> a^n"} *}
wenzelm@21256
   344
chaieb@23522
   345
lemma zero_le_power_iff[presburger]:
haftmann@35028
   346
  "(0 \<le> a^n) = (0 \<le> (a::'a::{linordered_idom}) | even n)"
wenzelm@21256
   347
proof cases
wenzelm@21256
   348
  assume even: "even n"
wenzelm@21256
   349
  then obtain k where "n = 2*k"
wenzelm@21256
   350
    by (auto simp add: even_nat_equiv_def2 numeral_2_eq_2)
wenzelm@21263
   351
  thus ?thesis by (simp add: zero_le_even_power even)
wenzelm@21256
   352
next
wenzelm@21256
   353
  assume odd: "odd n"
wenzelm@21256
   354
  then obtain k where "n = Suc(2*k)"
wenzelm@21256
   355
    by (auto simp add: odd_nat_equiv_def2 numeral_2_eq_2)
haftmann@54227
   356
  moreover have "a ^ (2 * k) \<le> 0 \<Longrightarrow> a = 0"
haftmann@54227
   357
    by (induct k) (auto simp add: zero_le_mult_iff mult_le_0_iff)
haftmann@54227
   358
  ultimately show ?thesis
haftmann@54227
   359
    by (auto simp add: zero_le_mult_iff zero_le_even_power)
wenzelm@21263
   360
qed
wenzelm@21263
   361
wenzelm@21256
   362
wenzelm@21256
   363
subsection {* Miscellaneous *}
wenzelm@21256
   364
chaieb@23522
   365
lemma [presburger]:"(x + 1) div 2 = x div 2 \<longleftrightarrow> even (x::int)" by presburger
chaieb@23522
   366
lemma [presburger]: "(x + 1) div 2 = x div 2 + 1 \<longleftrightarrow> odd (x::int)" by presburger
chaieb@23522
   367
lemma even_plus_one_div_two: "even (x::int) ==> (x + 1) div 2 = x div 2"  by presburger
chaieb@23522
   368
lemma odd_plus_one_div_two: "odd (x::int) ==> (x + 1) div 2 = x div 2 + 1" by presburger
wenzelm@21256
   369
chaieb@23522
   370
lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger
wenzelm@21263
   371
lemma even_nat_plus_one_div_two: "even (x::nat) ==>
chaieb@23522
   372
    (Suc x) div Suc (Suc 0) = x div Suc (Suc 0)" by presburger
wenzelm@21256
   373
wenzelm@21263
   374
lemma odd_nat_plus_one_div_two: "odd (x::nat) ==>
chaieb@23522
   375
    (Suc x) div Suc (Suc 0) = Suc (x div Suc (Suc 0))" by presburger
wenzelm@21256
   376
wenzelm@21256
   377
end
haftmann@54227
   378