wenzelm@37936
|
1 |
(* Title: HOL/UNITY/SubstAx.thy
|
paulson@4776
|
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
paulson@4776
|
3 |
Copyright 1998 University of Cambridge
|
paulson@4776
|
4 |
|
paulson@6536
|
5 |
Weak LeadsTo relation (restricted to the set of reachable states)
|
paulson@4776
|
6 |
*)
|
paulson@4776
|
7 |
|
paulson@13798
|
8 |
header{*Weak Progress*}
|
paulson@13798
|
9 |
|
haftmann@16417
|
10 |
theory SubstAx imports WFair Constrains begin
|
paulson@4776
|
11 |
|
haftmann@35416
|
12 |
definition Ensures :: "['a set, 'a set] => 'a program set" (infixl "Ensures" 60) where
|
paulson@13805
|
13 |
"A Ensures B == {F. F \<in> (reachable F \<inter> A) ensures B}"
|
paulson@8122
|
14 |
|
haftmann@35416
|
15 |
definition LeadsTo :: "['a set, 'a set] => 'a program set" (infixl "LeadsTo" 60) where
|
paulson@13805
|
16 |
"A LeadsTo B == {F. F \<in> (reachable F \<inter> A) leadsTo B}"
|
paulson@4776
|
17 |
|
wenzelm@35355
|
18 |
notation (xsymbols)
|
wenzelm@35355
|
19 |
LeadsTo (infixl " \<longmapsto>w " 60)
|
paulson@13796
|
20 |
|
paulson@13796
|
21 |
|
paulson@13812
|
22 |
text{*Resembles the previous definition of LeadsTo*}
|
paulson@13796
|
23 |
lemma LeadsTo_eq_leadsTo:
|
paulson@13805
|
24 |
"A LeadsTo B = {F. F \<in> (reachable F \<inter> A) leadsTo (reachable F \<inter> B)}"
|
paulson@13796
|
25 |
apply (unfold LeadsTo_def)
|
paulson@13796
|
26 |
apply (blast dest: psp_stable2 intro: leadsTo_weaken)
|
paulson@13796
|
27 |
done
|
paulson@13796
|
28 |
|
paulson@13796
|
29 |
|
paulson@13798
|
30 |
subsection{*Specialized laws for handling invariants*}
|
paulson@13796
|
31 |
|
paulson@13796
|
32 |
(** Conjoining an Always property **)
|
paulson@13796
|
33 |
|
paulson@13796
|
34 |
lemma Always_LeadsTo_pre:
|
paulson@13805
|
35 |
"F \<in> Always INV ==> (F \<in> (INV \<inter> A) LeadsTo A') = (F \<in> A LeadsTo A')"
|
paulson@13805
|
36 |
by (simp add: LeadsTo_def Always_eq_includes_reachable Int_absorb2
|
paulson@13805
|
37 |
Int_assoc [symmetric])
|
paulson@13796
|
38 |
|
paulson@13796
|
39 |
lemma Always_LeadsTo_post:
|
paulson@13805
|
40 |
"F \<in> Always INV ==> (F \<in> A LeadsTo (INV \<inter> A')) = (F \<in> A LeadsTo A')"
|
paulson@13805
|
41 |
by (simp add: LeadsTo_eq_leadsTo Always_eq_includes_reachable Int_absorb2
|
paulson@13805
|
42 |
Int_assoc [symmetric])
|
paulson@13796
|
43 |
|
paulson@13805
|
44 |
(* [| F \<in> Always C; F \<in> (C \<inter> A) LeadsTo A' |] ==> F \<in> A LeadsTo A' *)
|
wenzelm@45605
|
45 |
lemmas Always_LeadsToI = Always_LeadsTo_pre [THEN iffD1]
|
paulson@13796
|
46 |
|
paulson@13805
|
47 |
(* [| F \<in> Always INV; F \<in> A LeadsTo A' |] ==> F \<in> A LeadsTo (INV \<inter> A') *)
|
wenzelm@45605
|
48 |
lemmas Always_LeadsToD = Always_LeadsTo_post [THEN iffD2]
|
paulson@13796
|
49 |
|
paulson@13796
|
50 |
|
paulson@13798
|
51 |
subsection{*Introduction rules: Basis, Trans, Union*}
|
paulson@13796
|
52 |
|
paulson@13805
|
53 |
lemma leadsTo_imp_LeadsTo: "F \<in> A leadsTo B ==> F \<in> A LeadsTo B"
|
paulson@13796
|
54 |
apply (simp add: LeadsTo_def)
|
paulson@13796
|
55 |
apply (blast intro: leadsTo_weaken_L)
|
paulson@13796
|
56 |
done
|
paulson@13796
|
57 |
|
paulson@13796
|
58 |
lemma LeadsTo_Trans:
|
paulson@13805
|
59 |
"[| F \<in> A LeadsTo B; F \<in> B LeadsTo C |] ==> F \<in> A LeadsTo C"
|
paulson@13796
|
60 |
apply (simp add: LeadsTo_eq_leadsTo)
|
paulson@13796
|
61 |
apply (blast intro: leadsTo_Trans)
|
paulson@13796
|
62 |
done
|
paulson@13796
|
63 |
|
paulson@13796
|
64 |
lemma LeadsTo_Union:
|
paulson@13805
|
65 |
"(!!A. A \<in> S ==> F \<in> A LeadsTo B) ==> F \<in> (Union S) LeadsTo B"
|
paulson@13796
|
66 |
apply (simp add: LeadsTo_def)
|
paulson@13796
|
67 |
apply (subst Int_Union)
|
paulson@13796
|
68 |
apply (blast intro: leadsTo_UN)
|
paulson@13796
|
69 |
done
|
paulson@13796
|
70 |
|
paulson@13796
|
71 |
|
paulson@13798
|
72 |
subsection{*Derived rules*}
|
paulson@13796
|
73 |
|
paulson@13805
|
74 |
lemma LeadsTo_UNIV [simp]: "F \<in> A LeadsTo UNIV"
|
paulson@13796
|
75 |
by (simp add: LeadsTo_def)
|
paulson@13796
|
76 |
|
paulson@13812
|
77 |
text{*Useful with cancellation, disjunction*}
|
paulson@13796
|
78 |
lemma LeadsTo_Un_duplicate:
|
paulson@13805
|
79 |
"F \<in> A LeadsTo (A' \<union> A') ==> F \<in> A LeadsTo A'"
|
paulson@13796
|
80 |
by (simp add: Un_ac)
|
paulson@13796
|
81 |
|
paulson@13796
|
82 |
lemma LeadsTo_Un_duplicate2:
|
paulson@13805
|
83 |
"F \<in> A LeadsTo (A' \<union> C \<union> C) ==> F \<in> A LeadsTo (A' \<union> C)"
|
paulson@13796
|
84 |
by (simp add: Un_ac)
|
paulson@13796
|
85 |
|
paulson@13796
|
86 |
lemma LeadsTo_UN:
|
paulson@13805
|
87 |
"(!!i. i \<in> I ==> F \<in> (A i) LeadsTo B) ==> F \<in> (\<Union>i \<in> I. A i) LeadsTo B"
|
haftmann@44106
|
88 |
apply (unfold SUP_def)
|
paulson@13796
|
89 |
apply (blast intro: LeadsTo_Union)
|
paulson@13796
|
90 |
done
|
paulson@13796
|
91 |
|
paulson@13812
|
92 |
text{*Binary union introduction rule*}
|
paulson@13796
|
93 |
lemma LeadsTo_Un:
|
paulson@13805
|
94 |
"[| F \<in> A LeadsTo C; F \<in> B LeadsTo C |] ==> F \<in> (A \<union> B) LeadsTo C"
|
haftmann@44106
|
95 |
using LeadsTo_UN [of "{A, B}" F id C] by auto
|
paulson@13796
|
96 |
|
paulson@13812
|
97 |
text{*Lets us look at the starting state*}
|
paulson@13796
|
98 |
lemma single_LeadsTo_I:
|
paulson@13805
|
99 |
"(!!s. s \<in> A ==> F \<in> {s} LeadsTo B) ==> F \<in> A LeadsTo B"
|
paulson@13796
|
100 |
by (subst UN_singleton [symmetric], rule LeadsTo_UN, blast)
|
paulson@13796
|
101 |
|
paulson@13805
|
102 |
lemma subset_imp_LeadsTo: "A \<subseteq> B ==> F \<in> A LeadsTo B"
|
paulson@13796
|
103 |
apply (simp add: LeadsTo_def)
|
paulson@13796
|
104 |
apply (blast intro: subset_imp_leadsTo)
|
paulson@13796
|
105 |
done
|
paulson@13796
|
106 |
|
wenzelm@45605
|
107 |
lemmas empty_LeadsTo = empty_subsetI [THEN subset_imp_LeadsTo, simp]
|
paulson@13796
|
108 |
|
wenzelm@45477
|
109 |
lemma LeadsTo_weaken_R:
|
paulson@13805
|
110 |
"[| F \<in> A LeadsTo A'; A' \<subseteq> B' |] ==> F \<in> A LeadsTo B'"
|
paulson@13805
|
111 |
apply (simp add: LeadsTo_def)
|
paulson@13796
|
112 |
apply (blast intro: leadsTo_weaken_R)
|
paulson@13796
|
113 |
done
|
paulson@13796
|
114 |
|
wenzelm@45477
|
115 |
lemma LeadsTo_weaken_L:
|
paulson@13805
|
116 |
"[| F \<in> A LeadsTo A'; B \<subseteq> A |]
|
paulson@13805
|
117 |
==> F \<in> B LeadsTo A'"
|
paulson@13805
|
118 |
apply (simp add: LeadsTo_def)
|
paulson@13796
|
119 |
apply (blast intro: leadsTo_weaken_L)
|
paulson@13796
|
120 |
done
|
paulson@13796
|
121 |
|
paulson@13796
|
122 |
lemma LeadsTo_weaken:
|
paulson@13805
|
123 |
"[| F \<in> A LeadsTo A';
|
paulson@13805
|
124 |
B \<subseteq> A; A' \<subseteq> B' |]
|
paulson@13805
|
125 |
==> F \<in> B LeadsTo B'"
|
paulson@13796
|
126 |
by (blast intro: LeadsTo_weaken_R LeadsTo_weaken_L LeadsTo_Trans)
|
paulson@13796
|
127 |
|
paulson@13796
|
128 |
lemma Always_LeadsTo_weaken:
|
paulson@13805
|
129 |
"[| F \<in> Always C; F \<in> A LeadsTo A';
|
paulson@13805
|
130 |
C \<inter> B \<subseteq> A; C \<inter> A' \<subseteq> B' |]
|
paulson@13805
|
131 |
==> F \<in> B LeadsTo B'"
|
paulson@13796
|
132 |
by (blast dest: Always_LeadsToI intro: LeadsTo_weaken intro: Always_LeadsToD)
|
paulson@13796
|
133 |
|
paulson@13796
|
134 |
(** Two theorems for "proof lattices" **)
|
paulson@13796
|
135 |
|
paulson@13805
|
136 |
lemma LeadsTo_Un_post: "F \<in> A LeadsTo B ==> F \<in> (A \<union> B) LeadsTo B"
|
paulson@13796
|
137 |
by (blast intro: LeadsTo_Un subset_imp_LeadsTo)
|
paulson@13796
|
138 |
|
paulson@13796
|
139 |
lemma LeadsTo_Trans_Un:
|
paulson@13805
|
140 |
"[| F \<in> A LeadsTo B; F \<in> B LeadsTo C |]
|
paulson@13805
|
141 |
==> F \<in> (A \<union> B) LeadsTo C"
|
paulson@13796
|
142 |
by (blast intro: LeadsTo_Un subset_imp_LeadsTo LeadsTo_weaken_L LeadsTo_Trans)
|
paulson@13796
|
143 |
|
paulson@13796
|
144 |
|
paulson@13796
|
145 |
(** Distributive laws **)
|
paulson@13796
|
146 |
|
paulson@13796
|
147 |
lemma LeadsTo_Un_distrib:
|
paulson@13805
|
148 |
"(F \<in> (A \<union> B) LeadsTo C) = (F \<in> A LeadsTo C & F \<in> B LeadsTo C)"
|
paulson@13796
|
149 |
by (blast intro: LeadsTo_Un LeadsTo_weaken_L)
|
paulson@13796
|
150 |
|
paulson@13796
|
151 |
lemma LeadsTo_UN_distrib:
|
paulson@13805
|
152 |
"(F \<in> (\<Union>i \<in> I. A i) LeadsTo B) = (\<forall>i \<in> I. F \<in> (A i) LeadsTo B)"
|
paulson@13796
|
153 |
by (blast intro: LeadsTo_UN LeadsTo_weaken_L)
|
paulson@13796
|
154 |
|
paulson@13796
|
155 |
lemma LeadsTo_Union_distrib:
|
paulson@13805
|
156 |
"(F \<in> (Union S) LeadsTo B) = (\<forall>A \<in> S. F \<in> A LeadsTo B)"
|
paulson@13796
|
157 |
by (blast intro: LeadsTo_Union LeadsTo_weaken_L)
|
paulson@13796
|
158 |
|
paulson@13796
|
159 |
|
paulson@13796
|
160 |
(** More rules using the premise "Always INV" **)
|
paulson@13796
|
161 |
|
paulson@13805
|
162 |
lemma LeadsTo_Basis: "F \<in> A Ensures B ==> F \<in> A LeadsTo B"
|
paulson@13796
|
163 |
by (simp add: Ensures_def LeadsTo_def leadsTo_Basis)
|
paulson@13796
|
164 |
|
paulson@13796
|
165 |
lemma EnsuresI:
|
paulson@13805
|
166 |
"[| F \<in> (A-B) Co (A \<union> B); F \<in> transient (A-B) |]
|
paulson@13805
|
167 |
==> F \<in> A Ensures B"
|
paulson@13796
|
168 |
apply (simp add: Ensures_def Constrains_eq_constrains)
|
paulson@13796
|
169 |
apply (blast intro: ensuresI constrains_weaken transient_strengthen)
|
paulson@13796
|
170 |
done
|
paulson@13796
|
171 |
|
paulson@13796
|
172 |
lemma Always_LeadsTo_Basis:
|
paulson@13805
|
173 |
"[| F \<in> Always INV;
|
paulson@13805
|
174 |
F \<in> (INV \<inter> (A-A')) Co (A \<union> A');
|
paulson@13805
|
175 |
F \<in> transient (INV \<inter> (A-A')) |]
|
paulson@13805
|
176 |
==> F \<in> A LeadsTo A'"
|
paulson@13796
|
177 |
apply (rule Always_LeadsToI, assumption)
|
paulson@13796
|
178 |
apply (blast intro: EnsuresI LeadsTo_Basis Always_ConstrainsD [THEN Constrains_weaken] transient_strengthen)
|
paulson@13796
|
179 |
done
|
paulson@13796
|
180 |
|
paulson@14150
|
181 |
text{*Set difference: maybe combine with @{text leadsTo_weaken_L}??
|
paulson@13812
|
182 |
This is the most useful form of the "disjunction" rule*}
|
paulson@13796
|
183 |
lemma LeadsTo_Diff:
|
paulson@13805
|
184 |
"[| F \<in> (A-B) LeadsTo C; F \<in> (A \<inter> B) LeadsTo C |]
|
paulson@13805
|
185 |
==> F \<in> A LeadsTo C"
|
paulson@13796
|
186 |
by (blast intro: LeadsTo_Un LeadsTo_weaken)
|
paulson@13796
|
187 |
|
paulson@13796
|
188 |
|
paulson@13796
|
189 |
lemma LeadsTo_UN_UN:
|
paulson@13805
|
190 |
"(!! i. i \<in> I ==> F \<in> (A i) LeadsTo (A' i))
|
paulson@13805
|
191 |
==> F \<in> (\<Union>i \<in> I. A i) LeadsTo (\<Union>i \<in> I. A' i)"
|
paulson@13796
|
192 |
apply (simp only: Union_image_eq [symmetric])
|
paulson@13796
|
193 |
apply (blast intro: LeadsTo_Union LeadsTo_weaken_R)
|
paulson@13796
|
194 |
done
|
paulson@13796
|
195 |
|
paulson@13796
|
196 |
|
paulson@13812
|
197 |
text{*Version with no index set*}
|
paulson@13796
|
198 |
lemma LeadsTo_UN_UN_noindex:
|
paulson@13805
|
199 |
"(!!i. F \<in> (A i) LeadsTo (A' i)) ==> F \<in> (\<Union>i. A i) LeadsTo (\<Union>i. A' i)"
|
paulson@13796
|
200 |
by (blast intro: LeadsTo_UN_UN)
|
paulson@13796
|
201 |
|
paulson@13812
|
202 |
text{*Version with no index set*}
|
paulson@13796
|
203 |
lemma all_LeadsTo_UN_UN:
|
paulson@13805
|
204 |
"\<forall>i. F \<in> (A i) LeadsTo (A' i)
|
paulson@13805
|
205 |
==> F \<in> (\<Union>i. A i) LeadsTo (\<Union>i. A' i)"
|
paulson@13796
|
206 |
by (blast intro: LeadsTo_UN_UN)
|
paulson@13796
|
207 |
|
paulson@13812
|
208 |
text{*Binary union version*}
|
paulson@13796
|
209 |
lemma LeadsTo_Un_Un:
|
paulson@13805
|
210 |
"[| F \<in> A LeadsTo A'; F \<in> B LeadsTo B' |]
|
paulson@13805
|
211 |
==> F \<in> (A \<union> B) LeadsTo (A' \<union> B')"
|
paulson@13796
|
212 |
by (blast intro: LeadsTo_Un LeadsTo_weaken_R)
|
paulson@13796
|
213 |
|
paulson@13796
|
214 |
|
paulson@13796
|
215 |
(** The cancellation law **)
|
paulson@13796
|
216 |
|
paulson@13796
|
217 |
lemma LeadsTo_cancel2:
|
paulson@13805
|
218 |
"[| F \<in> A LeadsTo (A' \<union> B); F \<in> B LeadsTo B' |]
|
paulson@13805
|
219 |
==> F \<in> A LeadsTo (A' \<union> B')"
|
paulson@13796
|
220 |
by (blast intro: LeadsTo_Un_Un subset_imp_LeadsTo LeadsTo_Trans)
|
paulson@13796
|
221 |
|
paulson@13796
|
222 |
lemma LeadsTo_cancel_Diff2:
|
paulson@13805
|
223 |
"[| F \<in> A LeadsTo (A' \<union> B); F \<in> (B-A') LeadsTo B' |]
|
paulson@13805
|
224 |
==> F \<in> A LeadsTo (A' \<union> B')"
|
paulson@13796
|
225 |
apply (rule LeadsTo_cancel2)
|
paulson@13796
|
226 |
prefer 2 apply assumption
|
paulson@13796
|
227 |
apply (simp_all (no_asm_simp))
|
paulson@13796
|
228 |
done
|
paulson@13796
|
229 |
|
paulson@13796
|
230 |
lemma LeadsTo_cancel1:
|
paulson@13805
|
231 |
"[| F \<in> A LeadsTo (B \<union> A'); F \<in> B LeadsTo B' |]
|
paulson@13805
|
232 |
==> F \<in> A LeadsTo (B' \<union> A')"
|
paulson@13796
|
233 |
apply (simp add: Un_commute)
|
paulson@13796
|
234 |
apply (blast intro!: LeadsTo_cancel2)
|
paulson@13796
|
235 |
done
|
paulson@13796
|
236 |
|
paulson@13796
|
237 |
lemma LeadsTo_cancel_Diff1:
|
paulson@13805
|
238 |
"[| F \<in> A LeadsTo (B \<union> A'); F \<in> (B-A') LeadsTo B' |]
|
paulson@13805
|
239 |
==> F \<in> A LeadsTo (B' \<union> A')"
|
paulson@13796
|
240 |
apply (rule LeadsTo_cancel1)
|
paulson@13796
|
241 |
prefer 2 apply assumption
|
paulson@13796
|
242 |
apply (simp_all (no_asm_simp))
|
paulson@13796
|
243 |
done
|
paulson@13796
|
244 |
|
paulson@13796
|
245 |
|
paulson@13812
|
246 |
text{*The impossibility law*}
|
paulson@13796
|
247 |
|
paulson@13812
|
248 |
text{*The set "A" may be non-empty, but it contains no reachable states*}
|
paulson@13812
|
249 |
lemma LeadsTo_empty: "[|F \<in> A LeadsTo {}; all_total F|] ==> F \<in> Always (-A)"
|
paulson@13805
|
250 |
apply (simp add: LeadsTo_def Always_eq_includes_reachable)
|
paulson@13796
|
251 |
apply (drule leadsTo_empty, auto)
|
paulson@13796
|
252 |
done
|
paulson@13796
|
253 |
|
paulson@13796
|
254 |
|
paulson@13812
|
255 |
subsection{*PSP: Progress-Safety-Progress*}
|
paulson@13796
|
256 |
|
paulson@13812
|
257 |
text{*Special case of PSP: Misra's "stable conjunction"*}
|
paulson@13796
|
258 |
lemma PSP_Stable:
|
paulson@13805
|
259 |
"[| F \<in> A LeadsTo A'; F \<in> Stable B |]
|
paulson@13805
|
260 |
==> F \<in> (A \<inter> B) LeadsTo (A' \<inter> B)"
|
paulson@13805
|
261 |
apply (simp add: LeadsTo_eq_leadsTo Stable_eq_stable)
|
paulson@13796
|
262 |
apply (drule psp_stable, assumption)
|
paulson@13796
|
263 |
apply (simp add: Int_ac)
|
paulson@13796
|
264 |
done
|
paulson@13796
|
265 |
|
paulson@13796
|
266 |
lemma PSP_Stable2:
|
paulson@13805
|
267 |
"[| F \<in> A LeadsTo A'; F \<in> Stable B |]
|
paulson@13805
|
268 |
==> F \<in> (B \<inter> A) LeadsTo (B \<inter> A')"
|
paulson@13796
|
269 |
by (simp add: PSP_Stable Int_ac)
|
paulson@13796
|
270 |
|
paulson@13796
|
271 |
lemma PSP:
|
paulson@13805
|
272 |
"[| F \<in> A LeadsTo A'; F \<in> B Co B' |]
|
paulson@13805
|
273 |
==> F \<in> (A \<inter> B') LeadsTo ((A' \<inter> B) \<union> (B' - B))"
|
paulson@13805
|
274 |
apply (simp add: LeadsTo_def Constrains_eq_constrains)
|
paulson@13796
|
275 |
apply (blast dest: psp intro: leadsTo_weaken)
|
paulson@13796
|
276 |
done
|
paulson@13796
|
277 |
|
paulson@13796
|
278 |
lemma PSP2:
|
paulson@13805
|
279 |
"[| F \<in> A LeadsTo A'; F \<in> B Co B' |]
|
paulson@13805
|
280 |
==> F \<in> (B' \<inter> A) LeadsTo ((B \<inter> A') \<union> (B' - B))"
|
paulson@13796
|
281 |
by (simp add: PSP Int_ac)
|
paulson@13796
|
282 |
|
paulson@13796
|
283 |
lemma PSP_Unless:
|
paulson@13805
|
284 |
"[| F \<in> A LeadsTo A'; F \<in> B Unless B' |]
|
paulson@13805
|
285 |
==> F \<in> (A \<inter> B) LeadsTo ((A' \<inter> B) \<union> B')"
|
paulson@13796
|
286 |
apply (unfold Unless_def)
|
paulson@13796
|
287 |
apply (drule PSP, assumption)
|
paulson@13796
|
288 |
apply (blast intro: LeadsTo_Diff LeadsTo_weaken subset_imp_LeadsTo)
|
paulson@13796
|
289 |
done
|
paulson@13796
|
290 |
|
paulson@13796
|
291 |
|
paulson@13796
|
292 |
lemma Stable_transient_Always_LeadsTo:
|
paulson@13805
|
293 |
"[| F \<in> Stable A; F \<in> transient C;
|
paulson@13805
|
294 |
F \<in> Always (-A \<union> B \<union> C) |] ==> F \<in> A LeadsTo B"
|
paulson@13796
|
295 |
apply (erule Always_LeadsTo_weaken)
|
paulson@13796
|
296 |
apply (rule LeadsTo_Diff)
|
paulson@13796
|
297 |
prefer 2
|
paulson@13796
|
298 |
apply (erule
|
paulson@13796
|
299 |
transient_imp_leadsTo [THEN leadsTo_imp_LeadsTo, THEN PSP_Stable2])
|
paulson@13796
|
300 |
apply (blast intro: subset_imp_LeadsTo)+
|
paulson@13796
|
301 |
done
|
paulson@13796
|
302 |
|
paulson@13796
|
303 |
|
paulson@13798
|
304 |
subsection{*Induction rules*}
|
paulson@13796
|
305 |
|
paulson@13796
|
306 |
(** Meta or object quantifier ????? **)
|
paulson@13796
|
307 |
lemma LeadsTo_wf_induct:
|
paulson@13796
|
308 |
"[| wf r;
|
paulson@13805
|
309 |
\<forall>m. F \<in> (A \<inter> f-`{m}) LeadsTo
|
paulson@13805
|
310 |
((A \<inter> f-`(r^-1 `` {m})) \<union> B) |]
|
paulson@13805
|
311 |
==> F \<in> A LeadsTo B"
|
paulson@13805
|
312 |
apply (simp add: LeadsTo_eq_leadsTo)
|
paulson@13796
|
313 |
apply (erule leadsTo_wf_induct)
|
paulson@13796
|
314 |
apply (blast intro: leadsTo_weaken)
|
paulson@13796
|
315 |
done
|
paulson@13796
|
316 |
|
paulson@13796
|
317 |
|
paulson@13796
|
318 |
lemma Bounded_induct:
|
paulson@13796
|
319 |
"[| wf r;
|
paulson@13805
|
320 |
\<forall>m \<in> I. F \<in> (A \<inter> f-`{m}) LeadsTo
|
paulson@13805
|
321 |
((A \<inter> f-`(r^-1 `` {m})) \<union> B) |]
|
paulson@13805
|
322 |
==> F \<in> A LeadsTo ((A - (f-`I)) \<union> B)"
|
paulson@13796
|
323 |
apply (erule LeadsTo_wf_induct, safe)
|
paulson@13805
|
324 |
apply (case_tac "m \<in> I")
|
paulson@13796
|
325 |
apply (blast intro: LeadsTo_weaken)
|
paulson@13796
|
326 |
apply (blast intro: subset_imp_LeadsTo)
|
paulson@13796
|
327 |
done
|
paulson@13796
|
328 |
|
paulson@13796
|
329 |
|
paulson@13796
|
330 |
lemma LessThan_induct:
|
paulson@13805
|
331 |
"(!!m::nat. F \<in> (A \<inter> f-`{m}) LeadsTo ((A \<inter> f-`(lessThan m)) \<union> B))
|
paulson@13805
|
332 |
==> F \<in> A LeadsTo B"
|
paulson@13805
|
333 |
by (rule wf_less_than [THEN LeadsTo_wf_induct], auto)
|
paulson@13796
|
334 |
|
paulson@13812
|
335 |
text{*Integer version. Could generalize from 0 to any lower bound*}
|
paulson@13796
|
336 |
lemma integ_0_le_induct:
|
paulson@13805
|
337 |
"[| F \<in> Always {s. (0::int) \<le> f s};
|
paulson@13805
|
338 |
!! z. F \<in> (A \<inter> {s. f s = z}) LeadsTo
|
paulson@13805
|
339 |
((A \<inter> {s. f s < z}) \<union> B) |]
|
paulson@13805
|
340 |
==> F \<in> A LeadsTo B"
|
paulson@13796
|
341 |
apply (rule_tac f = "nat o f" in LessThan_induct)
|
paulson@13796
|
342 |
apply (simp add: vimage_def)
|
paulson@13796
|
343 |
apply (rule Always_LeadsTo_weaken, assumption+)
|
paulson@13796
|
344 |
apply (auto simp add: nat_eq_iff nat_less_iff)
|
paulson@13796
|
345 |
done
|
paulson@13796
|
346 |
|
paulson@13796
|
347 |
lemma LessThan_bounded_induct:
|
paulson@13805
|
348 |
"!!l::nat. \<forall>m \<in> greaterThan l.
|
paulson@13805
|
349 |
F \<in> (A \<inter> f-`{m}) LeadsTo ((A \<inter> f-`(lessThan m)) \<union> B)
|
paulson@13805
|
350 |
==> F \<in> A LeadsTo ((A \<inter> (f-`(atMost l))) \<union> B)"
|
paulson@13805
|
351 |
apply (simp only: Diff_eq [symmetric] vimage_Compl
|
paulson@13805
|
352 |
Compl_greaterThan [symmetric])
|
paulson@13805
|
353 |
apply (rule wf_less_than [THEN Bounded_induct], simp)
|
paulson@13796
|
354 |
done
|
paulson@13796
|
355 |
|
paulson@13796
|
356 |
lemma GreaterThan_bounded_induct:
|
paulson@13805
|
357 |
"!!l::nat. \<forall>m \<in> lessThan l.
|
paulson@13805
|
358 |
F \<in> (A \<inter> f-`{m}) LeadsTo ((A \<inter> f-`(greaterThan m)) \<union> B)
|
paulson@13805
|
359 |
==> F \<in> A LeadsTo ((A \<inter> (f-`(atLeast l))) \<union> B)"
|
paulson@13796
|
360 |
apply (rule_tac f = f and f1 = "%k. l - k"
|
paulson@13796
|
361 |
in wf_less_than [THEN wf_inv_image, THEN LeadsTo_wf_induct])
|
krauss@19769
|
362 |
apply (simp add: Image_singleton, clarify)
|
paulson@13796
|
363 |
apply (case_tac "m<l")
|
paulson@13805
|
364 |
apply (blast intro: LeadsTo_weaken_R diff_less_mono2)
|
paulson@13805
|
365 |
apply (blast intro: not_leE subset_imp_LeadsTo)
|
paulson@13796
|
366 |
done
|
paulson@13796
|
367 |
|
paulson@13796
|
368 |
|
paulson@13798
|
369 |
subsection{*Completion: Binary and General Finite versions*}
|
paulson@13796
|
370 |
|
paulson@13796
|
371 |
lemma Completion:
|
paulson@13805
|
372 |
"[| F \<in> A LeadsTo (A' \<union> C); F \<in> A' Co (A' \<union> C);
|
paulson@13805
|
373 |
F \<in> B LeadsTo (B' \<union> C); F \<in> B' Co (B' \<union> C) |]
|
paulson@13805
|
374 |
==> F \<in> (A \<inter> B) LeadsTo ((A' \<inter> B') \<union> C)"
|
paulson@13805
|
375 |
apply (simp add: LeadsTo_eq_leadsTo Constrains_eq_constrains Int_Un_distrib)
|
paulson@13796
|
376 |
apply (blast intro: completion leadsTo_weaken)
|
paulson@13796
|
377 |
done
|
paulson@13796
|
378 |
|
paulson@13796
|
379 |
lemma Finite_completion_lemma:
|
paulson@13796
|
380 |
"finite I
|
paulson@13805
|
381 |
==> (\<forall>i \<in> I. F \<in> (A i) LeadsTo (A' i \<union> C)) -->
|
paulson@13805
|
382 |
(\<forall>i \<in> I. F \<in> (A' i) Co (A' i \<union> C)) -->
|
paulson@13805
|
383 |
F \<in> (\<Inter>i \<in> I. A i) LeadsTo ((\<Inter>i \<in> I. A' i) \<union> C)"
|
paulson@13796
|
384 |
apply (erule finite_induct, auto)
|
paulson@13796
|
385 |
apply (rule Completion)
|
paulson@13796
|
386 |
prefer 4
|
paulson@13796
|
387 |
apply (simp only: INT_simps [symmetric])
|
paulson@13796
|
388 |
apply (rule Constrains_INT, auto)
|
paulson@13796
|
389 |
done
|
paulson@13796
|
390 |
|
paulson@13796
|
391 |
lemma Finite_completion:
|
paulson@13796
|
392 |
"[| finite I;
|
paulson@13805
|
393 |
!!i. i \<in> I ==> F \<in> (A i) LeadsTo (A' i \<union> C);
|
paulson@13805
|
394 |
!!i. i \<in> I ==> F \<in> (A' i) Co (A' i \<union> C) |]
|
paulson@13805
|
395 |
==> F \<in> (\<Inter>i \<in> I. A i) LeadsTo ((\<Inter>i \<in> I. A' i) \<union> C)"
|
paulson@13796
|
396 |
by (blast intro: Finite_completion_lemma [THEN mp, THEN mp])
|
paulson@13796
|
397 |
|
paulson@13796
|
398 |
lemma Stable_completion:
|
paulson@13805
|
399 |
"[| F \<in> A LeadsTo A'; F \<in> Stable A';
|
paulson@13805
|
400 |
F \<in> B LeadsTo B'; F \<in> Stable B' |]
|
paulson@13805
|
401 |
==> F \<in> (A \<inter> B) LeadsTo (A' \<inter> B')"
|
paulson@13796
|
402 |
apply (unfold Stable_def)
|
paulson@13796
|
403 |
apply (rule_tac C1 = "{}" in Completion [THEN LeadsTo_weaken_R])
|
paulson@13796
|
404 |
apply (force+)
|
paulson@13796
|
405 |
done
|
paulson@13796
|
406 |
|
paulson@13796
|
407 |
lemma Finite_stable_completion:
|
paulson@13796
|
408 |
"[| finite I;
|
paulson@13805
|
409 |
!!i. i \<in> I ==> F \<in> (A i) LeadsTo (A' i);
|
paulson@13805
|
410 |
!!i. i \<in> I ==> F \<in> Stable (A' i) |]
|
paulson@13805
|
411 |
==> F \<in> (\<Inter>i \<in> I. A i) LeadsTo (\<Inter>i \<in> I. A' i)"
|
paulson@13796
|
412 |
apply (unfold Stable_def)
|
paulson@13796
|
413 |
apply (rule_tac C1 = "{}" in Finite_completion [THEN LeadsTo_weaken_R])
|
paulson@13805
|
414 |
apply (simp_all, blast+)
|
paulson@13796
|
415 |
done
|
paulson@13796
|
416 |
|
paulson@4776
|
417 |
end
|