src/HOL/Tools/Predicate_Compile/predicate_compile_aux.ML
author blanchet
Wed Feb 12 08:35:56 2014 +0100 (2014-02-12)
changeset 55399 5c8e91f884af
parent 54742 7a86358a3c0b
child 55440 721b4561007a
permissions -rw-r--r--
ported predicate compiler to 'ctr_sugar'
* * *
ported predicate compiler to 'ctr_sugar', part 2
wenzelm@33265
     1
(*  Title:      HOL/Tools/Predicate_Compile/predicate_compile_aux.ML
wenzelm@33265
     2
    Author:     Lukas Bulwahn, TU Muenchen
bulwahn@33250
     3
wenzelm@33265
     4
Auxilary functions for predicate compiler.
bulwahn@33250
     5
*)
bulwahn@33250
     6
bulwahn@36047
     7
signature PREDICATE_COMPILE_AUX =
bulwahn@36047
     8
sig
bulwahn@36047
     9
  (* general functions *)
bulwahn@36047
    10
  val apfst3 : ('a -> 'd) -> 'a * 'b * 'c -> 'd * 'b * 'c
bulwahn@36047
    11
  val apsnd3 : ('b -> 'd) -> 'a * 'b * 'c -> 'a * 'd * 'c
bulwahn@36047
    12
  val aptrd3 : ('c -> 'd) -> 'a * 'b * 'c -> 'a * 'b * 'd
bulwahn@36047
    13
  val find_indices : ('a -> bool) -> 'a list -> int list
bulwahn@36047
    14
  (* mode *)
bulwahn@36047
    15
  datatype mode = Bool | Input | Output | Pair of mode * mode | Fun of mode * mode
bulwahn@36047
    16
  val eq_mode : mode * mode -> bool
bulwahn@39311
    17
  val mode_ord: mode * mode -> order
bulwahn@36047
    18
  val list_fun_mode : mode list -> mode
bulwahn@36047
    19
  val strip_fun_mode : mode -> mode list
bulwahn@36047
    20
  val dest_fun_mode : mode -> mode list
bulwahn@36047
    21
  val dest_tuple_mode : mode -> mode list
bulwahn@36047
    22
  val all_modes_of_typ : typ -> mode list
bulwahn@36047
    23
  val all_smodes_of_typ : typ -> mode list
bulwahn@36047
    24
  val fold_map_aterms_prodT : ('a -> 'a -> 'a) -> (typ -> 'b -> 'a * 'b) -> typ -> 'b -> 'a * 'b
bulwahn@36047
    25
  val map_filter_prod : (term -> term option) -> term -> term option
bulwahn@36047
    26
  val replace_ho_args : mode -> term list -> term list -> term list
bulwahn@36047
    27
  val ho_arg_modes_of : mode -> mode list
bulwahn@36047
    28
  val ho_argsT_of : mode -> typ list -> typ list
bulwahn@36047
    29
  val ho_args_of : mode -> term list -> term list
bulwahn@39299
    30
  val ho_args_of_typ : typ -> term list -> term list
bulwahn@39299
    31
  val ho_argsT_of_typ : typ list -> typ list
bulwahn@36047
    32
  val split_map_mode : (mode -> term -> term option * term option)
bulwahn@36047
    33
    -> mode -> term list -> term list * term list
bulwahn@36047
    34
  val split_map_modeT : (mode -> typ -> typ option * typ option)
bulwahn@36047
    35
    -> mode -> typ list -> typ list * typ list
bulwahn@36047
    36
  val split_mode : mode -> term list -> term list * term list
bulwahn@40139
    37
  val split_modeT : mode -> typ list -> typ list * typ list
bulwahn@36047
    38
  val string_of_mode : mode -> string
bulwahn@36047
    39
  val ascii_string_of_mode : mode -> string
bulwahn@36047
    40
  (* premises *)
bulwahn@36047
    41
  datatype indprem = Prem of term | Negprem of term | Sidecond of term
bulwahn@36047
    42
    | Generator of (string * typ)
bulwahn@36251
    43
  val dest_indprem : indprem -> term
bulwahn@36254
    44
  val map_indprem : (term -> term) -> indprem -> indprem
bulwahn@36047
    45
  (* general syntactic functions *)
bulwahn@36047
    46
  val is_equationlike : thm -> bool
bulwahn@36047
    47
  val is_pred_equation : thm -> bool
bulwahn@36047
    48
  val is_intro : string -> thm -> bool
bulwahn@36047
    49
  val is_predT : typ -> bool
blanchet@55399
    50
  val get_constrs : theory -> (string * (int * string)) list
bulwahn@36047
    51
  val is_constrt : theory -> term -> bool
bulwahn@36047
    52
  val is_constr : Proof.context -> string -> bool
bulwahn@42094
    53
  val strip_ex : term -> (string * typ) list * term
bulwahn@36047
    54
  val focus_ex : term -> Name.context -> ((string * typ) list * term) * Name.context
bulwahn@36047
    55
  val strip_all : term -> (string * typ) list * term
bulwahn@40101
    56
  val strip_intro_concl : thm -> term * term list
bulwahn@36047
    57
  (* introduction rule combinators *)
bulwahn@36047
    58
  val map_atoms : (term -> term) -> term -> term
bulwahn@36047
    59
  val fold_atoms : (term -> 'a -> 'a) -> term -> 'a -> 'a
bulwahn@36047
    60
  val fold_map_atoms : (term -> 'a -> term * 'a) -> term -> 'a -> term * 'a
bulwahn@36047
    61
  val maps_premises : (term -> term list) -> term -> term
bulwahn@36047
    62
  val map_concl : (term -> term) -> term -> term
bulwahn@36047
    63
  val map_term : theory -> (term -> term) -> thm -> thm
bulwahn@36047
    64
  (* split theorems of case expressions *)
bulwahn@36047
    65
  val prepare_split_thm : Proof.context -> thm -> thm
bulwahn@36047
    66
  val find_split_thm : theory -> term -> thm option
bulwahn@36047
    67
  (* datastructures and setup for generic compilation *)
bulwahn@36047
    68
  datatype compilation_funs = CompilationFuns of {
bulwahn@45461
    69
    mk_monadT : typ -> typ,
bulwahn@45461
    70
    dest_monadT : typ -> typ,
bulwahn@45461
    71
    mk_empty : typ -> term,
bulwahn@36047
    72
    mk_single : term -> term,
bulwahn@36047
    73
    mk_bind : term * term -> term,
bulwahn@45461
    74
    mk_plus : term * term -> term,
bulwahn@36047
    75
    mk_if : term -> term,
bulwahn@36049
    76
    mk_iterate_upto : typ -> term * term * term -> term,
bulwahn@36047
    77
    mk_not : term -> term,
bulwahn@36047
    78
    mk_map : typ -> typ -> term -> term -> term
bulwahn@36047
    79
  };
bulwahn@45461
    80
  val mk_monadT : compilation_funs -> typ -> typ
bulwahn@45461
    81
  val dest_monadT : compilation_funs -> typ -> typ
bulwahn@45461
    82
  val mk_empty : compilation_funs -> typ -> term
bulwahn@36047
    83
  val mk_single : compilation_funs -> term -> term
bulwahn@36047
    84
  val mk_bind : compilation_funs -> term * term -> term
bulwahn@45461
    85
  val mk_plus : compilation_funs -> term * term -> term
bulwahn@36047
    86
  val mk_if : compilation_funs -> term -> term
bulwahn@36049
    87
  val mk_iterate_upto : compilation_funs -> typ -> term * term * term -> term
bulwahn@36047
    88
  val mk_not : compilation_funs -> term -> term
bulwahn@36047
    89
  val mk_map : compilation_funs -> typ -> typ -> term -> term -> term
bulwahn@36047
    90
  val funT_of : compilation_funs -> mode -> typ -> typ
bulwahn@36047
    91
  (* Different compilations *)
bulwahn@36047
    92
  datatype compilation = Pred | Depth_Limited | Random | Depth_Limited_Random | DSeq | Annotated
bulwahn@45450
    93
    | Pos_Random_DSeq | Neg_Random_DSeq | New_Pos_Random_DSeq | New_Neg_Random_DSeq 
bulwahn@45450
    94
    | Pos_Generator_DSeq | Neg_Generator_DSeq | Pos_Generator_CPS | Neg_Generator_CPS
bulwahn@36047
    95
  val negative_compilation_of : compilation -> compilation
bulwahn@36047
    96
  val compilation_for_polarity : bool -> compilation -> compilation
bulwahn@40049
    97
  val is_depth_limited_compilation : compilation -> bool 
bulwahn@36047
    98
  val string_of_compilation : compilation -> string
bulwahn@36047
    99
  val compilation_names : (string * compilation) list
bulwahn@36047
   100
  val non_random_compilations : compilation list
bulwahn@36047
   101
  val random_compilations : compilation list
bulwahn@36047
   102
  (* Different options for compiler *)
bulwahn@36047
   103
  datatype options = Options of {  
bulwahn@36047
   104
    expected_modes : (string * mode list) option,
bulwahn@39382
   105
    proposed_modes : (string * mode list) list,
bulwahn@36047
   106
    proposed_names : ((string * mode) * string) list,
bulwahn@36047
   107
    show_steps : bool,
bulwahn@36047
   108
    show_proof_trace : bool,
bulwahn@36047
   109
    show_intermediate_results : bool,
bulwahn@36047
   110
    show_mode_inference : bool,
bulwahn@36047
   111
    show_modes : bool,
bulwahn@36047
   112
    show_compilation : bool,
bulwahn@36047
   113
    show_caught_failures : bool,
bulwahn@39383
   114
    show_invalid_clauses : bool,
bulwahn@36047
   115
    skip_proof : bool,
bulwahn@36047
   116
    no_topmost_reordering : bool,
bulwahn@36047
   117
    function_flattening : bool,
bulwahn@36047
   118
    fail_safe_function_flattening : bool,
bulwahn@36248
   119
    specialise : bool,
bulwahn@36047
   120
    no_higher_order_predicate : string list,
bulwahn@36047
   121
    inductify : bool,
bulwahn@36254
   122
    detect_switches : bool,
bulwahn@40048
   123
    smart_depth_limiting : bool,
bulwahn@36047
   124
    compilation : compilation
bulwahn@36047
   125
  };
bulwahn@36047
   126
  val expected_modes : options -> (string * mode list) option
bulwahn@39382
   127
  val proposed_modes : options -> string -> mode list option
bulwahn@36047
   128
  val proposed_names : options -> string -> mode -> string option
bulwahn@36047
   129
  val show_steps : options -> bool
bulwahn@36047
   130
  val show_proof_trace : options -> bool
bulwahn@36047
   131
  val show_intermediate_results : options -> bool
bulwahn@36047
   132
  val show_mode_inference : options -> bool
bulwahn@36047
   133
  val show_modes : options -> bool
bulwahn@36047
   134
  val show_compilation : options -> bool
bulwahn@36047
   135
  val show_caught_failures : options -> bool
bulwahn@39383
   136
  val show_invalid_clauses : options -> bool
bulwahn@36047
   137
  val skip_proof : options -> bool
bulwahn@36047
   138
  val no_topmost_reordering : options -> bool
bulwahn@36047
   139
  val function_flattening : options -> bool
bulwahn@36047
   140
  val fail_safe_function_flattening : options -> bool
bulwahn@36248
   141
  val specialise : options -> bool
bulwahn@36047
   142
  val no_higher_order_predicate : options -> string list
bulwahn@36047
   143
  val is_inductify : options -> bool
bulwahn@36254
   144
  val detect_switches : options -> bool
bulwahn@40048
   145
  val smart_depth_limiting : options -> bool
bulwahn@36047
   146
  val compilation : options -> compilation
bulwahn@36047
   147
  val default_options : options
bulwahn@36047
   148
  val bool_options : string list
bulwahn@36047
   149
  val print_step : options -> string -> unit
bulwahn@39657
   150
  (* conversions *)
bulwahn@39657
   151
  val imp_prems_conv : conv -> conv
bulwahn@36047
   152
  (* simple transformations *)
bulwahn@39787
   153
  val split_conjuncts_in_assms : Proof.context -> thm -> thm
bulwahn@40052
   154
  val dest_conjunct_prem : thm -> thm list
bulwahn@36047
   155
  val expand_tuples : theory -> thm -> thm
bulwahn@39802
   156
  val case_betapply : theory -> term -> term
bulwahn@36047
   157
  val eta_contract_ho_arguments : theory -> thm -> thm
bulwahn@36047
   158
  val remove_equalities : theory -> thm -> thm
bulwahn@36246
   159
  val remove_pointless_clauses : thm -> thm list
bulwahn@36246
   160
  val peephole_optimisation : theory -> thm -> thm option
bulwahn@40101
   161
  (* auxillary *)
bulwahn@40101
   162
  val unify_consts : theory -> term list -> term list -> (term list * term list)
bulwahn@40101
   163
  val mk_casesrule : Proof.context -> term -> thm list -> term
bulwahn@40101
   164
  val preprocess_intro : theory -> thm -> thm
bulwahn@40101
   165
  
bulwahn@39541
   166
  val define_quickcheck_predicate :
bulwahn@40052
   167
    term -> theory -> (((string * typ) * (string * typ) list) * thm) * theory
bulwahn@36047
   168
end;
bulwahn@34948
   169
bulwahn@36047
   170
structure Predicate_Compile_Aux : PREDICATE_COMPILE_AUX =
bulwahn@33250
   171
struct
bulwahn@33250
   172
bulwahn@34948
   173
(* general functions *)
bulwahn@34948
   174
bulwahn@34948
   175
fun apfst3 f (x, y, z) = (f x, y, z)
bulwahn@34948
   176
fun apsnd3 f (x, y, z) = (x, f y, z)
bulwahn@34948
   177
fun aptrd3 f (x, y, z) = (x, y, f z)
bulwahn@34948
   178
bulwahn@34948
   179
fun comb_option f (SOME x1, SOME x2) = SOME (f (x1, x2))
bulwahn@34948
   180
  | comb_option f (NONE, SOME x2) = SOME x2
bulwahn@34948
   181
  | comb_option f (SOME x1, NONE) = SOME x1
bulwahn@34948
   182
  | comb_option f (NONE, NONE) = NONE
bulwahn@34948
   183
bulwahn@35885
   184
fun map2_optional f (x :: xs) (y :: ys) = f x (SOME y) :: (map2_optional f xs ys)
bulwahn@34948
   185
  | map2_optional f (x :: xs) [] = (f x NONE) :: (map2_optional f xs [])
bulwahn@34948
   186
  | map2_optional f [] [] = []
bulwahn@34948
   187
bulwahn@34948
   188
fun find_indices f xs =
haftmann@46662
   189
  map_filter (fn (i, true) => SOME i | (_, false) => NONE) (map_index (apsnd f) xs)
bulwahn@33328
   190
bulwahn@33328
   191
(* mode *)
bulwahn@33328
   192
bulwahn@34948
   193
datatype mode = Bool | Input | Output | Pair of mode * mode | Fun of mode * mode
bulwahn@33619
   194
bulwahn@33623
   195
(* equality of instantiatedness with respect to equivalences:
bulwahn@33623
   196
  Pair Input Input == Input and Pair Output Output == Output *)
bulwahn@34948
   197
fun eq_mode (Fun (m1, m2), Fun (m3, m4)) = eq_mode (m1, m3) andalso eq_mode (m2, m4)
bulwahn@34948
   198
  | eq_mode (Pair (m1, m2), Pair (m3, m4)) = eq_mode (m1, m3) andalso eq_mode (m2, m4)
bulwahn@34948
   199
  | eq_mode (Pair (m1, m2), Input) = eq_mode (m1, Input) andalso eq_mode (m2, Input)
bulwahn@34948
   200
  | eq_mode (Pair (m1, m2), Output) = eq_mode (m1, Output) andalso eq_mode (m2, Output)
bulwahn@34948
   201
  | eq_mode (Input, Pair (m1, m2)) = eq_mode (Input, m1) andalso eq_mode (Input, m2)
bulwahn@34948
   202
  | eq_mode (Output, Pair (m1, m2)) = eq_mode (Output, m1) andalso eq_mode (Output, m2)
bulwahn@34948
   203
  | eq_mode (Input, Input) = true
bulwahn@34948
   204
  | eq_mode (Output, Output) = true
bulwahn@34948
   205
  | eq_mode (Bool, Bool) = true
bulwahn@34948
   206
  | eq_mode _ = false
bulwahn@33623
   207
bulwahn@39311
   208
fun mode_ord (Input, Output) = LESS
bulwahn@39311
   209
  | mode_ord (Output, Input) = GREATER
bulwahn@39311
   210
  | mode_ord (Input, Input) = EQUAL
bulwahn@39311
   211
  | mode_ord (Output, Output) = EQUAL
bulwahn@39311
   212
  | mode_ord (Bool, Bool) = EQUAL
bulwahn@39311
   213
  | mode_ord (Pair (m1, m2), Pair (m3, m4)) = prod_ord mode_ord mode_ord ((m1, m2), (m3, m4))
bulwahn@39311
   214
  | mode_ord (Fun (m1, m2), Fun (m3, m4)) = prod_ord mode_ord mode_ord ((m1, m2), (m3, m4))
bulwahn@39311
   215
 
bulwahn@36035
   216
fun list_fun_mode [] = Bool
bulwahn@36035
   217
  | list_fun_mode (m :: ms) = Fun (m, list_fun_mode ms)
bulwahn@36035
   218
bulwahn@33619
   219
(* name: binder_modes? *)
bulwahn@33619
   220
fun strip_fun_mode (Fun (mode, mode')) = mode :: strip_fun_mode mode'
bulwahn@33619
   221
  | strip_fun_mode Bool = []
bulwahn@35885
   222
  | strip_fun_mode _ = raise Fail "Bad mode for strip_fun_mode"
bulwahn@33619
   223
bulwahn@36047
   224
(* name: strip_fun_mode? *)
bulwahn@33619
   225
fun dest_fun_mode (Fun (mode, mode')) = mode :: dest_fun_mode mode'
bulwahn@33619
   226
  | dest_fun_mode mode = [mode]
bulwahn@33619
   227
bulwahn@33619
   228
fun dest_tuple_mode (Pair (mode, mode')) = mode :: dest_tuple_mode mode'
bulwahn@33619
   229
  | dest_tuple_mode _ = []
bulwahn@33619
   230
bulwahn@35324
   231
fun all_modes_of_typ' (T as Type ("fun", _)) = 
bulwahn@35324
   232
  let
bulwahn@35324
   233
    val (S, U) = strip_type T
bulwahn@35324
   234
  in
bulwahn@35324
   235
    if U = HOLogic.boolT then
bulwahn@35324
   236
      fold_rev (fn m1 => fn m2 => map_product (curry Fun) m1 m2)
bulwahn@35324
   237
        (map all_modes_of_typ' S) [Bool]
bulwahn@35324
   238
    else
bulwahn@35324
   239
      [Input, Output]
bulwahn@35324
   240
  end
haftmann@37678
   241
  | all_modes_of_typ' (Type (@{type_name Product_Type.prod}, [T1, T2])) = 
bulwahn@35324
   242
    map_product (curry Pair) (all_modes_of_typ' T1) (all_modes_of_typ' T2)
bulwahn@35324
   243
  | all_modes_of_typ' _ = [Input, Output]
bulwahn@35324
   244
bulwahn@35324
   245
fun all_modes_of_typ (T as Type ("fun", _)) =
bulwahn@35885
   246
    let
bulwahn@35885
   247
      val (S, U) = strip_type T
bulwahn@35885
   248
    in
bulwahn@35885
   249
      if U = @{typ bool} then
bulwahn@35885
   250
        fold_rev (fn m1 => fn m2 => map_product (curry Fun) m1 m2)
bulwahn@35885
   251
          (map all_modes_of_typ' S) [Bool]
bulwahn@35885
   252
      else
bulwahn@39192
   253
        raise Fail "Invocation of all_modes_of_typ with a non-predicate type"
bulwahn@35885
   254
    end
bulwahn@35885
   255
  | all_modes_of_typ @{typ bool} = [Bool]
haftmann@46662
   256
  | all_modes_of_typ _ =
bulwahn@39192
   257
    raise Fail "Invocation of all_modes_of_typ with a non-predicate type"
bulwahn@34948
   258
bulwahn@35324
   259
fun all_smodes_of_typ (T as Type ("fun", _)) =
bulwahn@35324
   260
  let
bulwahn@35324
   261
    val (S, U) = strip_type T
haftmann@37678
   262
    fun all_smodes (Type (@{type_name Product_Type.prod}, [T1, T2])) = 
bulwahn@35324
   263
      map_product (curry Pair) (all_smodes T1) (all_smodes T2)
bulwahn@35324
   264
      | all_smodes _ = [Input, Output]
bulwahn@35324
   265
  in
bulwahn@35324
   266
    if U = HOLogic.boolT then
bulwahn@35324
   267
      fold_rev (fn m1 => fn m2 => map_product (curry Fun) m1 m2) (map all_smodes S) [Bool]
bulwahn@35324
   268
    else
bulwahn@36047
   269
      raise Fail "invalid type for predicate"
bulwahn@35324
   270
  end
bulwahn@35885
   271
bulwahn@34948
   272
fun ho_arg_modes_of mode =
bulwahn@34948
   273
  let
bulwahn@34948
   274
    fun ho_arg_mode (m as Fun _) =  [m]
bulwahn@34948
   275
      | ho_arg_mode (Pair (m1, m2)) = ho_arg_mode m1 @ ho_arg_mode m2
bulwahn@34948
   276
      | ho_arg_mode _ = []
bulwahn@34948
   277
  in
bulwahn@34948
   278
    maps ho_arg_mode (strip_fun_mode mode)
bulwahn@34948
   279
  end
bulwahn@34948
   280
bulwahn@34948
   281
fun ho_args_of mode ts =
bulwahn@34948
   282
  let
bulwahn@34948
   283
    fun ho_arg (Fun _) (SOME t) = [t]
bulwahn@36047
   284
      | ho_arg (Fun _) NONE = raise Fail "mode and term do not match"
bulwahn@35885
   285
      | ho_arg (Pair (m1, m2)) (SOME (Const (@{const_name Pair}, _) $ t1 $ t2)) =
bulwahn@34948
   286
          ho_arg m1 (SOME t1) @ ho_arg m2 (SOME t2)
bulwahn@34948
   287
      | ho_arg (Pair (m1, m2)) NONE = ho_arg m1 NONE @ ho_arg m2 NONE
bulwahn@34948
   288
      | ho_arg _ _ = []
bulwahn@34948
   289
  in
bulwahn@34948
   290
    flat (map2_optional ho_arg (strip_fun_mode mode) ts)
bulwahn@34948
   291
  end
bulwahn@34948
   292
bulwahn@39299
   293
fun ho_args_of_typ T ts =
bulwahn@39299
   294
  let
bulwahn@39312
   295
    fun ho_arg (T as Type("fun", [_,_])) (SOME t) = if body_type T = @{typ bool} then [t] else []
bulwahn@39299
   296
      | ho_arg (Type("fun", [_,_])) NONE = raise Fail "mode and term do not match"
bulwahn@39299
   297
      | ho_arg (Type(@{type_name "Product_Type.prod"}, [T1, T2]))
bulwahn@39299
   298
         (SOME (Const (@{const_name Pair}, _) $ t1 $ t2)) =
bulwahn@39299
   299
          ho_arg T1 (SOME t1) @ ho_arg T2 (SOME t2)
bulwahn@39299
   300
      | ho_arg (Type(@{type_name "Product_Type.prod"}, [T1, T2])) NONE =
bulwahn@39299
   301
          ho_arg T1 NONE @ ho_arg T2 NONE
bulwahn@39299
   302
      | ho_arg _ _ = []
bulwahn@39299
   303
  in
bulwahn@39299
   304
    flat (map2_optional ho_arg (binder_types T) ts)
bulwahn@39299
   305
  end
bulwahn@39299
   306
bulwahn@39299
   307
fun ho_argsT_of_typ Ts =
bulwahn@39299
   308
  let
bulwahn@39312
   309
    fun ho_arg (T as Type("fun", [_,_])) = if body_type T = @{typ bool} then [T] else []
bulwahn@39299
   310
      | ho_arg (Type(@{type_name "Product_Type.prod"}, [T1, T2])) =
bulwahn@39299
   311
          ho_arg T1 @ ho_arg T2
bulwahn@39299
   312
      | ho_arg _ = []
bulwahn@39299
   313
  in
bulwahn@39299
   314
    maps ho_arg Ts
bulwahn@39299
   315
  end
bulwahn@39299
   316
  
bulwahn@39299
   317
bulwahn@34948
   318
(* temporary function should be replaced by unsplit_input or so? *)
bulwahn@34948
   319
fun replace_ho_args mode hoargs ts =
bulwahn@34948
   320
  let
bulwahn@34948
   321
    fun replace (Fun _, _) (arg' :: hoargs') = (arg', hoargs')
haftmann@37391
   322
      | replace (Pair (m1, m2), Const (@{const_name Pair}, T) $ t1 $ t2) hoargs =
bulwahn@34948
   323
        let
bulwahn@34948
   324
          val (t1', hoargs') = replace (m1, t1) hoargs
bulwahn@34948
   325
          val (t2', hoargs'') = replace (m2, t2) hoargs'
bulwahn@34948
   326
        in
haftmann@37391
   327
          (Const (@{const_name Pair}, T) $ t1' $ t2', hoargs'')
bulwahn@34948
   328
        end
bulwahn@34948
   329
      | replace (_, t) hoargs = (t, hoargs)
bulwahn@34948
   330
  in
bulwahn@35885
   331
    fst (fold_map replace (strip_fun_mode mode ~~ ts) hoargs)
bulwahn@34948
   332
  end
bulwahn@34948
   333
bulwahn@34948
   334
fun ho_argsT_of mode Ts =
bulwahn@34948
   335
  let
bulwahn@34948
   336
    fun ho_arg (Fun _) T = [T]
haftmann@37678
   337
      | ho_arg (Pair (m1, m2)) (Type (@{type_name Product_Type.prod}, [T1, T2])) = ho_arg m1 T1 @ ho_arg m2 T2
bulwahn@34948
   338
      | ho_arg _ _ = []
bulwahn@34948
   339
  in
bulwahn@34948
   340
    flat (map2 ho_arg (strip_fun_mode mode) Ts)
bulwahn@34948
   341
  end
bulwahn@34948
   342
bulwahn@34948
   343
(* splits mode and maps function to higher-order argument types *)
bulwahn@34948
   344
fun split_map_mode f mode ts =
bulwahn@34948
   345
  let
bulwahn@34948
   346
    fun split_arg_mode' (m as Fun _) t = f m t
haftmann@37391
   347
      | split_arg_mode' (Pair (m1, m2)) (Const (@{const_name Pair}, _) $ t1 $ t2) =
bulwahn@34948
   348
        let
bulwahn@34948
   349
          val (i1, o1) = split_arg_mode' m1 t1
bulwahn@34948
   350
          val (i2, o2) = split_arg_mode' m2 t2
bulwahn@34948
   351
        in
bulwahn@34948
   352
          (comb_option HOLogic.mk_prod (i1, i2), comb_option HOLogic.mk_prod (o1, o2))
bulwahn@34948
   353
        end
bulwahn@35324
   354
      | split_arg_mode' m t =
bulwahn@35324
   355
        if eq_mode (m, Input) then (SOME t, NONE)
bulwahn@35324
   356
        else if eq_mode (m, Output) then (NONE,  SOME t)
bulwahn@35885
   357
        else raise Fail "split_map_mode: mode and term do not match"
bulwahn@34948
   358
  in
bulwahn@34948
   359
    (pairself (map_filter I) o split_list) (map2 split_arg_mode' (strip_fun_mode mode) ts)
bulwahn@34948
   360
  end
bulwahn@34948
   361
bulwahn@34948
   362
(* splits mode and maps function to higher-order argument types *)
bulwahn@34948
   363
fun split_map_modeT f mode Ts =
bulwahn@34948
   364
  let
bulwahn@34948
   365
    fun split_arg_mode' (m as Fun _) T = f m T
haftmann@37678
   366
      | split_arg_mode' (Pair (m1, m2)) (Type (@{type_name Product_Type.prod}, [T1, T2])) =
bulwahn@34948
   367
        let
bulwahn@34948
   368
          val (i1, o1) = split_arg_mode' m1 T1
bulwahn@34948
   369
          val (i2, o2) = split_arg_mode' m2 T2
bulwahn@34948
   370
        in
bulwahn@34948
   371
          (comb_option HOLogic.mk_prodT (i1, i2), comb_option HOLogic.mk_prodT (o1, o2))
bulwahn@34948
   372
        end
bulwahn@34948
   373
      | split_arg_mode' Input T = (SOME T, NONE)
bulwahn@34948
   374
      | split_arg_mode' Output T = (NONE,  SOME T)
bulwahn@35885
   375
      | split_arg_mode' _ _ = raise Fail "split_modeT': mode and type do not match"
bulwahn@34948
   376
  in
bulwahn@34948
   377
    (pairself (map_filter I) o split_list) (map2 split_arg_mode' (strip_fun_mode mode) Ts)
bulwahn@34948
   378
  end
bulwahn@34948
   379
bulwahn@34948
   380
fun split_mode mode ts = split_map_mode (fn _ => fn _ => (NONE, NONE)) mode ts
bulwahn@34948
   381
haftmann@37678
   382
fun fold_map_aterms_prodT comb f (Type (@{type_name Product_Type.prod}, [T1, T2])) s =
bulwahn@34948
   383
  let
bulwahn@34948
   384
    val (x1, s') = fold_map_aterms_prodT comb f T1 s
bulwahn@34948
   385
    val (x2, s'') = fold_map_aterms_prodT comb f T2 s'
bulwahn@34948
   386
  in
bulwahn@34948
   387
    (comb x1 x2, s'')
bulwahn@34948
   388
  end
bulwahn@34948
   389
  | fold_map_aterms_prodT comb f T s = f T s
bulwahn@34948
   390
haftmann@37391
   391
fun map_filter_prod f (Const (@{const_name Pair}, _) $ t1 $ t2) =
bulwahn@34948
   392
  comb_option HOLogic.mk_prod (map_filter_prod f t1, map_filter_prod f t2)
bulwahn@34948
   393
  | map_filter_prod f t = f t
bulwahn@34948
   394
  
bulwahn@40139
   395
fun split_modeT mode Ts =
bulwahn@34948
   396
  let
haftmann@46662
   397
    fun split_arg_mode (Fun _) _ = ([], [])
bulwahn@40139
   398
      | split_arg_mode (Pair (m1, m2)) (Type (@{type_name Product_Type.prod}, [T1, T2])) =
bulwahn@34948
   399
        let
bulwahn@40139
   400
          val (i1, o1) = split_arg_mode m1 T1
bulwahn@40139
   401
          val (i2, o2) = split_arg_mode m2 T2
bulwahn@34948
   402
        in
bulwahn@34948
   403
          (i1 @ i2, o1 @ o2)
bulwahn@34948
   404
        end
bulwahn@40139
   405
      | split_arg_mode Input T = ([T], [])
bulwahn@40139
   406
      | split_arg_mode Output T = ([], [T])
bulwahn@40139
   407
      | split_arg_mode _ _ = raise Fail "split_modeT: mode and type do not match"
bulwahn@34948
   408
  in
bulwahn@40139
   409
    (pairself flat o split_list) (map2 split_arg_mode (strip_fun_mode mode) Ts)
bulwahn@34948
   410
  end
bulwahn@34948
   411
bulwahn@34948
   412
fun string_of_mode mode =
bulwahn@33619
   413
  let
bulwahn@33619
   414
    fun string_of_mode1 Input = "i"
bulwahn@33619
   415
      | string_of_mode1 Output = "o"
bulwahn@33619
   416
      | string_of_mode1 Bool = "bool"
bulwahn@33619
   417
      | string_of_mode1 mode = "(" ^ (string_of_mode3 mode) ^ ")"
bulwahn@33626
   418
    and string_of_mode2 (Pair (m1, m2)) = string_of_mode3 m1 ^ " * " ^  string_of_mode2 m2
bulwahn@33619
   419
      | string_of_mode2 mode = string_of_mode1 mode
bulwahn@33619
   420
    and string_of_mode3 (Fun (m1, m2)) = string_of_mode2 m1 ^ " => " ^ string_of_mode3 m2
bulwahn@33619
   421
      | string_of_mode3 mode = string_of_mode2 mode
bulwahn@34948
   422
  in string_of_mode3 mode end
bulwahn@33619
   423
bulwahn@34948
   424
fun ascii_string_of_mode mode' =
bulwahn@33626
   425
  let
bulwahn@33626
   426
    fun ascii_string_of_mode' Input = "i"
bulwahn@33626
   427
      | ascii_string_of_mode' Output = "o"
bulwahn@33626
   428
      | ascii_string_of_mode' Bool = "b"
bulwahn@33626
   429
      | ascii_string_of_mode' (Pair (m1, m2)) =
bulwahn@33626
   430
          "P" ^ ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Pair m2
bulwahn@33626
   431
      | ascii_string_of_mode' (Fun (m1, m2)) = 
bulwahn@33626
   432
          "F" ^ ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Fun m2 ^ "B"
bulwahn@33626
   433
    and ascii_string_of_mode'_Fun (Fun (m1, m2)) =
bulwahn@33626
   434
          ascii_string_of_mode' m1 ^ (if m2 = Bool then "" else "_" ^ ascii_string_of_mode'_Fun m2)
bulwahn@33626
   435
      | ascii_string_of_mode'_Fun Bool = "B"
bulwahn@33626
   436
      | ascii_string_of_mode'_Fun m = ascii_string_of_mode' m
bulwahn@33626
   437
    and ascii_string_of_mode'_Pair (Pair (m1, m2)) =
bulwahn@33626
   438
          ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Pair m2
bulwahn@33626
   439
      | ascii_string_of_mode'_Pair m = ascii_string_of_mode' m
bulwahn@33626
   440
  in ascii_string_of_mode'_Fun mode' end
bulwahn@33626
   441
bulwahn@34948
   442
(* premises *)
bulwahn@33619
   443
bulwahn@34948
   444
datatype indprem = Prem of term | Negprem of term | Sidecond of term
bulwahn@34948
   445
  | Generator of (string * typ);
bulwahn@33619
   446
bulwahn@36251
   447
fun dest_indprem (Prem t) = t
bulwahn@36251
   448
  | dest_indprem (Negprem t) = t
bulwahn@36251
   449
  | dest_indprem (Sidecond t) = t
bulwahn@36251
   450
  | dest_indprem (Generator _) = raise Fail "cannot destruct generator"
bulwahn@36251
   451
bulwahn@36254
   452
fun map_indprem f (Prem t) = Prem (f t)
bulwahn@36254
   453
  | map_indprem f (Negprem t) = Negprem (f t)
bulwahn@36254
   454
  | map_indprem f (Sidecond t) = Sidecond (f t)
bulwahn@36254
   455
  | map_indprem f (Generator (v, T)) = Generator (dest_Free (f (Free (v, T))))
bulwahn@36254
   456
bulwahn@33250
   457
(* general syntactic functions *)
bulwahn@33250
   458
bulwahn@33250
   459
fun is_equationlike_term (Const ("==", _) $ _ $ _) = true
haftmann@38864
   460
  | is_equationlike_term (Const (@{const_name Trueprop}, _) $ (Const (@{const_name HOL.eq}, _) $ _ $ _)) = true
bulwahn@33250
   461
  | is_equationlike_term _ = false
bulwahn@33250
   462
  
bulwahn@33250
   463
val is_equationlike = is_equationlike_term o prop_of 
bulwahn@33250
   464
bulwahn@33250
   465
fun is_pred_equation_term (Const ("==", _) $ u $ v) =
bulwahn@33250
   466
  (fastype_of u = @{typ bool}) andalso (fastype_of v = @{typ bool})
bulwahn@33250
   467
  | is_pred_equation_term _ = false
bulwahn@33250
   468
  
bulwahn@33250
   469
val is_pred_equation = is_pred_equation_term o prop_of 
bulwahn@33250
   470
bulwahn@33250
   471
fun is_intro_term constname t =
bulwahn@34948
   472
  the_default false (try (fn t => case fst (strip_comb (HOLogic.dest_Trueprop (Logic.strip_imp_concl t))) of
bulwahn@33250
   473
    Const (c, _) => c = constname
bulwahn@34948
   474
  | _ => false) t)
bulwahn@33250
   475
  
bulwahn@33250
   476
fun is_intro constname t = is_intro_term constname (prop_of t)
bulwahn@33250
   477
wenzelm@40844
   478
fun is_predT (T as Type("fun", [_, _])) = (body_type T = @{typ bool})
bulwahn@33250
   479
  | is_predT _ = false
bulwahn@33250
   480
blanchet@55399
   481
fun get_constrs thy =
blanchet@55399
   482
  let
blanchet@55399
   483
    val ctxt = Proof_Context.init_global thy
blanchet@55399
   484
  in
blanchet@55399
   485
    Ctr_Sugar.ctr_sugars_of ctxt
blanchet@55399
   486
    |> maps (map_filter (try dest_Const) o #ctrs)
blanchet@55399
   487
    |> map (apsnd (fn T => (BNF_Util.num_binder_types T, fst (dest_Type (body_type T)))))
blanchet@55399
   488
  end
blanchet@55399
   489
bulwahn@33250
   490
(*** check if a term contains only constructor functions ***)
bulwahn@34948
   491
(* TODO: another copy in the core! *)
bulwahn@33623
   492
(* FIXME: constructor terms are supposed to be seen in the way the code generator
bulwahn@33623
   493
  sees constructors.*)
bulwahn@33250
   494
fun is_constrt thy =
bulwahn@33250
   495
  let
blanchet@55399
   496
    val cnstrs = get_constrs thy
bulwahn@33250
   497
    fun check t = (case strip_comb t of
bulwahn@36032
   498
        (Var _, []) => true
bulwahn@36032
   499
      | (Free _, []) => true
bulwahn@33250
   500
      | (Const (s, T), ts) => (case (AList.lookup (op =) cnstrs s, body_type T) of
bulwahn@33250
   501
            (SOME (i, Tname), Type (Tname', _)) => length ts = i andalso Tname = Tname' andalso forall check ts
bulwahn@33250
   502
          | _ => false)
bulwahn@33250
   503
      | _ => false)
bulwahn@36032
   504
  in check end;
bulwahn@34948
   505
wenzelm@42361
   506
val is_constr = Code.is_constr o Proof_Context.theory_of;
bulwahn@34948
   507
bulwahn@36047
   508
fun strip_all t = (Term.strip_all_vars t, Term.strip_all_body t)
bulwahn@36047
   509
haftmann@38558
   510
fun strip_ex (Const (@{const_name Ex}, _) $ Abs (x, T, t)) =
bulwahn@33250
   511
  let
bulwahn@33250
   512
    val (xTs, t') = strip_ex t
bulwahn@33250
   513
  in
bulwahn@33250
   514
    ((x, T) :: xTs, t')
bulwahn@33250
   515
  end
bulwahn@33250
   516
  | strip_ex t = ([], t)
bulwahn@33250
   517
bulwahn@33250
   518
fun focus_ex t nctxt =
bulwahn@33250
   519
  let
bulwahn@33250
   520
    val ((xs, Ts), t') = apfst split_list (strip_ex t) 
wenzelm@43326
   521
    val (xs', nctxt') = fold_map Name.variant xs nctxt;
bulwahn@33250
   522
    val ps' = xs' ~~ Ts;
bulwahn@33250
   523
    val vs = map Free ps';
bulwahn@33250
   524
    val t'' = Term.subst_bounds (rev vs, t');
bulwahn@33250
   525
  in ((ps', t''), nctxt') end;
bulwahn@33250
   526
bulwahn@40101
   527
val strip_intro_concl = (strip_comb o HOLogic.dest_Trueprop o Logic.strip_imp_concl o prop_of)
bulwahn@40101
   528
  
bulwahn@33250
   529
(* introduction rule combinators *)
bulwahn@33250
   530
bulwahn@33250
   531
fun map_atoms f intro = 
bulwahn@33250
   532
  let
bulwahn@33250
   533
    val (literals, head) = Logic.strip_horn intro
bulwahn@33250
   534
    fun appl t = (case t of
bulwahn@35885
   535
        (@{term Not} $ t') => HOLogic.mk_not (f t')
bulwahn@33250
   536
      | _ => f t)
bulwahn@33250
   537
  in
bulwahn@33250
   538
    Logic.list_implies
bulwahn@33250
   539
      (map (HOLogic.mk_Trueprop o appl o HOLogic.dest_Trueprop) literals, head)
bulwahn@33250
   540
  end
bulwahn@33250
   541
bulwahn@33250
   542
fun fold_atoms f intro s =
bulwahn@33250
   543
  let
haftmann@46662
   544
    val (literals, _) = Logic.strip_horn intro
bulwahn@33250
   545
    fun appl t s = (case t of
bulwahn@35885
   546
      (@{term Not} $ t') => f t' s
bulwahn@33250
   547
      | _ => f t s)
bulwahn@33250
   548
  in fold appl (map HOLogic.dest_Trueprop literals) s end
bulwahn@33250
   549
bulwahn@33250
   550
fun fold_map_atoms f intro s =
bulwahn@33250
   551
  let
bulwahn@33250
   552
    val (literals, head) = Logic.strip_horn intro
bulwahn@33250
   553
    fun appl t s = (case t of
bulwahn@35885
   554
      (@{term Not} $ t') => apfst HOLogic.mk_not (f t' s)
bulwahn@33250
   555
      | _ => f t s)
bulwahn@33250
   556
    val (literals', s') = fold_map appl (map HOLogic.dest_Trueprop literals) s
bulwahn@33250
   557
  in
bulwahn@33250
   558
    (Logic.list_implies (map HOLogic.mk_Trueprop literals', head), s')
bulwahn@33250
   559
  end;
bulwahn@33250
   560
bulwahn@36246
   561
fun map_filter_premises f intro =
bulwahn@36246
   562
  let
bulwahn@36246
   563
    val (premises, head) = Logic.strip_horn intro
bulwahn@36246
   564
  in
bulwahn@36246
   565
    Logic.list_implies (map_filter f premises, head)
bulwahn@36246
   566
  end
bulwahn@36246
   567
bulwahn@33250
   568
fun maps_premises f intro =
bulwahn@33250
   569
  let
bulwahn@33250
   570
    val (premises, head) = Logic.strip_horn intro
bulwahn@33250
   571
  in
bulwahn@33250
   572
    Logic.list_implies (maps f premises, head)
bulwahn@33250
   573
  end
bulwahn@35324
   574
bulwahn@35875
   575
fun map_concl f intro =
bulwahn@35875
   576
  let
bulwahn@35875
   577
    val (premises, head) = Logic.strip_horn intro
bulwahn@35875
   578
  in
bulwahn@35875
   579
    Logic.list_implies (premises, f head)
bulwahn@35875
   580
  end
bulwahn@35875
   581
bulwahn@35875
   582
(* combinators to apply a function to all basic parts of nested products *)
bulwahn@35875
   583
haftmann@37391
   584
fun map_products f (Const (@{const_name Pair}, T) $ t1 $ t2) =
haftmann@37391
   585
  Const (@{const_name Pair}, T) $ map_products f t1 $ map_products f t2
bulwahn@35875
   586
  | map_products f t = f t
bulwahn@35324
   587
bulwahn@35324
   588
(* split theorems of case expressions *)
bulwahn@35324
   589
bulwahn@35324
   590
fun prepare_split_thm ctxt split_thm =
bulwahn@35324
   591
    (split_thm RS @{thm iffD2})
wenzelm@35624
   592
    |> Local_Defs.unfold ctxt [@{thm atomize_conjL[symmetric]},
bulwahn@35324
   593
      @{thm atomize_all[symmetric]}, @{thm atomize_imp[symmetric]}]
bulwahn@35324
   594
blanchet@55399
   595
fun find_split_thm thy (Const (name, _)) =
blanchet@55399
   596
    Option.map #split (Ctr_Sugar.ctr_sugar_of_case (Proof_Context.init_global thy) name)
bulwahn@36029
   597
  | find_split_thm thy _ = NONE
bulwahn@35324
   598
bulwahn@33250
   599
(* lifting term operations to theorems *)
bulwahn@33250
   600
bulwahn@33250
   601
fun map_term thy f th =
bulwahn@33250
   602
  Skip_Proof.make_thm thy (f (prop_of th))
bulwahn@33250
   603
bulwahn@33250
   604
(*
bulwahn@33250
   605
fun equals_conv lhs_cv rhs_cv ct =
bulwahn@33250
   606
  case Thm.term_of ct of
bulwahn@33250
   607
    Const ("==", _) $ _ $ _ => Conv.arg_conv cv ct  
bulwahn@33250
   608
  | _ => error "equals_conv"  
bulwahn@33250
   609
*)
bulwahn@33250
   610
bulwahn@36038
   611
(* Different compilations *)
bulwahn@33250
   612
bulwahn@35881
   613
datatype compilation = Pred | Depth_Limited | Random | Depth_Limited_Random | DSeq | Annotated
bulwahn@40051
   614
  | Pos_Random_DSeq | Neg_Random_DSeq | New_Pos_Random_DSeq | New_Neg_Random_DSeq |
bulwahn@45450
   615
    Pos_Generator_DSeq | Neg_Generator_DSeq | Pos_Generator_CPS | Neg_Generator_CPS
bulwahn@35324
   616
bulwahn@35324
   617
fun negative_compilation_of Pos_Random_DSeq = Neg_Random_DSeq
bulwahn@35324
   618
  | negative_compilation_of Neg_Random_DSeq = Pos_Random_DSeq
bulwahn@36018
   619
  | negative_compilation_of New_Pos_Random_DSeq = New_Neg_Random_DSeq
bulwahn@36018
   620
  | negative_compilation_of New_Neg_Random_DSeq = New_Pos_Random_DSeq
bulwahn@40051
   621
  | negative_compilation_of Pos_Generator_DSeq = Neg_Generator_DSeq
bulwahn@45450
   622
  | negative_compilation_of Neg_Generator_DSeq = Pos_Generator_DSeq
bulwahn@45450
   623
  | negative_compilation_of Pos_Generator_CPS = Neg_Generator_CPS
bulwahn@45450
   624
  | negative_compilation_of Neg_Generator_CPS = Pos_Generator_CPS  
bulwahn@35324
   625
  | negative_compilation_of c = c
bulwahn@35324
   626
  
bulwahn@35324
   627
fun compilation_for_polarity false Pos_Random_DSeq = Neg_Random_DSeq
bulwahn@36018
   628
  | compilation_for_polarity false New_Pos_Random_DSeq = New_Neg_Random_DSeq
bulwahn@35324
   629
  | compilation_for_polarity _ c = c
bulwahn@34948
   630
bulwahn@40049
   631
fun is_depth_limited_compilation c =
bulwahn@40051
   632
  (c = New_Pos_Random_DSeq) orelse (c = New_Neg_Random_DSeq) orelse
bulwahn@40051
   633
  (c = Pos_Generator_DSeq) orelse (c = Pos_Generator_DSeq)
bulwahn@40049
   634
bulwahn@35885
   635
fun string_of_compilation c =
bulwahn@35885
   636
  case c of
bulwahn@34948
   637
    Pred => ""
bulwahn@34948
   638
  | Random => "random"
bulwahn@34948
   639
  | Depth_Limited => "depth limited"
bulwahn@35881
   640
  | Depth_Limited_Random => "depth limited random"
bulwahn@34948
   641
  | DSeq => "dseq"
bulwahn@34948
   642
  | Annotated => "annotated"
bulwahn@35324
   643
  | Pos_Random_DSeq => "pos_random dseq"
bulwahn@35324
   644
  | Neg_Random_DSeq => "neg_random_dseq"
bulwahn@36018
   645
  | New_Pos_Random_DSeq => "new_pos_random dseq"
bulwahn@36018
   646
  | New_Neg_Random_DSeq => "new_neg_random_dseq"
bulwahn@40051
   647
  | Pos_Generator_DSeq => "pos_generator_dseq"
bulwahn@40051
   648
  | Neg_Generator_DSeq => "neg_generator_dseq"
bulwahn@45450
   649
  | Pos_Generator_CPS => "pos_generator_cps"
bulwahn@45450
   650
  | Neg_Generator_CPS => "neg_generator_cps"
bulwahn@45450
   651
  
bulwahn@36018
   652
val compilation_names = [("pred", Pred),
bulwahn@36018
   653
  ("random", Random),
bulwahn@36018
   654
  ("depth_limited", Depth_Limited),
bulwahn@36018
   655
  ("depth_limited_random", Depth_Limited_Random),
bulwahn@36018
   656
  (*("annotated", Annotated),*)
bulwahn@40054
   657
  ("dseq", DSeq),
bulwahn@40054
   658
  ("random_dseq", Pos_Random_DSeq),
bulwahn@40051
   659
  ("new_random_dseq", New_Pos_Random_DSeq),
bulwahn@45450
   660
  ("generator_dseq", Pos_Generator_DSeq),
bulwahn@45450
   661
  ("generator_cps", Pos_Generator_CPS)]
bulwahn@36038
   662
bulwahn@36038
   663
val non_random_compilations = [Pred, Depth_Limited, DSeq, Annotated]
bulwahn@36038
   664
bulwahn@36038
   665
bulwahn@36038
   666
val random_compilations = [Random, Depth_Limited_Random,
bulwahn@48221
   667
  Pos_Random_DSeq, Neg_Random_DSeq, New_Pos_Random_DSeq, New_Neg_Random_DSeq,
bulwahn@48221
   668
  Pos_Generator_CPS, Neg_Generator_CPS]
bulwahn@36038
   669
bulwahn@36046
   670
(* datastructures and setup for generic compilation *)
bulwahn@36046
   671
bulwahn@36046
   672
datatype compilation_funs = CompilationFuns of {
bulwahn@45461
   673
  mk_monadT : typ -> typ,
bulwahn@45461
   674
  dest_monadT : typ -> typ,
bulwahn@45461
   675
  mk_empty : typ -> term,
bulwahn@36046
   676
  mk_single : term -> term,
bulwahn@36046
   677
  mk_bind : term * term -> term,
bulwahn@45461
   678
  mk_plus : term * term -> term,
bulwahn@36046
   679
  mk_if : term -> term,
bulwahn@36049
   680
  mk_iterate_upto : typ -> term * term * term -> term,
bulwahn@36046
   681
  mk_not : term -> term,
bulwahn@36046
   682
  mk_map : typ -> typ -> term -> term -> term
bulwahn@36046
   683
};
bulwahn@36038
   684
bulwahn@45461
   685
fun mk_monadT (CompilationFuns funs) = #mk_monadT funs
bulwahn@45461
   686
fun dest_monadT (CompilationFuns funs) = #dest_monadT funs
bulwahn@45461
   687
fun mk_empty (CompilationFuns funs) = #mk_empty funs
bulwahn@36046
   688
fun mk_single (CompilationFuns funs) = #mk_single funs
bulwahn@36046
   689
fun mk_bind (CompilationFuns funs) = #mk_bind funs
bulwahn@45461
   690
fun mk_plus (CompilationFuns funs) = #mk_plus funs
bulwahn@36046
   691
fun mk_if (CompilationFuns funs) = #mk_if funs
bulwahn@36049
   692
fun mk_iterate_upto (CompilationFuns funs) = #mk_iterate_upto funs
bulwahn@36046
   693
fun mk_not (CompilationFuns funs) = #mk_not funs
bulwahn@36046
   694
fun mk_map (CompilationFuns funs) = #mk_map funs
bulwahn@36046
   695
bulwahn@36046
   696
(** function types and names of different compilations **)
bulwahn@36046
   697
bulwahn@36046
   698
fun funT_of compfuns mode T =
bulwahn@36046
   699
  let
bulwahn@36046
   700
    val Ts = binder_types T
bulwahn@36046
   701
    val (inTs, outTs) = split_map_modeT (fn m => fn T => (SOME (funT_of compfuns m T), NONE)) mode Ts
bulwahn@36046
   702
  in
bulwahn@45461
   703
    inTs ---> (mk_monadT compfuns (HOLogic.mk_tupleT outTs))
bulwahn@36046
   704
  end;
bulwahn@36046
   705
bulwahn@36046
   706
(* Different options for compiler *)
bulwahn@34948
   707
bulwahn@33250
   708
datatype options = Options of {  
bulwahn@34948
   709
  expected_modes : (string * mode list) option,
bulwahn@39382
   710
  proposed_modes : (string * mode list) list,
bulwahn@34948
   711
  proposed_names : ((string * mode) * string) list,
bulwahn@33250
   712
  show_steps : bool,
bulwahn@33250
   713
  show_proof_trace : bool,
bulwahn@33250
   714
  show_intermediate_results : bool,
bulwahn@33251
   715
  show_mode_inference : bool,
bulwahn@33251
   716
  show_modes : bool,
bulwahn@33250
   717
  show_compilation : bool,
bulwahn@35324
   718
  show_caught_failures : bool,
bulwahn@39383
   719
  show_invalid_clauses : bool,
bulwahn@33250
   720
  skip_proof : bool,
bulwahn@35324
   721
  no_topmost_reordering : bool,
bulwahn@35324
   722
  function_flattening : bool,
bulwahn@36248
   723
  specialise : bool,
bulwahn@35324
   724
  fail_safe_function_flattening : bool,
bulwahn@35324
   725
  no_higher_order_predicate : string list,
bulwahn@33250
   726
  inductify : bool,
bulwahn@36254
   727
  detect_switches : bool,
bulwahn@40048
   728
  smart_depth_limiting : bool,
bulwahn@34948
   729
  compilation : compilation
bulwahn@33250
   730
};
bulwahn@33250
   731
bulwahn@33250
   732
fun expected_modes (Options opt) = #expected_modes opt
bulwahn@39382
   733
fun proposed_modes (Options opt) = AList.lookup (op =) (#proposed_modes opt)
bulwahn@34948
   734
fun proposed_names (Options opt) name mode = AList.lookup (eq_pair (op =) eq_mode)
bulwahn@33623
   735
  (#proposed_names opt) (name, mode)
bulwahn@33620
   736
bulwahn@33250
   737
fun show_steps (Options opt) = #show_steps opt
bulwahn@33250
   738
fun show_intermediate_results (Options opt) = #show_intermediate_results opt
bulwahn@33250
   739
fun show_proof_trace (Options opt) = #show_proof_trace opt
bulwahn@33251
   740
fun show_modes (Options opt) = #show_modes opt
bulwahn@33251
   741
fun show_mode_inference (Options opt) = #show_mode_inference opt
bulwahn@33250
   742
fun show_compilation (Options opt) = #show_compilation opt
bulwahn@35324
   743
fun show_caught_failures (Options opt) = #show_caught_failures opt
bulwahn@39383
   744
fun show_invalid_clauses (Options opt) = #show_invalid_clauses opt
bulwahn@33250
   745
fun skip_proof (Options opt) = #skip_proof opt
bulwahn@33250
   746
bulwahn@35324
   747
fun function_flattening (Options opt) = #function_flattening opt
bulwahn@35324
   748
fun fail_safe_function_flattening (Options opt) = #fail_safe_function_flattening opt
bulwahn@36248
   749
fun specialise (Options opt) = #specialise opt
bulwahn@35324
   750
fun no_topmost_reordering (Options opt) = #no_topmost_reordering opt
bulwahn@35324
   751
fun no_higher_order_predicate (Options opt) = #no_higher_order_predicate opt
bulwahn@35324
   752
bulwahn@33250
   753
fun is_inductify (Options opt) = #inductify opt
bulwahn@34948
   754
bulwahn@34948
   755
fun compilation (Options opt) = #compilation opt
bulwahn@33250
   756
bulwahn@36254
   757
fun detect_switches (Options opt) = #detect_switches opt
bulwahn@36254
   758
bulwahn@40048
   759
fun smart_depth_limiting (Options opt) = #smart_depth_limiting opt
bulwahn@40048
   760
bulwahn@33250
   761
val default_options = Options {
bulwahn@33250
   762
  expected_modes = NONE,
bulwahn@39382
   763
  proposed_modes = [],
bulwahn@33623
   764
  proposed_names = [],
bulwahn@33250
   765
  show_steps = false,
bulwahn@33250
   766
  show_intermediate_results = false,
bulwahn@33250
   767
  show_proof_trace = false,
bulwahn@33251
   768
  show_modes = false,
bulwahn@33250
   769
  show_mode_inference = false,
bulwahn@33250
   770
  show_compilation = false,
bulwahn@35324
   771
  show_caught_failures = false,
bulwahn@39383
   772
  show_invalid_clauses = false,
bulwahn@34948
   773
  skip_proof = true,
bulwahn@35324
   774
  no_topmost_reordering = false,
bulwahn@35324
   775
  function_flattening = false,
bulwahn@36248
   776
  specialise = false,
bulwahn@35324
   777
  fail_safe_function_flattening = false,
bulwahn@35324
   778
  no_higher_order_predicate = [],
bulwahn@33250
   779
  inductify = false,
bulwahn@36254
   780
  detect_switches = true,
bulwahn@40048
   781
  smart_depth_limiting = false,
bulwahn@34948
   782
  compilation = Pred
bulwahn@33250
   783
}
bulwahn@33250
   784
bulwahn@34948
   785
val bool_options = ["show_steps", "show_intermediate_results", "show_proof_trace", "show_modes",
bulwahn@39383
   786
  "show_mode_inference", "show_compilation", "show_invalid_clauses", "skip_proof", "inductify",
bulwahn@40048
   787
  "no_function_flattening", "detect_switches", "specialise", "no_topmost_reordering",
bulwahn@40048
   788
  "smart_depth_limiting"]
bulwahn@34948
   789
bulwahn@33250
   790
fun print_step options s =
bulwahn@33250
   791
  if show_steps options then tracing s else ()
bulwahn@33250
   792
bulwahn@36047
   793
(* simple transformations *)
bulwahn@36047
   794
bulwahn@36047
   795
(** tuple processing **)
bulwahn@33250
   796
bulwahn@39657
   797
fun rewrite_args [] (pats, intro_t, ctxt) = (pats, intro_t, ctxt)
bulwahn@39657
   798
  | rewrite_args (arg::args) (pats, intro_t, ctxt) = 
bulwahn@39657
   799
    (case HOLogic.strip_tupleT (fastype_of arg) of
haftmann@46662
   800
      (_ :: _ :: _) =>
bulwahn@39657
   801
      let
bulwahn@39657
   802
        fun rewrite_arg' (Const (@{const_name Pair}, _) $ _ $ t2, Type (@{type_name Product_Type.prod}, [_, T2]))
bulwahn@39657
   803
          (args, (pats, intro_t, ctxt)) = rewrite_arg' (t2, T2) (args, (pats, intro_t, ctxt))
bulwahn@39657
   804
          | rewrite_arg' (t, Type (@{type_name Product_Type.prod}, [T1, T2])) (args, (pats, intro_t, ctxt)) =
bulwahn@39657
   805
            let
wenzelm@42361
   806
              val thy = Proof_Context.theory_of ctxt
bulwahn@39657
   807
              val ([x, y], ctxt') = Variable.variant_fixes ["x", "y"] ctxt
bulwahn@39657
   808
              val pat = (t, HOLogic.mk_prod (Free (x, T1), Free (y, T2)))
bulwahn@39657
   809
              val intro_t' = Pattern.rewrite_term thy [pat] [] intro_t
bulwahn@39657
   810
              val args' = map (Pattern.rewrite_term thy [pat] []) args
bulwahn@39657
   811
            in
bulwahn@39657
   812
              rewrite_arg' (Free (y, T2), T2) (args', (pat::pats, intro_t', ctxt'))
bulwahn@39657
   813
            end
bulwahn@39657
   814
          | rewrite_arg' _ (args, (pats, intro_t, ctxt)) = (args, (pats, intro_t, ctxt))
bulwahn@39657
   815
        val (args', (pats, intro_t', ctxt')) = rewrite_arg' (arg, fastype_of arg)
bulwahn@39657
   816
          (args, (pats, intro_t, ctxt))
bulwahn@39657
   817
      in
bulwahn@39657
   818
        rewrite_args args' (pats, intro_t', ctxt')
bulwahn@39657
   819
      end
bulwahn@39657
   820
  | _ => rewrite_args args (pats, intro_t, ctxt))
bulwahn@39657
   821
bulwahn@39657
   822
fun rewrite_prem atom =
bulwahn@39657
   823
  let
bulwahn@39657
   824
    val (_, args) = strip_comb atom
bulwahn@39657
   825
  in rewrite_args args end
bulwahn@39657
   826
bulwahn@39787
   827
fun split_conjuncts_in_assms ctxt th =
bulwahn@39787
   828
  let
bulwahn@39787
   829
    val ((_, [fixed_th]), ctxt') = Variable.import false [th] ctxt 
bulwahn@39787
   830
    fun split_conjs i nprems th =
bulwahn@39787
   831
      if i > nprems then th
bulwahn@39787
   832
      else
bulwahn@39787
   833
        case try Drule.RSN (@{thm conjI}, (i, th)) of
bulwahn@39787
   834
          SOME th' => split_conjs i (nprems+1) th'
bulwahn@39787
   835
        | NONE => split_conjs (i+1) nprems th
bulwahn@39787
   836
  in
bulwahn@39787
   837
    singleton (Variable.export ctxt' ctxt) (split_conjs 1 (Thm.nprems_of fixed_th) fixed_th)
bulwahn@39787
   838
  end
bulwahn@40052
   839
bulwahn@40052
   840
fun dest_conjunct_prem th =
bulwahn@40052
   841
  case HOLogic.dest_Trueprop (prop_of th) of
haftmann@46662
   842
    (Const (@{const_name HOL.conj}, _) $ _ $ _) =>
bulwahn@40052
   843
      dest_conjunct_prem (th RS @{thm conjunct1})
bulwahn@40052
   844
        @ dest_conjunct_prem (th RS @{thm conjunct2})
bulwahn@40052
   845
    | _ => [th]
bulwahn@40052
   846
bulwahn@33250
   847
fun expand_tuples thy intro =
bulwahn@33250
   848
  let
wenzelm@42361
   849
    val ctxt = Proof_Context.init_global thy
bulwahn@33250
   850
    val (((T_insts, t_insts), [intro']), ctxt1) = Variable.import false [intro] ctxt
bulwahn@33250
   851
    val intro_t = prop_of intro'
bulwahn@33250
   852
    val concl = Logic.strip_imp_concl intro_t
haftmann@46662
   853
    val (_, args) = strip_comb (HOLogic.dest_Trueprop concl)
bulwahn@33250
   854
    val (pats', intro_t', ctxt2) = rewrite_args args ([], intro_t, ctxt1)
haftmann@46662
   855
    val (pats', _, ctxt3) = fold_atoms rewrite_prem intro_t' (pats', intro_t', ctxt2)
bulwahn@33250
   856
    fun rewrite_pat (ct1, ct2) =
bulwahn@33250
   857
      (ct1, cterm_of thy (Pattern.rewrite_term thy pats' [] (term_of ct2)))
bulwahn@33250
   858
    val t_insts' = map rewrite_pat t_insts
bulwahn@33250
   859
    val intro'' = Thm.instantiate (T_insts, t_insts') intro
bulwahn@33250
   860
    val [intro'''] = Variable.export ctxt3 ctxt [intro'']
wenzelm@51717
   861
    val intro'''' =
wenzelm@51717
   862
      Simplifier.full_simplify
wenzelm@51717
   863
        (put_simpset HOL_basic_ss ctxt
wenzelm@51717
   864
          addsimps [@{thm fst_conv}, @{thm snd_conv}, @{thm Pair_eq}])
bulwahn@33250
   865
      intro'''
bulwahn@33250
   866
    (* splitting conjunctions introduced by Pair_eq*)
bulwahn@39787
   867
    val intro''''' = split_conjuncts_in_assms ctxt intro''''
bulwahn@33250
   868
  in
bulwahn@33250
   869
    intro'''''
bulwahn@33250
   870
  end
bulwahn@33250
   871
bulwahn@39802
   872
(** making case distributivity rules **)
bulwahn@39802
   873
(*** this should be part of the datatype package ***)
bulwahn@39802
   874
blanchet@55399
   875
fun datatype_name_of_case_name thy =
blanchet@55399
   876
  Ctr_Sugar.ctr_sugar_of_case (Proof_Context.init_global thy)
blanchet@55399
   877
  #> the #> #ctrs #> hd #> fastype_of #> body_type #> dest_Type #> fst
bulwahn@39802
   878
blanchet@55399
   879
fun make_case_comb thy Tcon =
bulwahn@39802
   880
  let
blanchet@55399
   881
    val ctxt = Proof_Context.init_global thy
blanchet@55399
   882
    val SOME {casex, ...} = Ctr_Sugar.ctr_sugar_of ctxt Tcon
blanchet@55399
   883
    val casex' = Type.legacy_freeze casex
blanchet@55399
   884
    val Ts = BNF_Util.binder_fun_types (fastype_of casex')
bulwahn@39802
   885
  in
blanchet@55399
   886
    list_comb (casex', map_index (fn (j, T) => Free ("f" ^ string_of_int j,  T)) Ts)
bulwahn@39802
   887
  end
bulwahn@39802
   888
blanchet@55399
   889
fun make_case_distrib thy Tcon =
bulwahn@39802
   890
  let
blanchet@55399
   891
    val comb = make_case_comb thy Tcon;
blanchet@55399
   892
    val Type ("fun", [T, T']) = fastype_of comb;
blanchet@55399
   893
    val (Const (case_name, _), fs) = strip_comb comb
blanchet@55399
   894
    val used = Term.add_tfree_names comb []
blanchet@55399
   895
    val U = TFree (singleton (Name.variant_list used) "'t", HOLogic.typeS)
blanchet@55399
   896
    val x = Free ("x", T)
blanchet@55399
   897
    val f = Free ("f", T' --> U)
blanchet@55399
   898
    fun apply_f f' =
blanchet@55399
   899
      let
blanchet@55399
   900
        val Ts = binder_types (fastype_of f')
blanchet@55399
   901
        val bs = map Bound ((length Ts - 1) downto 0)
blanchet@55399
   902
      in
blanchet@55399
   903
        fold_rev absdummy Ts (f $ (list_comb (f', bs)))
blanchet@55399
   904
      end
blanchet@55399
   905
    val fs' = map apply_f fs
blanchet@55399
   906
    val case_c' = Const (case_name, (map fastype_of fs') @ [T] ---> U)
bulwahn@39802
   907
  in
blanchet@55399
   908
    HOLogic.mk_eq (f $ (comb $ x), list_comb (case_c', fs') $ x)
bulwahn@39802
   909
  end
bulwahn@39802
   910
blanchet@55399
   911
fun case_rewrite thy Tcon =
blanchet@55399
   912
  (Drule.export_without_context o Skip_Proof.make_thm thy o HOLogic.mk_Trueprop)
blanchet@55399
   913
    (make_case_distrib thy Tcon)
blanchet@55399
   914
blanchet@55399
   915
fun instantiated_case_rewrite thy Tcon =
bulwahn@39802
   916
  let
blanchet@55399
   917
    val th = case_rewrite thy Tcon
wenzelm@42361
   918
    val ctxt = Proof_Context.init_global thy
blanchet@55399
   919
    val f = (fst (strip_comb (fst (HOLogic.dest_eq (HOLogic.dest_Trueprop (prop_of th))))))
blanchet@55399
   920
    val Type ("fun", [uninst_T, uninst_T']) = fastype_of f
blanchet@55399
   921
    val ([_, tname', uname, yname], ctxt') = Variable.add_fixes ["'t", "'t'", "'u", "y"] ctxt
blanchet@55399
   922
    val T' = TFree (tname', HOLogic.typeS)
blanchet@55399
   923
    val U = TFree (uname, HOLogic.typeS)
blanchet@55399
   924
    val y = Free (yname, U)
blanchet@55399
   925
    val f' = absdummy (U --> T') (Bound 0 $ y)
blanchet@55399
   926
    val th' = Thm.certify_instantiate
blanchet@55399
   927
      ([(dest_TVar uninst_T, U --> T'), (dest_TVar uninst_T', T')],
blanchet@55399
   928
       [((fst (dest_Var f), (U --> T') --> T'), f')]) th
blanchet@55399
   929
    val [th'] = Variable.export ctxt' ctxt [th']
blanchet@55399
   930
  in
blanchet@55399
   931
    th'
blanchet@55399
   932
  end
bulwahn@39802
   933
bulwahn@39802
   934
fun case_betapply thy t =
bulwahn@39802
   935
  let
bulwahn@39802
   936
    val case_name = fst (dest_Const (fst (strip_comb t)))
blanchet@55399
   937
    val Tcon = datatype_name_of_case_name thy case_name
blanchet@55399
   938
    val th = instantiated_case_rewrite thy Tcon
bulwahn@39802
   939
  in
blanchet@55399
   940
    Raw_Simplifier.rewrite_term thy [th RS @{thm eq_reflection}] [] t
bulwahn@39802
   941
  end
bulwahn@39802
   942
bulwahn@39657
   943
(*** conversions ***)
bulwahn@39657
   944
bulwahn@39657
   945
fun imp_prems_conv cv ct =
bulwahn@39657
   946
  case Thm.term_of ct of
bulwahn@39657
   947
    Const ("==>", _) $ _ $ _ => Conv.combination_conv (Conv.arg_conv cv) (imp_prems_conv cv) ct
bulwahn@39657
   948
  | _ => Conv.all_conv ct
bulwahn@39657
   949
bulwahn@36047
   950
(** eta contract higher-order arguments **)
bulwahn@35875
   951
bulwahn@35875
   952
fun eta_contract_ho_arguments thy intro =
bulwahn@35875
   953
  let
bulwahn@35875
   954
    fun f atom = list_comb (apsnd ((map o map_products) Envir.eta_contract) (strip_comb atom))
bulwahn@35875
   955
  in
bulwahn@35875
   956
    map_term thy (map_concl f o map_atoms f) intro
bulwahn@35875
   957
  end
bulwahn@35875
   958
bulwahn@36047
   959
(** remove equalities **)
bulwahn@36022
   960
bulwahn@36022
   961
fun remove_equalities thy intro =
bulwahn@36022
   962
  let
bulwahn@36022
   963
    fun remove_eqs intro_t =
bulwahn@36022
   964
      let
bulwahn@36022
   965
        val (prems, concl) = Logic.strip_horn intro_t
bulwahn@36022
   966
        fun remove_eq (prems, concl) =
bulwahn@36022
   967
          let
bulwahn@36022
   968
            fun removable_eq prem =
bulwahn@36022
   969
              case try (HOLogic.dest_eq o HOLogic.dest_Trueprop) prem of
bulwahn@36022
   970
                SOME (lhs, rhs) => (case lhs of
bulwahn@36022
   971
                  Var _ => true
bulwahn@36022
   972
                  | _ => (case rhs of Var _ => true | _ => false))
bulwahn@36022
   973
              | NONE => false
bulwahn@36022
   974
          in
bulwahn@36022
   975
            case find_first removable_eq prems of
bulwahn@36022
   976
              NONE => (prems, concl)
bulwahn@36022
   977
            | SOME eq =>
bulwahn@36022
   978
              let
bulwahn@36022
   979
                val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop eq)
bulwahn@36022
   980
                val prems' = remove (op =) eq prems
bulwahn@36022
   981
                val subst = (case lhs of
bulwahn@36022
   982
                  (v as Var _) =>
bulwahn@36022
   983
                    (fn t => if t = v then rhs else t)
bulwahn@36022
   984
                | _ => (case rhs of
bulwahn@36022
   985
                   (v as Var _) => (fn t => if t = v then lhs else t)))
bulwahn@36022
   986
              in
bulwahn@36022
   987
                remove_eq (map (map_aterms subst) prems', map_aterms subst concl)
bulwahn@36022
   988
              end
bulwahn@36022
   989
          end
bulwahn@36022
   990
      in
bulwahn@36022
   991
        Logic.list_implies (remove_eq (prems, concl))
bulwahn@36022
   992
      end
bulwahn@36022
   993
  in
bulwahn@36022
   994
    map_term thy remove_eqs intro
bulwahn@36022
   995
  end
bulwahn@35875
   996
bulwahn@36246
   997
(* Some last processing *)
bulwahn@36246
   998
bulwahn@36246
   999
fun remove_pointless_clauses intro =
bulwahn@36246
  1000
  if Logic.strip_imp_prems (prop_of intro) = [@{prop "False"}] then
bulwahn@36246
  1001
    []
bulwahn@36246
  1002
  else [intro]
bulwahn@36246
  1003
bulwahn@36246
  1004
(* some peephole optimisations *)
bulwahn@36246
  1005
bulwahn@36246
  1006
fun peephole_optimisation thy intro =
bulwahn@36246
  1007
  let
wenzelm@54742
  1008
    val ctxt = Proof_Context.init_global thy  (* FIXME proper context!? *)
wenzelm@36610
  1009
    val process =
wenzelm@54742
  1010
      rewrite_rule ctxt (Predicate_Compile_Simps.get ctxt)
bulwahn@36246
  1011
    fun process_False intro_t =
bulwahn@36246
  1012
      if member (op =) (Logic.strip_imp_prems intro_t) @{prop "False"} then NONE else SOME intro_t
bulwahn@36246
  1013
    fun process_True intro_t =
bulwahn@36246
  1014
      map_filter_premises (fn p => if p = @{prop True} then NONE else SOME p) intro_t
bulwahn@36246
  1015
  in
bulwahn@36246
  1016
    Option.map (Skip_Proof.make_thm thy)
bulwahn@36246
  1017
      (process_False (process_True (prop_of (process intro))))
bulwahn@36246
  1018
  end
bulwahn@36246
  1019
bulwahn@40101
  1020
bulwahn@40101
  1021
(* importing introduction rules *)
bulwahn@40101
  1022
bulwahn@40101
  1023
fun import_intros inp_pred [] ctxt =
bulwahn@40101
  1024
  let
bulwahn@40101
  1025
    val ([outp_pred], ctxt') = Variable.import_terms true [inp_pred] ctxt
bulwahn@40101
  1026
    val T = fastype_of outp_pred
bulwahn@40101
  1027
    val paramTs = ho_argsT_of_typ (binder_types T)
haftmann@46662
  1028
    val (param_names, _) = Variable.variant_fixes
bulwahn@40101
  1029
      (map (fn i => "p" ^ (string_of_int i)) (1 upto (length paramTs))) ctxt'
bulwahn@40101
  1030
    val params = map2 (curry Free) param_names paramTs
bulwahn@40101
  1031
  in
bulwahn@40101
  1032
    (((outp_pred, params), []), ctxt')
bulwahn@40101
  1033
  end
bulwahn@40101
  1034
  | import_intros inp_pred (th :: ths) ctxt =
bulwahn@40101
  1035
    let
bulwahn@40101
  1036
      val ((_, [th']), ctxt') = Variable.import true [th] ctxt
wenzelm@42361
  1037
      val thy = Proof_Context.theory_of ctxt'
bulwahn@40101
  1038
      val (pred, args) = strip_intro_concl th'
bulwahn@40101
  1039
      val T = fastype_of pred
bulwahn@40101
  1040
      val ho_args = ho_args_of_typ T args
bulwahn@40101
  1041
      fun subst_of (pred', pred) =
bulwahn@40101
  1042
        let
bulwahn@40101
  1043
          val subst = Sign.typ_match thy (fastype_of pred', fastype_of pred) Vartab.empty
bulwahn@40101
  1044
            handle Type.TYPE_MATCH => error ("Type mismatch of predicate " ^ fst (dest_Const pred)
bulwahn@40101
  1045
            ^ " (trying to match " ^ Syntax.string_of_typ ctxt (fastype_of pred')
bulwahn@40101
  1046
            ^ " and " ^ Syntax.string_of_typ ctxt (fastype_of pred) ^ ")"
bulwahn@40101
  1047
            ^ " in " ^ Display.string_of_thm ctxt th)
bulwahn@40101
  1048
        in map (fn (indexname, (s, T)) => ((indexname, s), T)) (Vartab.dest subst) end
bulwahn@40101
  1049
      fun instantiate_typ th =
bulwahn@40101
  1050
        let
bulwahn@40101
  1051
          val (pred', _) = strip_intro_concl th
bulwahn@40101
  1052
          val _ = if not (fst (dest_Const pred) = fst (dest_Const pred')) then
bulwahn@40101
  1053
            raise Fail "Trying to instantiate another predicate" else ()
bulwahn@40101
  1054
        in Thm.certify_instantiate (subst_of (pred', pred), []) th end;
bulwahn@40101
  1055
      fun instantiate_ho_args th =
bulwahn@40101
  1056
        let
bulwahn@40101
  1057
          val (_, args') = (strip_comb o HOLogic.dest_Trueprop o Logic.strip_imp_concl o prop_of) th
bulwahn@40101
  1058
          val ho_args' = map dest_Var (ho_args_of_typ T args')
bulwahn@40101
  1059
        in Thm.certify_instantiate ([], ho_args' ~~ ho_args) th end
bulwahn@40101
  1060
      val outp_pred =
bulwahn@40101
  1061
        Term_Subst.instantiate (subst_of (inp_pred, pred), []) inp_pred
bulwahn@40101
  1062
      val ((_, ths'), ctxt1) =
bulwahn@40101
  1063
        Variable.import false (map (instantiate_typ #> instantiate_ho_args) ths) ctxt'
bulwahn@40101
  1064
    in
bulwahn@40101
  1065
      (((outp_pred, ho_args), th' :: ths'), ctxt1)
bulwahn@40101
  1066
    end
bulwahn@40101
  1067
  
bulwahn@40101
  1068
(* generation of case rules from user-given introduction rules *)
bulwahn@40101
  1069
bulwahn@40101
  1070
fun mk_args2 (Type (@{type_name Product_Type.prod}, [T1, T2])) st =
bulwahn@40101
  1071
    let
bulwahn@40101
  1072
      val (t1, st') = mk_args2 T1 st
bulwahn@40101
  1073
      val (t2, st'') = mk_args2 T2 st'
bulwahn@40101
  1074
    in
bulwahn@40101
  1075
      (HOLogic.mk_prod (t1, t2), st'')
bulwahn@40101
  1076
    end
bulwahn@40101
  1077
  (*| mk_args2 (T as Type ("fun", _)) (params, ctxt) = 
bulwahn@40101
  1078
    let
bulwahn@40101
  1079
      val (S, U) = strip_type T
bulwahn@40101
  1080
    in
bulwahn@40101
  1081
      if U = HOLogic.boolT then
bulwahn@40101
  1082
        (hd params, (tl params, ctxt))
bulwahn@40101
  1083
      else
bulwahn@40101
  1084
        let
bulwahn@40101
  1085
          val ([x], ctxt') = Variable.variant_fixes ["x"] ctxt
bulwahn@40101
  1086
        in
bulwahn@40101
  1087
          (Free (x, T), (params, ctxt'))
bulwahn@40101
  1088
        end
bulwahn@40101
  1089
    end*)
bulwahn@40101
  1090
  | mk_args2 T (params, ctxt) =
bulwahn@40101
  1091
    let
bulwahn@40101
  1092
      val ([x], ctxt') = Variable.variant_fixes ["x"] ctxt
bulwahn@40101
  1093
    in
bulwahn@40101
  1094
      (Free (x, T), (params, ctxt'))
bulwahn@40101
  1095
    end
bulwahn@40101
  1096
bulwahn@40101
  1097
fun mk_casesrule ctxt pred introrules =
bulwahn@40101
  1098
  let
bulwahn@40101
  1099
    (* TODO: can be simplified if parameters are not treated specially ? *)
bulwahn@40101
  1100
    val (((pred, params), intros_th), ctxt1) = import_intros pred introrules ctxt
bulwahn@40101
  1101
    (* TODO: distinct required ? -- test case with more than one parameter! *)
bulwahn@40101
  1102
    val params = distinct (op aconv) params
bulwahn@40101
  1103
    val intros = map prop_of intros_th
bulwahn@40101
  1104
    val ([propname], ctxt2) = Variable.variant_fixes ["thesis"] ctxt1
bulwahn@40101
  1105
    val prop = HOLogic.mk_Trueprop (Free (propname, HOLogic.boolT))
bulwahn@40101
  1106
    val argsT = binder_types (fastype_of pred)
bulwahn@40101
  1107
    (* TODO: can be simplified if parameters are not treated specially ? <-- see uncommented code! *)
bulwahn@40101
  1108
    val (argvs, _) = fold_map mk_args2 argsT (params, ctxt2)
bulwahn@40101
  1109
    fun mk_case intro =
bulwahn@40101
  1110
      let
bulwahn@40101
  1111
        val (_, args) = (strip_comb o HOLogic.dest_Trueprop o Logic.strip_imp_concl) intro
bulwahn@40101
  1112
        val prems = Logic.strip_imp_prems intro
bulwahn@40101
  1113
        val eqprems =
bulwahn@40101
  1114
          map2 (HOLogic.mk_Trueprop oo (curry HOLogic.mk_eq)) argvs args
bulwahn@40101
  1115
        val frees = map Free (fold Term.add_frees (args @ prems) [])
bulwahn@40101
  1116
      in fold Logic.all frees (Logic.list_implies (eqprems @ prems, prop)) end
bulwahn@40101
  1117
    val assm = HOLogic.mk_Trueprop (list_comb (pred, argvs))
bulwahn@40101
  1118
    val cases = map mk_case intros
bulwahn@40101
  1119
  in Logic.list_implies (assm :: cases, prop) end;
bulwahn@40101
  1120
  
bulwahn@40101
  1121
bulwahn@40101
  1122
(* unifying constants to have the same type variables *)
bulwahn@40101
  1123
bulwahn@40101
  1124
fun unify_consts thy cs intr_ts =
bulwahn@40101
  1125
  (let
bulwahn@40101
  1126
     val add_term_consts_2 = fold_aterms (fn Const c => insert (op =) c | _ => I);
bulwahn@40101
  1127
     fun varify (t, (i, ts)) =
bulwahn@40101
  1128
       let val t' = map_types (Logic.incr_tvar (i + 1)) (#2 (Type.varify_global [] t))
bulwahn@40101
  1129
       in (maxidx_of_term t', t'::ts) end;
bulwahn@40101
  1130
     val (i, cs') = List.foldr varify (~1, []) cs;
bulwahn@40101
  1131
     val (i', intr_ts') = List.foldr varify (i, []) intr_ts;
bulwahn@40101
  1132
     val rec_consts = fold add_term_consts_2 cs' [];
bulwahn@40101
  1133
     val intr_consts = fold add_term_consts_2 intr_ts' [];
bulwahn@40101
  1134
     fun unify (cname, cT) =
bulwahn@40101
  1135
       let val consts = map snd (filter (fn c => fst c = cname) intr_consts)
bulwahn@40101
  1136
       in fold (Sign.typ_unify thy) ((replicate (length consts) cT) ~~ consts) end;
bulwahn@40101
  1137
     val (env, _) = fold unify rec_consts (Vartab.empty, i');
bulwahn@40101
  1138
     val subst = map_types (Envir.norm_type env)
bulwahn@40101
  1139
   in (map subst cs', map subst intr_ts')
bulwahn@40101
  1140
   end) handle Type.TUNIFY =>
bulwahn@40101
  1141
     (warning "Occurrences of recursive constant have non-unifiable types"; (cs, intr_ts));
bulwahn@40101
  1142
bulwahn@40101
  1143
(* preprocessing rules *)
bulwahn@40101
  1144
bulwahn@40101
  1145
fun preprocess_equality thy rule =
bulwahn@40101
  1146
  Conv.fconv_rule
bulwahn@40101
  1147
    (imp_prems_conv
wenzelm@51314
  1148
      (HOLogic.Trueprop_conv
wenzelm@51314
  1149
        (Conv.try_conv (Conv.rewr_conv (Thm.symmetric @{thm Predicate.eq_is_eq})))))
bulwahn@40101
  1150
    (Thm.transfer thy rule)
bulwahn@40101
  1151
bulwahn@40101
  1152
fun preprocess_intro thy = expand_tuples thy #> preprocess_equality thy
bulwahn@40101
  1153
bulwahn@39541
  1154
(* defining a quickcheck predicate *)
bulwahn@39541
  1155
bulwahn@39541
  1156
fun strip_imp_prems (Const(@{const_name HOL.implies}, _) $ A $ B) = A :: strip_imp_prems B
bulwahn@39541
  1157
  | strip_imp_prems _ = [];
bulwahn@39541
  1158
haftmann@46662
  1159
fun strip_imp_concl (Const(@{const_name HOL.implies}, _) $ _ $ B) = strip_imp_concl B
haftmann@46662
  1160
  | strip_imp_concl A = A;
bulwahn@39541
  1161
bulwahn@39541
  1162
fun strip_horn A = (strip_imp_prems A, strip_imp_concl A);
bulwahn@39541
  1163
bulwahn@39541
  1164
fun define_quickcheck_predicate t thy =
bulwahn@39541
  1165
  let
bulwahn@39541
  1166
    val (vs, t') = strip_abs t
wenzelm@51552
  1167
    val vs' = Variable.variant_frees (Proof_Context.init_global thy) [] vs (* FIXME proper context!? *)
bulwahn@39541
  1168
    val t'' = subst_bounds (map Free (rev vs'), t')
bulwahn@39541
  1169
    val (prems, concl) = strip_horn t''
bulwahn@39541
  1170
    val constname = "quickcheck"
bulwahn@39541
  1171
    val full_constname = Sign.full_bname thy constname
bulwahn@39541
  1172
    val constT = map snd vs' ---> @{typ bool}
bulwahn@39541
  1173
    val thy1 = Sign.add_consts_i [(Binding.name constname, constT, NoSyn)] thy
bulwahn@39541
  1174
    val const = Const (full_constname, constT)
bulwahn@39541
  1175
    val t = Logic.list_implies
bulwahn@39541
  1176
      (map HOLogic.mk_Trueprop (prems @ [HOLogic.mk_not concl]),
bulwahn@39541
  1177
       HOLogic.mk_Trueprop (list_comb (const, map Free vs')))
wenzelm@51552
  1178
    val intro =
wenzelm@51552
  1179
      Goal.prove (Proof_Context.init_global thy1) (map fst vs') [] t
wenzelm@51552
  1180
        (fn _ => ALLGOALS Skip_Proof.cheat_tac)
bulwahn@39541
  1181
  in
bulwahn@39541
  1182
    ((((full_constname, constT), vs'), intro), thy1)
bulwahn@39541
  1183
  end
bulwahn@39541
  1184
bulwahn@33250
  1185
end;