src/HOL/Tools/semiring_normalizer.ML
author haftmann
Sat May 08 17:15:50 2010 +0200 (2010-05-08)
changeset 36754 5ce217fc769a
parent 36731 src/HOL/Tools/Groebner_Basis/normalizer.ML@08cd7eccb043
parent 36753 src/HOL/Tools/Groebner_Basis/normalizer.ML@5cf4e9128f22
child 36771 3e08b6789e66
permissions -rw-r--r--
merged
wenzelm@23252
     1
(*  Title:      HOL/Tools/Groebner_Basis/normalizer.ML
wenzelm@23252
     2
    Author:     Amine Chaieb, TU Muenchen
haftmann@36700
     3
haftmann@36700
     4
Normalization of expressions in semirings.
wenzelm@23252
     5
*)
wenzelm@23252
     6
haftmann@36753
     7
signature SEMIRING_NORMALIZER = 
wenzelm@23252
     8
sig
haftmann@36700
     9
  type entry
haftmann@36703
    10
  val get: Proof.context -> (thm * entry) list
haftmann@36700
    11
  val match: Proof.context -> cterm -> entry option
haftmann@36700
    12
  val del: attribute
haftmann@36711
    13
  val add: {semiring: cterm list * thm list, ring: cterm list * thm list,
haftmann@36711
    14
    field: cterm list * thm list, idom: thm list, ideal: thm list} -> attribute
haftmann@36700
    15
  val funs: thm -> {is_const: morphism -> cterm -> bool,
haftmann@36700
    16
    dest_const: morphism -> cterm -> Rat.rat,
haftmann@36700
    17
    mk_const: morphism -> ctyp -> Rat.rat -> cterm,
haftmann@36700
    18
    conv: morphism -> Proof.context -> cterm -> thm} -> declaration
haftmann@36720
    19
  val semiring_funs: thm -> declaration
haftmann@36720
    20
  val field_funs: thm -> declaration
haftmann@36700
    21
haftmann@36711
    22
  val semiring_normalize_conv: Proof.context -> conv
haftmann@36711
    23
  val semiring_normalize_ord_conv: Proof.context -> (cterm -> cterm -> bool) -> conv
haftmann@36711
    24
  val semiring_normalize_wrapper: Proof.context -> entry -> conv
haftmann@36711
    25
  val semiring_normalize_ord_wrapper: Proof.context -> entry
haftmann@36711
    26
    -> (cterm -> cterm -> bool) -> conv
haftmann@36711
    27
  val semiring_normalizers_conv: cterm list -> cterm list * thm list
haftmann@36711
    28
    -> cterm list * thm list -> cterm list * thm list ->
haftmann@36700
    29
      (cterm -> bool) * conv * conv * conv -> (cterm -> cterm -> bool) ->
haftmann@36700
    30
        {add: conv, mul: conv, neg: conv, main: conv, pow: conv, sub: conv}
haftmann@36711
    31
  val semiring_normalizers_ord_wrapper:  Proof.context -> entry ->
haftmann@36711
    32
    (cterm -> cterm -> bool) ->
chaieb@27222
    33
      {add: conv, mul: conv, neg: conv, main: conv, pow: conv, sub: conv}
haftmann@36700
    34
haftmann@36700
    35
  val setup: theory -> theory
wenzelm@23252
    36
end
wenzelm@23252
    37
haftmann@36753
    38
structure Semiring_Normalizer: SEMIRING_NORMALIZER = 
wenzelm@23252
    39
struct
wenzelm@23559
    40
haftmann@36708
    41
(** data **)
haftmann@36700
    42
haftmann@36700
    43
type entry =
haftmann@36700
    44
 {vars: cterm list,
haftmann@36700
    45
  semiring: cterm list * thm list,
haftmann@36700
    46
  ring: cterm list * thm list,
haftmann@36700
    47
  field: cterm list * thm list,
haftmann@36700
    48
  idom: thm list,
haftmann@36700
    49
  ideal: thm list} *
haftmann@36700
    50
 {is_const: cterm -> bool,
haftmann@36700
    51
  dest_const: cterm -> Rat.rat,
haftmann@36700
    52
  mk_const: ctyp -> Rat.rat -> cterm,
haftmann@36700
    53
  conv: Proof.context -> cterm -> thm};
haftmann@36700
    54
haftmann@36700
    55
structure Data = Generic_Data
haftmann@36700
    56
(
haftmann@36705
    57
  type T = (thm * entry) list;
haftmann@36705
    58
  val empty = [];
haftmann@36700
    59
  val extend = I;
haftmann@36718
    60
  val merge = AList.merge Thm.eq_thm (K true);
haftmann@36700
    61
);
haftmann@36700
    62
haftmann@36705
    63
val get = Data.get o Context.Proof;
haftmann@36700
    64
haftmann@36700
    65
fun match ctxt tm =
haftmann@36700
    66
  let
haftmann@36700
    67
    fun match_inst
haftmann@36700
    68
        ({vars, semiring = (sr_ops, sr_rules), 
haftmann@36700
    69
          ring = (r_ops, r_rules), field = (f_ops, f_rules), idom, ideal},
haftmann@36700
    70
         fns as {is_const, dest_const, mk_const, conv}) pat =
haftmann@36700
    71
       let
haftmann@36700
    72
        fun h instT =
haftmann@36700
    73
          let
haftmann@36700
    74
            val substT = Thm.instantiate (instT, []);
haftmann@36700
    75
            val substT_cterm = Drule.cterm_rule substT;
haftmann@36700
    76
haftmann@36700
    77
            val vars' = map substT_cterm vars;
haftmann@36700
    78
            val semiring' = (map substT_cterm sr_ops, map substT sr_rules);
haftmann@36700
    79
            val ring' = (map substT_cterm r_ops, map substT r_rules);
haftmann@36700
    80
            val field' = (map substT_cterm f_ops, map substT f_rules);
haftmann@36700
    81
            val idom' = map substT idom;
haftmann@36700
    82
            val ideal' = map substT ideal;
haftmann@36700
    83
haftmann@36700
    84
            val result = ({vars = vars', semiring = semiring', 
haftmann@36700
    85
                           ring = ring', field = field', idom = idom', ideal = ideal'}, fns);
haftmann@36700
    86
          in SOME result end
haftmann@36700
    87
      in (case try Thm.match (pat, tm) of
haftmann@36700
    88
           NONE => NONE
haftmann@36700
    89
         | SOME (instT, _) => h instT)
haftmann@36700
    90
      end;
haftmann@36700
    91
haftmann@36700
    92
    fun match_struct (_,
haftmann@36700
    93
        entry as ({semiring = (sr_ops, _), ring = (r_ops, _), field = (f_ops, _), ...}, _): entry) =
haftmann@36700
    94
      get_first (match_inst entry) (sr_ops @ r_ops @ f_ops);
haftmann@36704
    95
  in get_first match_struct (get ctxt) end;
haftmann@36700
    96
haftmann@36700
    97
haftmann@36700
    98
(* logical content *)
haftmann@36700
    99
haftmann@36700
   100
val semiringN = "semiring";
haftmann@36700
   101
val ringN = "ring";
haftmann@36700
   102
val idomN = "idom";
haftmann@36700
   103
val idealN = "ideal";
haftmann@36700
   104
val fieldN = "field";
haftmann@36700
   105
haftmann@36706
   106
val del = Thm.declaration_attribute (Data.map o AList.delete Thm.eq_thm);
haftmann@36700
   107
haftmann@36700
   108
fun add {semiring = (sr_ops, sr_rules), ring = (r_ops, r_rules), 
haftmann@36700
   109
         field = (f_ops, f_rules), idom, ideal} =
haftmann@36700
   110
  Thm.declaration_attribute (fn key => fn context => context |> Data.map
haftmann@36700
   111
    let
haftmann@36700
   112
      val ctxt = Context.proof_of context;
haftmann@36700
   113
haftmann@36700
   114
      fun check kind name xs n =
haftmann@36700
   115
        null xs orelse length xs = n orelse
haftmann@36700
   116
        error ("Expected " ^ string_of_int n ^ " " ^ kind ^ " for " ^ name);
haftmann@36700
   117
      val check_ops = check "operations";
haftmann@36700
   118
      val check_rules = check "rules";
haftmann@36700
   119
haftmann@36700
   120
      val _ =
haftmann@36700
   121
        check_ops semiringN sr_ops 5 andalso
haftmann@36700
   122
        check_rules semiringN sr_rules 37 andalso
haftmann@36700
   123
        check_ops ringN r_ops 2 andalso
haftmann@36700
   124
        check_rules ringN r_rules 2 andalso
haftmann@36700
   125
        check_ops fieldN f_ops 2 andalso
haftmann@36700
   126
        check_rules fieldN f_rules 2 andalso
haftmann@36700
   127
        check_rules idomN idom 2;
haftmann@36700
   128
haftmann@36700
   129
      val mk_meta = Local_Defs.meta_rewrite_rule ctxt;
haftmann@36700
   130
      val sr_rules' = map mk_meta sr_rules;
haftmann@36700
   131
      val r_rules' = map mk_meta r_rules;
haftmann@36700
   132
      val f_rules' = map mk_meta f_rules;
haftmann@36700
   133
haftmann@36700
   134
      fun rule i = nth sr_rules' (i - 1);
haftmann@36700
   135
haftmann@36700
   136
      val (cx, cy) = Thm.dest_binop (hd sr_ops);
haftmann@36700
   137
      val cz = rule 34 |> Thm.rhs_of |> Thm.dest_arg |> Thm.dest_arg;
haftmann@36700
   138
      val cn = rule 36 |> Thm.rhs_of |> Thm.dest_arg |> Thm.dest_arg;
haftmann@36700
   139
      val ((clx, crx), (cly, cry)) =
haftmann@36700
   140
        rule 13 |> Thm.rhs_of |> Thm.dest_binop |> pairself Thm.dest_binop;
haftmann@36700
   141
      val ((ca, cb), (cc, cd)) =
haftmann@36700
   142
        rule 20 |> Thm.lhs_of |> Thm.dest_binop |> pairself Thm.dest_binop;
haftmann@36700
   143
      val cm = rule 1 |> Thm.rhs_of |> Thm.dest_arg;
haftmann@36700
   144
      val (cp, cq) = rule 26 |> Thm.lhs_of |> Thm.dest_binop |> pairself Thm.dest_arg;
haftmann@36700
   145
haftmann@36700
   146
      val vars = [ca, cb, cc, cd, cm, cn, cp, cq, cx, cy, cz, clx, crx, cly, cry];
haftmann@36700
   147
      val semiring = (sr_ops, sr_rules');
haftmann@36700
   148
      val ring = (r_ops, r_rules');
haftmann@36700
   149
      val field = (f_ops, f_rules');
haftmann@36700
   150
      val ideal' = map (symmetric o mk_meta) ideal
haftmann@36700
   151
    in
haftmann@36706
   152
      AList.delete Thm.eq_thm key #>
haftmann@36705
   153
      cons (key, ({vars = vars, semiring = semiring, 
haftmann@36700
   154
                          ring = ring, field = field, idom = idom, ideal = ideal'},
haftmann@36700
   155
             {is_const = undefined, dest_const = undefined, mk_const = undefined,
haftmann@36705
   156
             conv = undefined}))
haftmann@36700
   157
    end);
haftmann@36700
   158
haftmann@36700
   159
haftmann@36700
   160
(* extra-logical functions *)
haftmann@36700
   161
haftmann@36700
   162
fun funs raw_key {is_const, dest_const, mk_const, conv} phi = 
haftmann@36705
   163
 Data.map (fn data =>
haftmann@36700
   164
  let
haftmann@36700
   165
    val key = Morphism.thm phi raw_key;
haftmann@36706
   166
    val _ = AList.defined Thm.eq_thm data key orelse
haftmann@36700
   167
      raise THM ("No data entry for structure key", 0, [key]);
haftmann@36700
   168
    val fns = {is_const = is_const phi, dest_const = dest_const phi,
haftmann@36700
   169
      mk_const = mk_const phi, conv = conv phi};
haftmann@36706
   170
  in AList.map_entry Thm.eq_thm key (apsnd (K fns)) data end);
haftmann@36700
   171
haftmann@36720
   172
fun semiring_funs key = funs key
haftmann@36720
   173
   {is_const = fn phi => can HOLogic.dest_number o Thm.term_of,
haftmann@36720
   174
    dest_const = fn phi => fn ct =>
haftmann@36720
   175
      Rat.rat_of_int (snd
haftmann@36720
   176
        (HOLogic.dest_number (Thm.term_of ct)
haftmann@36720
   177
          handle TERM _ => error "ring_dest_const")),
haftmann@36720
   178
    mk_const = fn phi => fn cT => fn x => Numeral.mk_cnumber cT
haftmann@36720
   179
      (case Rat.quotient_of_rat x of (i, 1) => i | _ => error "int_of_rat: bad int"),
haftmann@36720
   180
    conv = fn phi => fn _ => Simplifier.rewrite (HOL_basic_ss addsimps @{thms semiring_norm})
haftmann@36720
   181
      then_conv Simplifier.rewrite (HOL_basic_ss addsimps
haftmann@36720
   182
        (@{thms numeral_1_eq_1} @ @{thms numeral_0_eq_0} @ @{thms numerals(1-2)}))};
haftmann@36720
   183
haftmann@36720
   184
fun field_funs key =
haftmann@36720
   185
  let
haftmann@36720
   186
    fun numeral_is_const ct =
haftmann@36720
   187
      case term_of ct of
haftmann@36720
   188
       Const (@{const_name Rings.divide},_) $ a $ b =>
haftmann@36720
   189
         can HOLogic.dest_number a andalso can HOLogic.dest_number b
haftmann@36720
   190
     | Const (@{const_name Rings.inverse},_)$t => can HOLogic.dest_number t
haftmann@36720
   191
     | t => can HOLogic.dest_number t
haftmann@36720
   192
    fun dest_const ct = ((case term_of ct of
haftmann@36720
   193
       Const (@{const_name Rings.divide},_) $ a $ b=>
haftmann@36720
   194
        Rat.rat_of_quotient (snd (HOLogic.dest_number a), snd (HOLogic.dest_number b))
haftmann@36720
   195
     | Const (@{const_name Rings.inverse},_)$t => 
haftmann@36720
   196
                   Rat.inv (Rat.rat_of_int (snd (HOLogic.dest_number t)))
haftmann@36720
   197
     | t => Rat.rat_of_int (snd (HOLogic.dest_number t))) 
haftmann@36720
   198
       handle TERM _ => error "ring_dest_const")
haftmann@36720
   199
    fun mk_const phi cT x =
haftmann@36720
   200
      let val (a, b) = Rat.quotient_of_rat x
haftmann@36720
   201
      in if b = 1 then Numeral.mk_cnumber cT a
haftmann@36720
   202
        else Thm.capply
haftmann@36720
   203
             (Thm.capply (Drule.cterm_rule (instantiate' [SOME cT] []) @{cpat "op /"})
haftmann@36720
   204
                         (Numeral.mk_cnumber cT a))
haftmann@36720
   205
             (Numeral.mk_cnumber cT b)
haftmann@36720
   206
      end
haftmann@36720
   207
  in funs key
haftmann@36720
   208
     {is_const = K numeral_is_const,
haftmann@36720
   209
      dest_const = K dest_const,
haftmann@36720
   210
      mk_const = mk_const,
haftmann@36751
   211
      conv = K (K Numeral_Simprocs.field_comp_conv)}
haftmann@36720
   212
  end;
haftmann@36720
   213
haftmann@36720
   214
haftmann@36700
   215
haftmann@36710
   216
(** auxiliary **)
chaieb@25253
   217
chaieb@25253
   218
fun is_comb ct =
chaieb@25253
   219
  (case Thm.term_of ct of
chaieb@25253
   220
    _ $ _ => true
chaieb@25253
   221
  | _ => false);
chaieb@25253
   222
chaieb@25253
   223
val concl = Thm.cprop_of #> Thm.dest_arg;
chaieb@25253
   224
chaieb@25253
   225
fun is_binop ct ct' =
chaieb@25253
   226
  (case Thm.term_of ct' of
chaieb@25253
   227
    c $ _ $ _ => term_of ct aconv c
chaieb@25253
   228
  | _ => false);
chaieb@25253
   229
chaieb@25253
   230
fun dest_binop ct ct' =
chaieb@25253
   231
  if is_binop ct ct' then Thm.dest_binop ct'
chaieb@25253
   232
  else raise CTERM ("dest_binop: bad binop", [ct, ct'])
chaieb@25253
   233
chaieb@25253
   234
fun inst_thm inst = Thm.instantiate ([], inst);
chaieb@25253
   235
wenzelm@23252
   236
val dest_numeral = term_of #> HOLogic.dest_number #> snd;
wenzelm@23252
   237
val is_numeral = can dest_numeral;
wenzelm@23252
   238
wenzelm@23252
   239
val numeral01_conv = Simplifier.rewrite
haftmann@25481
   240
                         (HOL_basic_ss addsimps [@{thm numeral_1_eq_1}, @{thm numeral_0_eq_0}]);
wenzelm@23252
   241
val zero1_numeral_conv = 
haftmann@25481
   242
 Simplifier.rewrite (HOL_basic_ss addsimps [@{thm numeral_1_eq_1} RS sym, @{thm numeral_0_eq_0} RS sym]);
wenzelm@23580
   243
fun zerone_conv cv = zero1_numeral_conv then_conv cv then_conv numeral01_conv;
wenzelm@23252
   244
val natarith = [@{thm "add_nat_number_of"}, @{thm "diff_nat_number_of"},
wenzelm@23252
   245
                @{thm "mult_nat_number_of"}, @{thm "eq_nat_number_of"}, 
wenzelm@23252
   246
                @{thm "less_nat_number_of"}];
haftmann@36700
   247
wenzelm@23252
   248
val nat_add_conv = 
wenzelm@23252
   249
 zerone_conv 
wenzelm@23252
   250
  (Simplifier.rewrite 
wenzelm@23252
   251
    (HOL_basic_ss 
haftmann@25481
   252
       addsimps @{thms arith_simps} @ natarith @ @{thms rel_simps}
wenzelm@35410
   253
             @ [@{thm if_False}, @{thm if_True}, @{thm Nat.add_0}, @{thm add_Suc},
nipkow@31790
   254
                 @{thm add_number_of_left}, @{thm Suc_eq_plus1}]
haftmann@25481
   255
             @ map (fn th => th RS sym) @{thms numerals}));
wenzelm@23252
   256
wenzelm@23252
   257
val zeron_tm = @{cterm "0::nat"};
wenzelm@23252
   258
val onen_tm  = @{cterm "1::nat"};
wenzelm@23252
   259
val true_tm = @{cterm "True"};
wenzelm@23252
   260
wenzelm@23252
   261
haftmann@36710
   262
(** normalizing conversions **)
haftmann@36710
   263
haftmann@36710
   264
(* core conversion *)
haftmann@36710
   265
chaieb@30866
   266
fun semiring_normalizers_conv vars (sr_ops, sr_rules) (r_ops, r_rules) (f_ops, f_rules)
wenzelm@23252
   267
  (is_semiring_constant, semiring_add_conv, semiring_mul_conv, semiring_pow_conv) =
wenzelm@23252
   268
let
wenzelm@23252
   269
wenzelm@23252
   270
val [pthm_02, pthm_03, pthm_04, pthm_05, pthm_07, pthm_08,
wenzelm@23252
   271
     pthm_09, pthm_10, pthm_11, pthm_12, pthm_13, pthm_14, pthm_15, pthm_16,
wenzelm@23252
   272
     pthm_17, pthm_18, pthm_19, pthm_21, pthm_22, pthm_23, pthm_24,
wenzelm@23252
   273
     pthm_25, pthm_26, pthm_27, pthm_28, pthm_29, pthm_30, pthm_31, pthm_32,
wenzelm@23252
   274
     pthm_33, pthm_34, pthm_35, pthm_36, pthm_37, pthm_38,pthm_39,pthm_40] = sr_rules;
wenzelm@23252
   275
wenzelm@23252
   276
val [ca, cb, cc, cd, cm, cn, cp, cq, cx, cy, cz, clx, crx, cly, cry] = vars;
wenzelm@23252
   277
val [add_pat, mul_pat, pow_pat, zero_tm, one_tm] = sr_ops;
wenzelm@23252
   278
val [add_tm, mul_tm, pow_tm] = map (Thm.dest_fun o Thm.dest_fun) [add_pat, mul_pat, pow_pat];
wenzelm@23252
   279
wenzelm@23252
   280
val dest_add = dest_binop add_tm
wenzelm@23252
   281
val dest_mul = dest_binop mul_tm
wenzelm@23252
   282
fun dest_pow tm =
wenzelm@23252
   283
 let val (l,r) = dest_binop pow_tm tm
wenzelm@23252
   284
 in if is_numeral r then (l,r) else raise CTERM ("dest_pow",[tm])
wenzelm@23252
   285
 end;
wenzelm@23252
   286
val is_add = is_binop add_tm
wenzelm@23252
   287
val is_mul = is_binop mul_tm
wenzelm@23252
   288
fun is_pow tm = is_binop pow_tm tm andalso is_numeral(Thm.dest_arg tm);
wenzelm@23252
   289
wenzelm@23252
   290
val (neg_mul,sub_add,sub_tm,neg_tm,dest_sub,is_sub,cx',cy') =
wenzelm@23252
   291
  (case (r_ops, r_rules) of
chaieb@30866
   292
    ([sub_pat, neg_pat], [neg_mul, sub_add]) =>
wenzelm@23252
   293
      let
wenzelm@23252
   294
        val sub_tm = Thm.dest_fun (Thm.dest_fun sub_pat)
wenzelm@23252
   295
        val neg_tm = Thm.dest_fun neg_pat
wenzelm@23252
   296
        val dest_sub = dest_binop sub_tm
wenzelm@23252
   297
        val is_sub = is_binop sub_tm
wenzelm@23252
   298
      in (neg_mul,sub_add,sub_tm,neg_tm,dest_sub,is_sub, neg_mul |> concl |> Thm.dest_arg,
wenzelm@23252
   299
          sub_add |> concl |> Thm.dest_arg |> Thm.dest_arg)
chaieb@30866
   300
      end
chaieb@30866
   301
    | _ => (TrueI, TrueI, true_tm, true_tm, (fn t => (t,t)), K false, true_tm, true_tm));
chaieb@30866
   302
chaieb@30866
   303
val (divide_inverse, inverse_divide, divide_tm, inverse_tm, is_divide) = 
chaieb@30866
   304
  (case (f_ops, f_rules) of 
chaieb@30866
   305
   ([divide_pat, inverse_pat], [div_inv, inv_div]) => 
chaieb@30866
   306
     let val div_tm = funpow 2 Thm.dest_fun divide_pat
chaieb@30866
   307
         val inv_tm = Thm.dest_fun inverse_pat
chaieb@30866
   308
     in (div_inv, inv_div, div_tm, inv_tm, is_binop div_tm)
chaieb@30866
   309
     end
chaieb@30866
   310
   | _ => (TrueI, TrueI, true_tm, true_tm, K false));
chaieb@30866
   311
wenzelm@23252
   312
in fn variable_order =>
wenzelm@23252
   313
 let
wenzelm@23252
   314
wenzelm@23252
   315
(* Conversion for "x^n * x^m", with either x^n = x and/or x^m = x possible.  *)
wenzelm@23252
   316
(* Also deals with "const * const", but both terms must involve powers of    *)
wenzelm@23252
   317
(* the same variable, or both be constants, or behaviour may be incorrect.   *)
wenzelm@23252
   318
wenzelm@23252
   319
 fun powvar_mul_conv tm =
wenzelm@23252
   320
  let
wenzelm@23252
   321
  val (l,r) = dest_mul tm
wenzelm@23252
   322
  in if is_semiring_constant l andalso is_semiring_constant r
wenzelm@23252
   323
     then semiring_mul_conv tm
wenzelm@23252
   324
     else
wenzelm@23252
   325
      ((let
wenzelm@23252
   326
         val (lx,ln) = dest_pow l
wenzelm@23252
   327
        in
wenzelm@23252
   328
         ((let val (rx,rn) = dest_pow r
wenzelm@23252
   329
               val th1 = inst_thm [(cx,lx),(cp,ln),(cq,rn)] pthm_29
wenzelm@23252
   330
                val (tm1,tm2) = Thm.dest_comb(concl th1) in
wenzelm@23252
   331
               transitive th1 (Drule.arg_cong_rule tm1 (nat_add_conv tm2)) end)
wenzelm@23252
   332
           handle CTERM _ =>
wenzelm@23252
   333
            (let val th1 = inst_thm [(cx,lx),(cq,ln)] pthm_31
wenzelm@23252
   334
                 val (tm1,tm2) = Thm.dest_comb(concl th1) in
wenzelm@23252
   335
               transitive th1 (Drule.arg_cong_rule tm1 (nat_add_conv tm2)) end)) end)
wenzelm@23252
   336
       handle CTERM _ =>
wenzelm@23252
   337
           ((let val (rx,rn) = dest_pow r
wenzelm@23252
   338
                val th1 = inst_thm [(cx,rx),(cq,rn)] pthm_30
wenzelm@23252
   339
                val (tm1,tm2) = Thm.dest_comb(concl th1) in
wenzelm@23252
   340
               transitive th1 (Drule.arg_cong_rule tm1 (nat_add_conv tm2)) end)
wenzelm@23252
   341
           handle CTERM _ => inst_thm [(cx,l)] pthm_32
wenzelm@23252
   342
wenzelm@23252
   343
))
wenzelm@23252
   344
 end;
wenzelm@23252
   345
wenzelm@23252
   346
(* Remove "1 * m" from a monomial, and just leave m.                         *)
wenzelm@23252
   347
wenzelm@23252
   348
 fun monomial_deone th =
wenzelm@23252
   349
       (let val (l,r) = dest_mul(concl th) in
wenzelm@23252
   350
           if l aconvc one_tm
wenzelm@23252
   351
          then transitive th (inst_thm [(ca,r)] pthm_13)  else th end)
wenzelm@23252
   352
       handle CTERM _ => th;
wenzelm@23252
   353
wenzelm@23252
   354
(* Conversion for "(monomial)^n", where n is a numeral.                      *)
wenzelm@23252
   355
wenzelm@23252
   356
 val monomial_pow_conv =
wenzelm@23252
   357
  let
wenzelm@23252
   358
   fun monomial_pow tm bod ntm =
wenzelm@23252
   359
    if not(is_comb bod)
wenzelm@23252
   360
    then reflexive tm
wenzelm@23252
   361
    else
wenzelm@23252
   362
     if is_semiring_constant bod
wenzelm@23252
   363
     then semiring_pow_conv tm
wenzelm@23252
   364
     else
wenzelm@23252
   365
      let
wenzelm@23252
   366
      val (lopr,r) = Thm.dest_comb bod
wenzelm@23252
   367
      in if not(is_comb lopr)
wenzelm@23252
   368
         then reflexive tm
wenzelm@23252
   369
        else
wenzelm@23252
   370
          let
wenzelm@23252
   371
          val (opr,l) = Thm.dest_comb lopr
wenzelm@23252
   372
         in
wenzelm@23252
   373
           if opr aconvc pow_tm andalso is_numeral r
wenzelm@23252
   374
          then
wenzelm@23252
   375
            let val th1 = inst_thm [(cx,l),(cp,r),(cq,ntm)] pthm_34
wenzelm@23252
   376
                val (l,r) = Thm.dest_comb(concl th1)
haftmann@36700
   377
           in transitive th1 (Drule.arg_cong_rule l (nat_add_conv r))
wenzelm@23252
   378
           end
wenzelm@23252
   379
           else
wenzelm@23252
   380
            if opr aconvc mul_tm
wenzelm@23252
   381
            then
wenzelm@23252
   382
             let
wenzelm@23252
   383
              val th1 = inst_thm [(cx,l),(cy,r),(cq,ntm)] pthm_33
wenzelm@23252
   384
             val (xy,z) = Thm.dest_comb(concl th1)
wenzelm@23252
   385
              val (x,y) = Thm.dest_comb xy
wenzelm@23252
   386
              val thl = monomial_pow y l ntm
wenzelm@23252
   387
              val thr = monomial_pow z r ntm
wenzelm@23252
   388
             in transitive th1 (combination (Drule.arg_cong_rule x thl) thr)
wenzelm@23252
   389
             end
wenzelm@23252
   390
             else reflexive tm
wenzelm@23252
   391
          end
wenzelm@23252
   392
      end
wenzelm@23252
   393
  in fn tm =>
wenzelm@23252
   394
   let
wenzelm@23252
   395
    val (lopr,r) = Thm.dest_comb tm
wenzelm@23252
   396
    val (opr,l) = Thm.dest_comb lopr
wenzelm@23252
   397
   in if not (opr aconvc pow_tm) orelse not(is_numeral r)
wenzelm@23252
   398
      then raise CTERM ("monomial_pow_conv", [tm])
wenzelm@23252
   399
      else if r aconvc zeron_tm
wenzelm@23252
   400
      then inst_thm [(cx,l)] pthm_35
wenzelm@23252
   401
      else if r aconvc onen_tm
wenzelm@23252
   402
      then inst_thm [(cx,l)] pthm_36
wenzelm@23252
   403
      else monomial_deone(monomial_pow tm l r)
wenzelm@23252
   404
   end
wenzelm@23252
   405
  end;
wenzelm@23252
   406
wenzelm@23252
   407
(* Multiplication of canonical monomials.                                    *)
wenzelm@23252
   408
 val monomial_mul_conv =
wenzelm@23252
   409
  let
wenzelm@23252
   410
   fun powvar tm =
wenzelm@23252
   411
    if is_semiring_constant tm then one_tm
wenzelm@23252
   412
    else
wenzelm@23252
   413
     ((let val (lopr,r) = Thm.dest_comb tm
wenzelm@23252
   414
           val (opr,l) = Thm.dest_comb lopr
wenzelm@23252
   415
       in if opr aconvc pow_tm andalso is_numeral r then l 
wenzelm@23252
   416
          else raise CTERM ("monomial_mul_conv",[tm]) end)
wenzelm@23252
   417
     handle CTERM _ => tm)   (* FIXME !? *)
wenzelm@23252
   418
   fun  vorder x y =
wenzelm@23252
   419
    if x aconvc y then 0
wenzelm@23252
   420
    else
wenzelm@23252
   421
     if x aconvc one_tm then ~1
wenzelm@23252
   422
     else if y aconvc one_tm then 1
wenzelm@23252
   423
      else if variable_order x y then ~1 else 1
wenzelm@23252
   424
   fun monomial_mul tm l r =
wenzelm@23252
   425
    ((let val (lx,ly) = dest_mul l val vl = powvar lx
wenzelm@23252
   426
      in
wenzelm@23252
   427
      ((let
wenzelm@23252
   428
        val (rx,ry) = dest_mul r
wenzelm@23252
   429
         val vr = powvar rx
wenzelm@23252
   430
         val ord = vorder vl vr
wenzelm@23252
   431
        in
wenzelm@23252
   432
         if ord = 0
wenzelm@23252
   433
        then
wenzelm@23252
   434
          let
wenzelm@23252
   435
             val th1 = inst_thm [(clx,lx),(cly,ly),(crx,rx),(cry,ry)] pthm_15
wenzelm@23252
   436
             val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   437
             val (tm3,tm4) = Thm.dest_comb tm1
wenzelm@23252
   438
             val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (powvar_mul_conv tm4)) tm2
wenzelm@23252
   439
             val th3 = transitive th1 th2
wenzelm@23252
   440
              val  (tm5,tm6) = Thm.dest_comb(concl th3)
wenzelm@23252
   441
              val  (tm7,tm8) = Thm.dest_comb tm6
wenzelm@23252
   442
             val  th4 = monomial_mul tm6 (Thm.dest_arg tm7) tm8
wenzelm@23252
   443
         in  transitive th3 (Drule.arg_cong_rule tm5 th4)
wenzelm@23252
   444
         end
wenzelm@23252
   445
         else
wenzelm@23252
   446
          let val th0 = if ord < 0 then pthm_16 else pthm_17
wenzelm@23252
   447
             val th1 = inst_thm [(clx,lx),(cly,ly),(crx,rx),(cry,ry)] th0
wenzelm@23252
   448
             val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   449
             val (tm3,tm4) = Thm.dest_comb tm2
wenzelm@23252
   450
         in transitive th1 (Drule.arg_cong_rule tm1 (monomial_mul tm2 (Thm.dest_arg tm3) tm4))
wenzelm@23252
   451
         end
wenzelm@23252
   452
        end)
wenzelm@23252
   453
       handle CTERM _ =>
wenzelm@23252
   454
        (let val vr = powvar r val ord = vorder vl vr
wenzelm@23252
   455
        in
wenzelm@23252
   456
          if ord = 0 then
wenzelm@23252
   457
           let
wenzelm@23252
   458
           val th1 = inst_thm [(clx,lx),(cly,ly),(crx,r)] pthm_18
wenzelm@23252
   459
                 val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   460
           val (tm3,tm4) = Thm.dest_comb tm1
wenzelm@23252
   461
           val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (powvar_mul_conv tm4)) tm2
wenzelm@23252
   462
          in transitive th1 th2
wenzelm@23252
   463
          end
wenzelm@23252
   464
          else
wenzelm@23252
   465
          if ord < 0 then
wenzelm@23252
   466
            let val th1 = inst_thm [(clx,lx),(cly,ly),(crx,r)] pthm_19
wenzelm@23252
   467
                val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   468
                val (tm3,tm4) = Thm.dest_comb tm2
wenzelm@23252
   469
           in transitive th1 (Drule.arg_cong_rule tm1 (monomial_mul tm2 (Thm.dest_arg tm3) tm4))
wenzelm@23252
   470
           end
wenzelm@23252
   471
           else inst_thm [(ca,l),(cb,r)] pthm_09
wenzelm@23252
   472
        end)) end)
wenzelm@23252
   473
     handle CTERM _ =>
wenzelm@23252
   474
      (let val vl = powvar l in
wenzelm@23252
   475
        ((let
wenzelm@23252
   476
          val (rx,ry) = dest_mul r
wenzelm@23252
   477
          val vr = powvar rx
wenzelm@23252
   478
           val ord = vorder vl vr
wenzelm@23252
   479
         in if ord = 0 then
wenzelm@23252
   480
              let val th1 = inst_thm [(clx,l),(crx,rx),(cry,ry)] pthm_21
wenzelm@23252
   481
                 val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   482
                 val (tm3,tm4) = Thm.dest_comb tm1
wenzelm@23252
   483
             in transitive th1 (Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (powvar_mul_conv tm4)) tm2)
wenzelm@23252
   484
             end
wenzelm@23252
   485
             else if ord > 0 then
wenzelm@23252
   486
                 let val th1 = inst_thm [(clx,l),(crx,rx),(cry,ry)] pthm_22
wenzelm@23252
   487
                     val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   488
                    val (tm3,tm4) = Thm.dest_comb tm2
wenzelm@23252
   489
                in transitive th1 (Drule.arg_cong_rule tm1 (monomial_mul tm2 (Thm.dest_arg tm3) tm4))
wenzelm@23252
   490
                end
wenzelm@23252
   491
             else reflexive tm
wenzelm@23252
   492
         end)
wenzelm@23252
   493
        handle CTERM _ =>
wenzelm@23252
   494
          (let val vr = powvar r
wenzelm@23252
   495
               val  ord = vorder vl vr
wenzelm@23252
   496
          in if ord = 0 then powvar_mul_conv tm
wenzelm@23252
   497
              else if ord > 0 then inst_thm [(ca,l),(cb,r)] pthm_09
wenzelm@23252
   498
              else reflexive tm
wenzelm@23252
   499
          end)) end))
wenzelm@23252
   500
  in fn tm => let val (l,r) = dest_mul tm in monomial_deone(monomial_mul tm l r)
wenzelm@23252
   501
             end
wenzelm@23252
   502
  end;
wenzelm@23252
   503
(* Multiplication by monomial of a polynomial.                               *)
wenzelm@23252
   504
wenzelm@23252
   505
 val polynomial_monomial_mul_conv =
wenzelm@23252
   506
  let
wenzelm@23252
   507
   fun pmm_conv tm =
wenzelm@23252
   508
    let val (l,r) = dest_mul tm
wenzelm@23252
   509
    in
wenzelm@23252
   510
    ((let val (y,z) = dest_add r
wenzelm@23252
   511
          val th1 = inst_thm [(cx,l),(cy,y),(cz,z)] pthm_37
wenzelm@23252
   512
          val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   513
          val (tm3,tm4) = Thm.dest_comb tm1
wenzelm@23252
   514
          val th2 = combination (Drule.arg_cong_rule tm3 (monomial_mul_conv tm4)) (pmm_conv tm2)
wenzelm@23252
   515
      in transitive th1 th2
wenzelm@23252
   516
      end)
wenzelm@23252
   517
     handle CTERM _ => monomial_mul_conv tm)
wenzelm@23252
   518
   end
wenzelm@23252
   519
 in pmm_conv
wenzelm@23252
   520
 end;
wenzelm@23252
   521
wenzelm@23252
   522
(* Addition of two monomials identical except for constant multiples.        *)
wenzelm@23252
   523
wenzelm@23252
   524
fun monomial_add_conv tm =
wenzelm@23252
   525
 let val (l,r) = dest_add tm
wenzelm@23252
   526
 in if is_semiring_constant l andalso is_semiring_constant r
wenzelm@23252
   527
    then semiring_add_conv tm
wenzelm@23252
   528
    else
wenzelm@23252
   529
     let val th1 =
wenzelm@23252
   530
           if is_mul l andalso is_semiring_constant(Thm.dest_arg1 l)
wenzelm@23252
   531
           then if is_mul r andalso is_semiring_constant(Thm.dest_arg1 r) then
wenzelm@23252
   532
                    inst_thm [(ca,Thm.dest_arg1 l),(cm,Thm.dest_arg r), (cb,Thm.dest_arg1 r)] pthm_02
wenzelm@23252
   533
                else inst_thm [(ca,Thm.dest_arg1 l),(cm,r)] pthm_03
wenzelm@23252
   534
           else if is_mul r andalso is_semiring_constant(Thm.dest_arg1 r)
wenzelm@23252
   535
           then inst_thm [(cm,l),(ca,Thm.dest_arg1 r)] pthm_04
wenzelm@23252
   536
           else inst_thm [(cm,r)] pthm_05
wenzelm@23252
   537
         val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   538
         val (tm3,tm4) = Thm.dest_comb tm1
wenzelm@23252
   539
         val th2 = Drule.arg_cong_rule tm3 (semiring_add_conv tm4)
wenzelm@23252
   540
         val th3 = transitive th1 (Drule.fun_cong_rule th2 tm2)
wenzelm@23252
   541
         val tm5 = concl th3
wenzelm@23252
   542
      in
wenzelm@23252
   543
      if (Thm.dest_arg1 tm5) aconvc zero_tm
wenzelm@23252
   544
      then transitive th3 (inst_thm [(ca,Thm.dest_arg tm5)] pthm_11)
wenzelm@23252
   545
      else monomial_deone th3
wenzelm@23252
   546
     end
wenzelm@23252
   547
 end;
wenzelm@23252
   548
wenzelm@23252
   549
(* Ordering on monomials.                                                    *)
wenzelm@23252
   550
wenzelm@23252
   551
fun striplist dest =
wenzelm@23252
   552
 let fun strip x acc =
wenzelm@23252
   553
   ((let val (l,r) = dest x in
wenzelm@23252
   554
        strip l (strip r acc) end)
wenzelm@23252
   555
    handle CTERM _ => x::acc)    (* FIXME !? *)
wenzelm@23252
   556
 in fn x => strip x []
wenzelm@23252
   557
 end;
wenzelm@23252
   558
wenzelm@23252
   559
wenzelm@23252
   560
fun powervars tm =
wenzelm@23252
   561
 let val ptms = striplist dest_mul tm
wenzelm@23252
   562
 in if is_semiring_constant (hd ptms) then tl ptms else ptms
wenzelm@23252
   563
 end;
wenzelm@23252
   564
val num_0 = 0;
wenzelm@23252
   565
val num_1 = 1;
wenzelm@23252
   566
fun dest_varpow tm =
wenzelm@23252
   567
 ((let val (x,n) = dest_pow tm in (x,dest_numeral n) end)
wenzelm@23252
   568
   handle CTERM _ =>
wenzelm@23252
   569
   (tm,(if is_semiring_constant tm then num_0 else num_1)));
wenzelm@23252
   570
wenzelm@23252
   571
val morder =
wenzelm@23252
   572
 let fun lexorder l1 l2 =
wenzelm@23252
   573
  case (l1,l2) of
wenzelm@23252
   574
    ([],[]) => 0
wenzelm@23252
   575
  | (vps,[]) => ~1
wenzelm@23252
   576
  | ([],vps) => 1
wenzelm@23252
   577
  | (((x1,n1)::vs1),((x2,n2)::vs2)) =>
wenzelm@23252
   578
     if variable_order x1 x2 then 1
wenzelm@23252
   579
     else if variable_order x2 x1 then ~1
wenzelm@23252
   580
     else if n1 < n2 then ~1
wenzelm@23252
   581
     else if n2 < n1 then 1
wenzelm@23252
   582
     else lexorder vs1 vs2
wenzelm@23252
   583
 in fn tm1 => fn tm2 =>
wenzelm@23252
   584
  let val vdegs1 = map dest_varpow (powervars tm1)
wenzelm@23252
   585
      val vdegs2 = map dest_varpow (powervars tm2)
wenzelm@33002
   586
      val deg1 = fold (Integer.add o snd) vdegs1 num_0
wenzelm@33002
   587
      val deg2 = fold (Integer.add o snd) vdegs2 num_0
wenzelm@23252
   588
  in if deg1 < deg2 then ~1 else if deg1 > deg2 then 1
wenzelm@23252
   589
                            else lexorder vdegs1 vdegs2
wenzelm@23252
   590
  end
wenzelm@23252
   591
 end;
wenzelm@23252
   592
wenzelm@23252
   593
(* Addition of two polynomials.                                              *)
wenzelm@23252
   594
wenzelm@23252
   595
val polynomial_add_conv =
wenzelm@23252
   596
 let
wenzelm@23252
   597
 fun dezero_rule th =
wenzelm@23252
   598
  let
wenzelm@23252
   599
   val tm = concl th
wenzelm@23252
   600
  in
wenzelm@23252
   601
   if not(is_add tm) then th else
wenzelm@23252
   602
   let val (lopr,r) = Thm.dest_comb tm
wenzelm@23252
   603
       val l = Thm.dest_arg lopr
wenzelm@23252
   604
   in
wenzelm@23252
   605
    if l aconvc zero_tm
wenzelm@23252
   606
    then transitive th (inst_thm [(ca,r)] pthm_07)   else
wenzelm@23252
   607
        if r aconvc zero_tm
wenzelm@23252
   608
        then transitive th (inst_thm [(ca,l)] pthm_08)  else th
wenzelm@23252
   609
   end
wenzelm@23252
   610
  end
wenzelm@23252
   611
 fun padd tm =
wenzelm@23252
   612
  let
wenzelm@23252
   613
   val (l,r) = dest_add tm
wenzelm@23252
   614
  in
wenzelm@23252
   615
   if l aconvc zero_tm then inst_thm [(ca,r)] pthm_07
wenzelm@23252
   616
   else if r aconvc zero_tm then inst_thm [(ca,l)] pthm_08
wenzelm@23252
   617
   else
wenzelm@23252
   618
    if is_add l
wenzelm@23252
   619
    then
wenzelm@23252
   620
     let val (a,b) = dest_add l
wenzelm@23252
   621
     in
wenzelm@23252
   622
     if is_add r then
wenzelm@23252
   623
      let val (c,d) = dest_add r
wenzelm@23252
   624
          val ord = morder a c
wenzelm@23252
   625
      in
wenzelm@23252
   626
       if ord = 0 then
wenzelm@23252
   627
        let val th1 = inst_thm [(ca,a),(cb,b),(cc,c),(cd,d)] pthm_23
wenzelm@23252
   628
            val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   629
            val (tm3,tm4) = Thm.dest_comb tm1
wenzelm@23252
   630
            val th2 = Drule.arg_cong_rule tm3 (monomial_add_conv tm4)
wenzelm@23252
   631
        in dezero_rule (transitive th1 (combination th2 (padd tm2)))
wenzelm@23252
   632
        end
wenzelm@23252
   633
       else (* ord <> 0*)
wenzelm@23252
   634
        let val th1 =
wenzelm@23252
   635
                if ord > 0 then inst_thm [(ca,a),(cb,b),(cc,r)] pthm_24
wenzelm@23252
   636
                else inst_thm [(ca,l),(cc,c),(cd,d)] pthm_25
wenzelm@23252
   637
            val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   638
        in dezero_rule (transitive th1 (Drule.arg_cong_rule tm1 (padd tm2)))
wenzelm@23252
   639
        end
wenzelm@23252
   640
      end
wenzelm@23252
   641
     else (* not (is_add r)*)
wenzelm@23252
   642
      let val ord = morder a r
wenzelm@23252
   643
      in
wenzelm@23252
   644
       if ord = 0 then
wenzelm@23252
   645
        let val th1 = inst_thm [(ca,a),(cb,b),(cc,r)] pthm_26
wenzelm@23252
   646
            val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   647
            val (tm3,tm4) = Thm.dest_comb tm1
wenzelm@23252
   648
            val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (monomial_add_conv tm4)) tm2
wenzelm@23252
   649
        in dezero_rule (transitive th1 th2)
wenzelm@23252
   650
        end
wenzelm@23252
   651
       else (* ord <> 0*)
wenzelm@23252
   652
        if ord > 0 then
wenzelm@23252
   653
          let val th1 = inst_thm [(ca,a),(cb,b),(cc,r)] pthm_24
wenzelm@23252
   654
              val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   655
          in dezero_rule (transitive th1 (Drule.arg_cong_rule tm1 (padd tm2)))
wenzelm@23252
   656
          end
wenzelm@23252
   657
        else dezero_rule (inst_thm [(ca,l),(cc,r)] pthm_27)
wenzelm@23252
   658
      end
wenzelm@23252
   659
    end
wenzelm@23252
   660
   else (* not (is_add l)*)
wenzelm@23252
   661
    if is_add r then
wenzelm@23252
   662
      let val (c,d) = dest_add r
wenzelm@23252
   663
          val  ord = morder l c
wenzelm@23252
   664
      in
wenzelm@23252
   665
       if ord = 0 then
wenzelm@23252
   666
         let val th1 = inst_thm [(ca,l),(cc,c),(cd,d)] pthm_28
wenzelm@23252
   667
             val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   668
             val (tm3,tm4) = Thm.dest_comb tm1
wenzelm@23252
   669
             val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (monomial_add_conv tm4)) tm2
wenzelm@23252
   670
         in dezero_rule (transitive th1 th2)
wenzelm@23252
   671
         end
wenzelm@23252
   672
       else
wenzelm@23252
   673
        if ord > 0 then reflexive tm
wenzelm@23252
   674
        else
wenzelm@23252
   675
         let val th1 = inst_thm [(ca,l),(cc,c),(cd,d)] pthm_25
wenzelm@23252
   676
             val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   677
         in dezero_rule (transitive th1 (Drule.arg_cong_rule tm1 (padd tm2)))
wenzelm@23252
   678
         end
wenzelm@23252
   679
      end
wenzelm@23252
   680
    else
wenzelm@23252
   681
     let val ord = morder l r
wenzelm@23252
   682
     in
wenzelm@23252
   683
      if ord = 0 then monomial_add_conv tm
wenzelm@23252
   684
      else if ord > 0 then dezero_rule(reflexive tm)
wenzelm@23252
   685
      else dezero_rule (inst_thm [(ca,l),(cc,r)] pthm_27)
wenzelm@23252
   686
     end
wenzelm@23252
   687
  end
wenzelm@23252
   688
 in padd
wenzelm@23252
   689
 end;
wenzelm@23252
   690
wenzelm@23252
   691
(* Multiplication of two polynomials.                                        *)
wenzelm@23252
   692
wenzelm@23252
   693
val polynomial_mul_conv =
wenzelm@23252
   694
 let
wenzelm@23252
   695
  fun pmul tm =
wenzelm@23252
   696
   let val (l,r) = dest_mul tm
wenzelm@23252
   697
   in
wenzelm@23252
   698
    if not(is_add l) then polynomial_monomial_mul_conv tm
wenzelm@23252
   699
    else
wenzelm@23252
   700
     if not(is_add r) then
wenzelm@23252
   701
      let val th1 = inst_thm [(ca,l),(cb,r)] pthm_09
wenzelm@23252
   702
      in transitive th1 (polynomial_monomial_mul_conv(concl th1))
wenzelm@23252
   703
      end
wenzelm@23252
   704
     else
wenzelm@23252
   705
       let val (a,b) = dest_add l
wenzelm@23252
   706
           val th1 = inst_thm [(ca,a),(cb,b),(cc,r)] pthm_10
wenzelm@23252
   707
           val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   708
           val (tm3,tm4) = Thm.dest_comb tm1
wenzelm@23252
   709
           val th2 = Drule.arg_cong_rule tm3 (polynomial_monomial_mul_conv tm4)
wenzelm@23252
   710
           val th3 = transitive th1 (combination th2 (pmul tm2))
wenzelm@23252
   711
       in transitive th3 (polynomial_add_conv (concl th3))
wenzelm@23252
   712
       end
wenzelm@23252
   713
   end
wenzelm@23252
   714
 in fn tm =>
wenzelm@23252
   715
   let val (l,r) = dest_mul tm
wenzelm@23252
   716
   in
wenzelm@23252
   717
    if l aconvc zero_tm then inst_thm [(ca,r)] pthm_11
wenzelm@23252
   718
    else if r aconvc zero_tm then inst_thm [(ca,l)] pthm_12
wenzelm@23252
   719
    else if l aconvc one_tm then inst_thm [(ca,r)] pthm_13
wenzelm@23252
   720
    else if r aconvc one_tm then inst_thm [(ca,l)] pthm_14
wenzelm@23252
   721
    else pmul tm
wenzelm@23252
   722
   end
wenzelm@23252
   723
 end;
wenzelm@23252
   724
wenzelm@23252
   725
(* Power of polynomial (optimized for the monomial and trivial cases).       *)
wenzelm@23252
   726
wenzelm@23580
   727
fun num_conv n =
wenzelm@23580
   728
  nat_add_conv (Thm.capply @{cterm Suc} (Numeral.mk_cnumber @{ctyp nat} (dest_numeral n - 1)))
wenzelm@23580
   729
  |> Thm.symmetric;
wenzelm@23252
   730
wenzelm@23252
   731
wenzelm@23252
   732
val polynomial_pow_conv =
wenzelm@23252
   733
 let
wenzelm@23252
   734
  fun ppow tm =
wenzelm@23252
   735
    let val (l,n) = dest_pow tm
wenzelm@23252
   736
    in
wenzelm@23252
   737
     if n aconvc zeron_tm then inst_thm [(cx,l)] pthm_35
wenzelm@23252
   738
     else if n aconvc onen_tm then inst_thm [(cx,l)] pthm_36
wenzelm@23252
   739
     else
wenzelm@23252
   740
         let val th1 = num_conv n
wenzelm@23252
   741
             val th2 = inst_thm [(cx,l),(cq,Thm.dest_arg (concl th1))] pthm_38
wenzelm@23252
   742
             val (tm1,tm2) = Thm.dest_comb(concl th2)
wenzelm@23252
   743
             val th3 = transitive th2 (Drule.arg_cong_rule tm1 (ppow tm2))
wenzelm@23252
   744
             val th4 = transitive (Drule.arg_cong_rule (Thm.dest_fun tm) th1) th3
wenzelm@23252
   745
         in transitive th4 (polynomial_mul_conv (concl th4))
wenzelm@23252
   746
         end
wenzelm@23252
   747
    end
wenzelm@23252
   748
 in fn tm =>
wenzelm@23252
   749
       if is_add(Thm.dest_arg1 tm) then ppow tm else monomial_pow_conv tm
wenzelm@23252
   750
 end;
wenzelm@23252
   751
wenzelm@23252
   752
(* Negation.                                                                 *)
wenzelm@23252
   753
wenzelm@23580
   754
fun polynomial_neg_conv tm =
wenzelm@23252
   755
   let val (l,r) = Thm.dest_comb tm in
wenzelm@23252
   756
        if not (l aconvc neg_tm) then raise CTERM ("polynomial_neg_conv",[tm]) else
wenzelm@23252
   757
        let val th1 = inst_thm [(cx',r)] neg_mul
haftmann@36709
   758
            val th2 = transitive th1 (Conv.arg1_conv semiring_mul_conv (concl th1))
wenzelm@23252
   759
        in transitive th2 (polynomial_monomial_mul_conv (concl th2))
wenzelm@23252
   760
        end
wenzelm@23252
   761
   end;
wenzelm@23252
   762
wenzelm@23252
   763
wenzelm@23252
   764
(* Subtraction.                                                              *)
wenzelm@23580
   765
fun polynomial_sub_conv tm =
wenzelm@23252
   766
  let val (l,r) = dest_sub tm
wenzelm@23252
   767
      val th1 = inst_thm [(cx',l),(cy',r)] sub_add
wenzelm@23252
   768
      val (tm1,tm2) = Thm.dest_comb(concl th1)
wenzelm@23252
   769
      val th2 = Drule.arg_cong_rule tm1 (polynomial_neg_conv tm2)
wenzelm@23252
   770
  in transitive th1 (transitive th2 (polynomial_add_conv (concl th2)))
wenzelm@23252
   771
  end;
wenzelm@23252
   772
wenzelm@23252
   773
(* Conversion from HOL term.                                                 *)
wenzelm@23252
   774
wenzelm@23252
   775
fun polynomial_conv tm =
chaieb@23407
   776
 if is_semiring_constant tm then semiring_add_conv tm
chaieb@23407
   777
 else if not(is_comb tm) then reflexive tm
wenzelm@23252
   778
 else
wenzelm@23252
   779
  let val (lopr,r) = Thm.dest_comb tm
wenzelm@23252
   780
  in if lopr aconvc neg_tm then
wenzelm@23252
   781
       let val th1 = Drule.arg_cong_rule lopr (polynomial_conv r)
wenzelm@23252
   782
       in transitive th1 (polynomial_neg_conv (concl th1))
wenzelm@23252
   783
       end
chaieb@30866
   784
     else if lopr aconvc inverse_tm then
chaieb@30866
   785
       let val th1 = Drule.arg_cong_rule lopr (polynomial_conv r)
chaieb@30866
   786
       in transitive th1 (semiring_mul_conv (concl th1))
chaieb@30866
   787
       end
wenzelm@23252
   788
     else
wenzelm@23252
   789
       if not(is_comb lopr) then reflexive tm
wenzelm@23252
   790
       else
wenzelm@23252
   791
         let val (opr,l) = Thm.dest_comb lopr
wenzelm@23252
   792
         in if opr aconvc pow_tm andalso is_numeral r
wenzelm@23252
   793
            then
wenzelm@23252
   794
              let val th1 = Drule.fun_cong_rule (Drule.arg_cong_rule opr (polynomial_conv l)) r
wenzelm@23252
   795
              in transitive th1 (polynomial_pow_conv (concl th1))
wenzelm@23252
   796
              end
chaieb@30866
   797
         else if opr aconvc divide_tm 
chaieb@30866
   798
            then
chaieb@30866
   799
              let val th1 = combination (Drule.arg_cong_rule opr (polynomial_conv l)) 
chaieb@30866
   800
                                        (polynomial_conv r)
haftmann@36709
   801
                  val th2 = (Conv.rewr_conv divide_inverse then_conv polynomial_mul_conv)
chaieb@30866
   802
                              (Thm.rhs_of th1)
chaieb@30866
   803
              in transitive th1 th2
chaieb@30866
   804
              end
wenzelm@23252
   805
            else
wenzelm@23252
   806
              if opr aconvc add_tm orelse opr aconvc mul_tm orelse opr aconvc sub_tm
wenzelm@23252
   807
              then
wenzelm@23252
   808
               let val th1 = combination (Drule.arg_cong_rule opr (polynomial_conv l)) (polynomial_conv r)
wenzelm@23252
   809
                   val f = if opr aconvc add_tm then polynomial_add_conv
wenzelm@23252
   810
                      else if opr aconvc mul_tm then polynomial_mul_conv
wenzelm@23252
   811
                      else polynomial_sub_conv
wenzelm@23252
   812
               in transitive th1 (f (concl th1))
wenzelm@23252
   813
               end
wenzelm@23252
   814
              else reflexive tm
wenzelm@23252
   815
         end
wenzelm@23252
   816
  end;
wenzelm@23252
   817
 in
wenzelm@23252
   818
   {main = polynomial_conv,
wenzelm@23252
   819
    add = polynomial_add_conv,
wenzelm@23252
   820
    mul = polynomial_mul_conv,
wenzelm@23252
   821
    pow = polynomial_pow_conv,
wenzelm@23252
   822
    neg = polynomial_neg_conv,
wenzelm@23252
   823
    sub = polynomial_sub_conv}
wenzelm@23252
   824
 end
wenzelm@23252
   825
end;
wenzelm@23252
   826
wenzelm@35410
   827
val nat_exp_ss =
wenzelm@35410
   828
  HOL_basic_ss addsimps (@{thms nat_number} @ @{thms nat_arith} @ @{thms arith_simps} @ @{thms rel_simps})
wenzelm@35410
   829
    addsimps [@{thm Let_def}, @{thm if_False}, @{thm if_True}, @{thm Nat.add_0}, @{thm add_Suc}];
wenzelm@23252
   830
wenzelm@35408
   831
fun simple_cterm_ord t u = Term_Ord.term_ord (term_of t, term_of u) = LESS;
chaieb@27222
   832
haftmann@36710
   833
haftmann@36710
   834
(* various normalizing conversions *)
haftmann@36710
   835
chaieb@30866
   836
fun semiring_normalizers_ord_wrapper ctxt ({vars, semiring, ring, field, idom, ideal}, 
chaieb@23407
   837
                                     {conv, dest_const, mk_const, is_const}) ord =
wenzelm@23252
   838
  let
wenzelm@23252
   839
    val pow_conv =
haftmann@36709
   840
      Conv.arg_conv (Simplifier.rewrite nat_exp_ss)
wenzelm@23252
   841
      then_conv Simplifier.rewrite
wenzelm@23252
   842
        (HOL_basic_ss addsimps [nth (snd semiring) 31, nth (snd semiring) 34])
chaieb@23330
   843
      then_conv conv ctxt
chaieb@23330
   844
    val dat = (is_const, conv ctxt, conv ctxt, pow_conv)
chaieb@30866
   845
  in semiring_normalizers_conv vars semiring ring field dat ord end;
chaieb@27222
   846
chaieb@30866
   847
fun semiring_normalize_ord_wrapper ctxt ({vars, semiring, ring, field, idom, ideal}, {conv, dest_const, mk_const, is_const}) ord =
chaieb@30866
   848
 #main (semiring_normalizers_ord_wrapper ctxt ({vars = vars, semiring = semiring, ring = ring, field = field, idom = idom, ideal = ideal},{conv = conv, dest_const = dest_const, mk_const = mk_const, is_const = is_const}) ord);
wenzelm@23252
   849
chaieb@23407
   850
fun semiring_normalize_wrapper ctxt data = 
chaieb@23407
   851
  semiring_normalize_ord_wrapper ctxt data simple_cterm_ord;
chaieb@23407
   852
chaieb@23407
   853
fun semiring_normalize_ord_conv ctxt ord tm =
haftmann@36700
   854
  (case match ctxt tm of
wenzelm@23252
   855
    NONE => reflexive tm
chaieb@23407
   856
  | SOME res => semiring_normalize_ord_wrapper ctxt res ord tm);
chaieb@23407
   857
 
chaieb@23407
   858
fun semiring_normalize_conv ctxt = semiring_normalize_ord_conv ctxt simple_cterm_ord;
wenzelm@23252
   859
haftmann@36708
   860
haftmann@36708
   861
(** Isar setup **)
haftmann@36708
   862
haftmann@36708
   863
local
haftmann@36708
   864
haftmann@36708
   865
fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K ();
haftmann@36708
   866
fun keyword2 k1 k2 = Scan.lift (Args.$$$ k1 -- Args.$$$ k2 -- Args.colon) >> K ();
haftmann@36708
   867
fun keyword3 k1 k2 k3 =
haftmann@36708
   868
  Scan.lift (Args.$$$ k1 -- Args.$$$ k2 -- Args.$$$ k3 -- Args.colon) >> K ();
haftmann@36708
   869
haftmann@36708
   870
val opsN = "ops";
haftmann@36708
   871
val rulesN = "rules";
haftmann@36708
   872
haftmann@36708
   873
val normN = "norm";
haftmann@36708
   874
val constN = "const";
haftmann@36708
   875
val delN = "del";
haftmann@36700
   876
haftmann@36708
   877
val any_keyword =
haftmann@36708
   878
  keyword2 semiringN opsN || keyword2 semiringN rulesN ||
haftmann@36708
   879
  keyword2 ringN opsN || keyword2 ringN rulesN ||
haftmann@36708
   880
  keyword2 fieldN opsN || keyword2 fieldN rulesN ||
haftmann@36708
   881
  keyword2 idomN rulesN || keyword2 idealN rulesN;
haftmann@36708
   882
haftmann@36708
   883
val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat;
haftmann@36708
   884
val terms = thms >> map Drule.dest_term;
haftmann@36708
   885
haftmann@36708
   886
fun optional scan = Scan.optional scan [];
haftmann@36708
   887
haftmann@36708
   888
in
haftmann@36708
   889
haftmann@36708
   890
val setup =
haftmann@36708
   891
  Attrib.setup @{binding normalizer}
haftmann@36708
   892
    (Scan.lift (Args.$$$ delN >> K del) ||
haftmann@36708
   893
      ((keyword2 semiringN opsN |-- terms) --
haftmann@36708
   894
       (keyword2 semiringN rulesN |-- thms)) --
haftmann@36708
   895
      (optional (keyword2 ringN opsN |-- terms) --
haftmann@36708
   896
       optional (keyword2 ringN rulesN |-- thms)) --
haftmann@36708
   897
      (optional (keyword2 fieldN opsN |-- terms) --
haftmann@36708
   898
       optional (keyword2 fieldN rulesN |-- thms)) --
haftmann@36708
   899
      optional (keyword2 idomN rulesN |-- thms) --
haftmann@36708
   900
      optional (keyword2 idealN rulesN |-- thms)
haftmann@36708
   901
      >> (fn ((((sr, r), f), id), idl) => 
haftmann@36708
   902
             add {semiring = sr, ring = r, field = f, idom = id, ideal = idl}))
haftmann@36708
   903
    "semiring normalizer data";
haftmann@36700
   904
wenzelm@23252
   905
end;
haftmann@36708
   906
haftmann@36708
   907
end;