src/Pure/thm.ML
author wenzelm
Thu Jul 28 15:20:02 2005 +0200 (2005-07-28)
changeset 16945 5d3ae25673a8
parent 16884 1678a796b6b2
child 16991 39f5760f72d7
permissions -rw-r--r--
added weaken, adjust_maxidx_thm;
wenzelm@250
     1
(*  Title:      Pure/thm.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@250
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
lcp@229
     4
    Copyright   1994  University of Cambridge
lcp@229
     5
wenzelm@16425
     6
The very core of Isabelle's Meta Logic: certified types and terms,
wenzelm@16425
     7
meta theorems, meta rules (including lifting and resolution).
clasohm@0
     8
*)
clasohm@0
     9
wenzelm@6089
    10
signature BASIC_THM =
paulson@1503
    11
  sig
wenzelm@1160
    12
  (*certified types*)
wenzelm@387
    13
  type ctyp
wenzelm@16656
    14
  val rep_ctyp: ctyp ->
wenzelm@16656
    15
   {thy: theory,
wenzelm@16656
    16
    sign: theory,       (*obsolete*)
wenzelm@16656
    17
    T: typ,
wenzelm@16656
    18
    sorts: sort list}
wenzelm@16425
    19
  val theory_of_ctyp: ctyp -> theory
wenzelm@16425
    20
  val typ_of: ctyp -> typ
wenzelm@16425
    21
  val ctyp_of: theory -> typ -> ctyp
wenzelm@16425
    22
  val read_ctyp: theory -> string -> ctyp
wenzelm@1160
    23
wenzelm@1160
    24
  (*certified terms*)
wenzelm@1160
    25
  type cterm
clasohm@1493
    26
  exception CTERM of string
wenzelm@16601
    27
  val rep_cterm: cterm ->
wenzelm@16656
    28
   {thy: theory,
wenzelm@16656
    29
    sign: theory,       (*obsolete*)
wenzelm@16656
    30
    t: term,
wenzelm@16656
    31
    T: typ,
wenzelm@16656
    32
    maxidx: int,
wenzelm@16656
    33
    sorts: sort list}
wenzelm@16601
    34
  val crep_cterm: cterm ->
wenzelm@16601
    35
    {thy: theory, sign: theory, t: term, T: ctyp, maxidx: int, sorts: sort list}
wenzelm@16425
    36
  val theory_of_cterm: cterm -> theory
wenzelm@16425
    37
  val sign_of_cterm: cterm -> theory    (*obsolete*)
wenzelm@16425
    38
  val term_of: cterm -> term
wenzelm@16425
    39
  val cterm_of: theory -> term -> cterm
wenzelm@16425
    40
  val ctyp_of_term: cterm -> ctyp
wenzelm@16425
    41
  val read_cterm: theory -> string * typ -> cterm
wenzelm@16425
    42
  val adjust_maxidx: cterm -> cterm
wenzelm@16425
    43
  val read_def_cterm:
wenzelm@16425
    44
    theory * (indexname -> typ option) * (indexname -> sort option) ->
wenzelm@1160
    45
    string list -> bool -> string * typ -> cterm * (indexname * typ) list
wenzelm@16425
    46
  val read_def_cterms:
wenzelm@16425
    47
    theory * (indexname -> typ option) * (indexname -> sort option) ->
nipkow@4281
    48
    string list -> bool -> (string * typ)list
nipkow@4281
    49
    -> cterm list * (indexname * typ)list
wenzelm@1160
    50
wenzelm@16425
    51
  type tag              (* = string * string list *)
paulson@1529
    52
wenzelm@1160
    53
  (*meta theorems*)
wenzelm@1160
    54
  type thm
wenzelm@16425
    55
  val rep_thm: thm ->
wenzelm@16656
    56
   {thy: theory,
wenzelm@16656
    57
    sign: theory,       (*obsolete*)
wenzelm@16425
    58
    der: bool * Proofterm.proof,
wenzelm@16425
    59
    maxidx: int,
wenzelm@16425
    60
    shyps: sort list,
wenzelm@16425
    61
    hyps: term list,
wenzelm@16425
    62
    tpairs: (term * term) list,
wenzelm@16425
    63
    prop: term}
wenzelm@16425
    64
  val crep_thm: thm ->
wenzelm@16656
    65
   {thy: theory,
wenzelm@16656
    66
    sign: theory,       (*obsolete*)
wenzelm@16425
    67
    der: bool * Proofterm.proof,
wenzelm@16425
    68
    maxidx: int,
wenzelm@16425
    69
    shyps: sort list,
wenzelm@16425
    70
    hyps: cterm list,
wenzelm@16425
    71
    tpairs: (cterm * cterm) list,
wenzelm@16425
    72
    prop: cterm}
wenzelm@6089
    73
  exception THM of string * int * thm list
wenzelm@16425
    74
  type 'a attribute     (* = 'a * thm -> 'a * thm *)
wenzelm@16425
    75
  val eq_thm: thm * thm -> bool
wenzelm@16425
    76
  val eq_thms: thm list * thm list -> bool
wenzelm@16425
    77
  val theory_of_thm: thm -> theory
wenzelm@16425
    78
  val sign_of_thm: thm -> theory    (*obsolete*)
wenzelm@16425
    79
  val prop_of: thm -> term
wenzelm@16425
    80
  val proof_of: thm -> Proofterm.proof
wenzelm@16425
    81
  val tpairs_of: thm -> (term * term) list
wenzelm@16656
    82
  val concl_of: thm -> term
wenzelm@16425
    83
  val prems_of: thm -> term list
wenzelm@16425
    84
  val nprems_of: thm -> int
wenzelm@16425
    85
  val cprop_of: thm -> cterm
wenzelm@16656
    86
  val transfer: theory -> thm -> thm
wenzelm@16945
    87
  val weaken: cterm -> thm -> thm
wenzelm@16425
    88
  val extra_shyps: thm -> sort list
wenzelm@16425
    89
  val strip_shyps: thm -> thm
wenzelm@16425
    90
  val get_axiom_i: theory -> string -> thm
wenzelm@16425
    91
  val get_axiom: theory -> xstring -> thm
wenzelm@16425
    92
  val def_name: string -> string
wenzelm@16425
    93
  val get_def: theory -> xstring -> thm
wenzelm@16425
    94
  val axioms_of: theory -> (string * thm) list
wenzelm@1160
    95
wenzelm@1160
    96
  (*meta rules*)
wenzelm@16425
    97
  val assume: cterm -> thm
wenzelm@16425
    98
  val implies_intr: cterm -> thm -> thm
wenzelm@16425
    99
  val implies_elim: thm -> thm -> thm
wenzelm@16425
   100
  val forall_intr: cterm -> thm -> thm
wenzelm@16425
   101
  val forall_elim: cterm -> thm -> thm
wenzelm@16425
   102
  val reflexive: cterm -> thm
wenzelm@16425
   103
  val symmetric: thm -> thm
wenzelm@16425
   104
  val transitive: thm -> thm -> thm
wenzelm@16425
   105
  val beta_conversion: bool -> cterm -> thm
wenzelm@16425
   106
  val eta_conversion: cterm -> thm
wenzelm@16425
   107
  val abstract_rule: string -> cterm -> thm -> thm
wenzelm@16425
   108
  val combination: thm -> thm -> thm
wenzelm@16425
   109
  val equal_intr: thm -> thm -> thm
wenzelm@16425
   110
  val equal_elim: thm -> thm -> thm
wenzelm@16425
   111
  val flexflex_rule: thm -> thm Seq.seq
wenzelm@16425
   112
  val instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@16425
   113
  val trivial: cterm -> thm
wenzelm@16425
   114
  val class_triv: theory -> class -> thm
wenzelm@16425
   115
  val varifyT: thm -> thm
wenzelm@16425
   116
  val varifyT': (string * sort) list -> thm -> thm * ((string * sort) * indexname) list
wenzelm@16425
   117
  val freezeT: thm -> thm
wenzelm@16425
   118
  val dest_state: thm * int -> (term * term) list * term list * term * term
wenzelm@16425
   119
  val lift_rule: (thm * int) -> thm -> thm
wenzelm@16425
   120
  val incr_indexes: int -> thm -> thm
wenzelm@16425
   121
  val assumption: int -> thm -> thm Seq.seq
wenzelm@16425
   122
  val eq_assumption: int -> thm -> thm
wenzelm@16425
   123
  val rotate_rule: int -> int -> thm -> thm
wenzelm@16425
   124
  val permute_prems: int -> int -> thm -> thm
wenzelm@1160
   125
  val rename_params_rule: string list * int -> thm -> thm
wenzelm@16425
   126
  val bicompose: bool -> bool * thm * int -> int -> thm -> thm Seq.seq
wenzelm@16425
   127
  val biresolution: bool -> (bool * thm) list -> int -> thm -> thm Seq.seq
wenzelm@16425
   128
  val invoke_oracle: theory -> xstring -> theory * Object.T -> thm
wenzelm@16425
   129
  val invoke_oracle_i: theory -> string -> theory * Object.T -> thm
wenzelm@250
   130
end;
clasohm@0
   131
wenzelm@6089
   132
signature THM =
wenzelm@6089
   133
sig
wenzelm@6089
   134
  include BASIC_THM
wenzelm@16425
   135
  val dest_ctyp: ctyp -> ctyp list
wenzelm@16425
   136
  val dest_comb: cterm -> cterm * cterm
wenzelm@16425
   137
  val dest_abs: string option -> cterm -> cterm * cterm
wenzelm@16425
   138
  val capply: cterm -> cterm -> cterm
wenzelm@16425
   139
  val cabs: cterm -> cterm -> cterm
wenzelm@16425
   140
  val major_prem_of: thm -> term
wenzelm@16425
   141
  val no_prems: thm -> bool
wenzelm@16425
   142
  val no_attributes: 'a -> 'a * 'b attribute list
wenzelm@16945
   143
  val apply_attributes: ('a * thm) * 'a attribute list -> 'a * thm
wenzelm@16945
   144
  val applys_attributes: ('a * thm list) * 'a attribute list -> 'a * thm list
wenzelm@16945
   145
  val terms_of_tpairs: (term * term) list -> term list
wenzelm@16945
   146
  val full_prop_of: thm -> term
wenzelm@16425
   147
  val get_name_tags: thm -> string * tag list
wenzelm@16425
   148
  val put_name_tags: string * tag list -> thm -> thm
wenzelm@16425
   149
  val name_of_thm: thm -> string
wenzelm@16425
   150
  val tags_of_thm: thm -> tag list
wenzelm@16425
   151
  val name_thm: string * thm -> thm
wenzelm@16945
   152
  val compress: thm -> thm
wenzelm@16945
   153
  val adjust_maxidx_thm: thm -> thm
wenzelm@16425
   154
  val rename_boundvars: term -> term -> thm -> thm
wenzelm@16425
   155
  val cterm_match: cterm * cterm -> (ctyp * ctyp) list * (cterm * cterm) list
wenzelm@16425
   156
  val cterm_first_order_match: cterm * cterm -> (ctyp * ctyp) list * (cterm * cterm) list
wenzelm@16425
   157
  val cterm_incr_indexes: int -> cterm -> cterm
wenzelm@6089
   158
end;
wenzelm@6089
   159
wenzelm@3550
   160
structure Thm: THM =
clasohm@0
   161
struct
wenzelm@250
   162
wenzelm@16656
   163
wenzelm@387
   164
(*** Certified terms and types ***)
wenzelm@387
   165
wenzelm@16656
   166
(** collect occurrences of sorts -- unless all sorts non-empty **)
wenzelm@16656
   167
wenzelm@16679
   168
fun may_insert_typ_sorts thy T = if Sign.all_sorts_nonempty thy then I else Sorts.insert_typ T;
wenzelm@16679
   169
fun may_insert_term_sorts thy t = if Sign.all_sorts_nonempty thy then I else Sorts.insert_term t;
wenzelm@16656
   170
wenzelm@16656
   171
(*NB: type unification may invent new sorts*)
wenzelm@16656
   172
fun may_insert_env_sorts thy (env as Envir.Envir {iTs, ...}) =
wenzelm@16656
   173
  if Sign.all_sorts_nonempty thy then I
wenzelm@16656
   174
  else Vartab.fold (fn (_, (_, T)) => Sorts.insert_typ T) iTs;
wenzelm@16656
   175
wenzelm@16656
   176
wenzelm@16656
   177
wenzelm@250
   178
(** certified types **)
wenzelm@250
   179
wenzelm@16656
   180
datatype ctyp = Ctyp of {thy_ref: theory_ref, T: typ, sorts: sort list};
wenzelm@250
   181
wenzelm@16656
   182
fun rep_ctyp (Ctyp {thy_ref, T, sorts}) =
wenzelm@16425
   183
  let val thy = Theory.deref thy_ref
wenzelm@16656
   184
  in {thy = thy, sign = thy, T = T, sorts = sorts} end;
wenzelm@250
   185
wenzelm@16656
   186
fun theory_of_ctyp (Ctyp {thy_ref, ...}) = Theory.deref thy_ref;
wenzelm@16425
   187
wenzelm@250
   188
fun typ_of (Ctyp {T, ...}) = T;
wenzelm@250
   189
wenzelm@16656
   190
fun ctyp_of thy raw_T =
wenzelm@16656
   191
  let val T = Sign.certify_typ thy raw_T
wenzelm@16656
   192
  in Ctyp {thy_ref = Theory.self_ref thy, T = T, sorts = may_insert_typ_sorts thy T []} end;
wenzelm@250
   193
wenzelm@16425
   194
fun read_ctyp thy s =
wenzelm@16656
   195
  let val T = Sign.read_typ (thy, K NONE) s
wenzelm@16656
   196
  in Ctyp {thy_ref = Theory.self_ref thy, T = T, sorts = may_insert_typ_sorts thy T []} end;
lcp@229
   197
wenzelm@16656
   198
fun dest_ctyp (Ctyp {thy_ref, T = Type (s, Ts), sorts}) =
wenzelm@16656
   199
      map (fn T => Ctyp {thy_ref = thy_ref, T = T, sorts = sorts}) Ts
wenzelm@16679
   200
  | dest_ctyp cT = raise TYPE ("dest_ctyp", [typ_of cT], []);
berghofe@15087
   201
lcp@229
   202
lcp@229
   203
wenzelm@250
   204
(** certified terms **)
lcp@229
   205
wenzelm@16601
   206
(*certified terms with checked typ, maxidx, and sorts*)
wenzelm@16601
   207
datatype cterm = Cterm of
wenzelm@16601
   208
 {thy_ref: theory_ref,
wenzelm@16601
   209
  t: term,
wenzelm@16601
   210
  T: typ,
wenzelm@16601
   211
  maxidx: int,
wenzelm@16601
   212
  sorts: sort list};
wenzelm@16425
   213
wenzelm@16679
   214
exception CTERM of string;
wenzelm@16679
   215
wenzelm@16601
   216
fun rep_cterm (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16425
   217
  let val thy =  Theory.deref thy_ref
wenzelm@16601
   218
  in {thy = thy, sign = thy, t = t, T = T, maxidx = maxidx, sorts = sorts} end;
lcp@229
   219
wenzelm@16601
   220
fun crep_cterm (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16425
   221
  let val thy = Theory.deref thy_ref in
wenzelm@16656
   222
   {thy = thy, sign = thy, t = t, T = Ctyp {thy_ref = thy_ref, T = T, sorts = sorts},
wenzelm@16601
   223
    maxidx = maxidx, sorts = sorts}
wenzelm@16425
   224
  end;
wenzelm@3967
   225
wenzelm@16425
   226
fun theory_of_cterm (Cterm {thy_ref, ...}) = Theory.deref thy_ref;
wenzelm@16425
   227
val sign_of_cterm = theory_of_cterm;
wenzelm@9461
   228
wenzelm@250
   229
fun term_of (Cterm {t, ...}) = t;
lcp@229
   230
wenzelm@16656
   231
fun ctyp_of_term (Cterm {thy_ref, T, sorts, ...}) =
wenzelm@16656
   232
  Ctyp {thy_ref = thy_ref, T = T, sorts = sorts};
paulson@2671
   233
wenzelm@16425
   234
fun cterm_of thy tm =
wenzelm@16601
   235
  let
wenzelm@16601
   236
    val (t, T, maxidx) = Sign.certify_term (Sign.pp thy) thy tm;
wenzelm@16656
   237
    val sorts = may_insert_term_sorts thy t [];
wenzelm@16601
   238
  in Cterm {thy_ref = Theory.self_ref thy, t = t, T = T, maxidx = maxidx, sorts = sorts} end;
lcp@229
   239
wenzelm@16656
   240
fun merge_thys0 (Cterm {thy_ref = r1, ...}) (Cterm {thy_ref = r2, ...}) =
wenzelm@16656
   241
  Theory.merge_refs (r1, r2);
wenzelm@16656
   242
clasohm@1493
   243
(*Destruct application in cterms*)
wenzelm@16679
   244
fun dest_comb (Cterm {t = t $ u, T, thy_ref, maxidx, sorts}) =
wenzelm@16679
   245
      let val A = Term.argument_type_of t in
wenzelm@16679
   246
        (Cterm {t = t, T = A --> T, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts},
wenzelm@16679
   247
         Cterm {t = u, T = A, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts})
clasohm@1493
   248
      end
clasohm@1493
   249
  | dest_comb _ = raise CTERM "dest_comb";
clasohm@1493
   250
clasohm@1493
   251
(*Destruct abstraction in cterms*)
wenzelm@16679
   252
fun dest_abs a (Cterm {t = Abs (x, T, t), T = Type ("fun", [_, U]), thy_ref, maxidx, sorts}) =
wenzelm@16679
   253
      let val (y', t') = Term.dest_abs (if_none a x, T, t) in
wenzelm@16679
   254
        (Cterm {t = Free (y', T), T = T, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts},
wenzelm@16679
   255
          Cterm {t = t', T = U, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts})
clasohm@1493
   256
      end
berghofe@10416
   257
  | dest_abs _ _ = raise CTERM "dest_abs";
clasohm@1493
   258
paulson@2147
   259
(*Makes maxidx precise: it is often too big*)
wenzelm@16601
   260
fun adjust_maxidx (ct as Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16425
   261
  if maxidx = ~1 then ct
wenzelm@16601
   262
  else Cterm {thy_ref = thy_ref, t = t, T = T, maxidx = maxidx_of_term t, sorts = sorts};
clasohm@1703
   263
clasohm@1516
   264
(*Form cterm out of a function and an argument*)
wenzelm@16601
   265
fun capply
wenzelm@16656
   266
  (cf as Cterm {t = f, T = Type ("fun", [dty, rty]), maxidx = maxidx1, sorts = sorts1, ...})
wenzelm@16656
   267
  (cx as Cterm {t = x, T, maxidx = maxidx2, sorts = sorts2, ...}) =
wenzelm@16601
   268
    if T = dty then
wenzelm@16656
   269
      Cterm {thy_ref = merge_thys0 cf cx,
wenzelm@16656
   270
        t = f $ x,
wenzelm@16656
   271
        T = rty,
wenzelm@16656
   272
        maxidx = Int.max (maxidx1, maxidx2),
wenzelm@16601
   273
        sorts = Sorts.union sorts1 sorts2}
clasohm@1516
   274
      else raise CTERM "capply: types don't agree"
clasohm@1516
   275
  | capply _ _ = raise CTERM "capply: first arg is not a function"
wenzelm@250
   276
wenzelm@16601
   277
fun cabs
wenzelm@16656
   278
  (ct1 as Cterm {t = t1, T = T1, maxidx = maxidx1, sorts = sorts1, ...})
wenzelm@16656
   279
  (ct2 as Cterm {t = t2, T = T2, maxidx = maxidx2, sorts = sorts2, ...}) =
wenzelm@16601
   280
    let val t = lambda t1 t2 handle TERM _ => raise CTERM "cabs: first arg is not a variable" in
wenzelm@16656
   281
      Cterm {thy_ref = merge_thys0 ct1 ct2,
wenzelm@16656
   282
        t = t, T = T1 --> T2,
wenzelm@16656
   283
        maxidx = Int.max (maxidx1, maxidx2),
wenzelm@16656
   284
        sorts = Sorts.union sorts1 sorts2}
wenzelm@16601
   285
    end;
lcp@229
   286
berghofe@10416
   287
(*Matching of cterms*)
wenzelm@16656
   288
fun gen_cterm_match match
wenzelm@16656
   289
    (ct1 as Cterm {t = t1, maxidx = maxidx1, sorts = sorts1, ...},
wenzelm@16656
   290
     ct2 as Cterm {t = t2, maxidx = maxidx2, sorts = sorts2, ...}) =
berghofe@10416
   291
  let
wenzelm@16656
   292
    val thy_ref = merge_thys0 ct1 ct2;
wenzelm@16656
   293
    val (Tinsts, tinsts) = match (Sign.tsig_of (Theory.deref thy_ref)) (t1, t2);
berghofe@10416
   294
    val maxidx = Int.max (maxidx1, maxidx2);
wenzelm@16601
   295
    val sorts = Sorts.union sorts1 sorts2;
wenzelm@16656
   296
    fun mk_cTinst (ixn, (S, T)) =
wenzelm@16656
   297
      (Ctyp {T = TVar (ixn, S), thy_ref = thy_ref, sorts = sorts},
wenzelm@16656
   298
       Ctyp {T = T, thy_ref = thy_ref, sorts = sorts});
wenzelm@16656
   299
    fun mk_ctinst (ixn, (T, t)) =
wenzelm@16601
   300
      let val T = Envir.typ_subst_TVars Tinsts T in
wenzelm@16656
   301
        (Cterm {t = Var (ixn, T), T = T, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts},
wenzelm@16656
   302
         Cterm {t = t, T = T, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts})
berghofe@10416
   303
      end;
wenzelm@16656
   304
  in (Vartab.fold (cons o mk_cTinst) Tinsts [], Vartab.fold (cons o mk_ctinst) tinsts []) end;
berghofe@10416
   305
berghofe@10416
   306
val cterm_match = gen_cterm_match Pattern.match;
berghofe@10416
   307
val cterm_first_order_match = gen_cterm_match Pattern.first_order_match;
berghofe@10416
   308
berghofe@10416
   309
(*Incrementing indexes*)
wenzelm@16601
   310
fun cterm_incr_indexes i (ct as Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16601
   311
  if i < 0 then raise CTERM "negative increment"
wenzelm@16601
   312
  else if i = 0 then ct
wenzelm@16601
   313
  else Cterm {thy_ref = thy_ref, t = Logic.incr_indexes ([], i) t,
wenzelm@16884
   314
    T = Logic.incr_tvar i T, maxidx = maxidx + i, sorts = sorts};
berghofe@10416
   315
wenzelm@2509
   316
wenzelm@2509
   317
wenzelm@574
   318
(** read cterms **)   (*exception ERROR*)
wenzelm@250
   319
nipkow@4281
   320
(*read terms, infer types, certify terms*)
wenzelm@16425
   321
fun read_def_cterms (thy, types, sorts) used freeze sTs =
wenzelm@250
   322
  let
wenzelm@16425
   323
    val (ts', tye) = Sign.read_def_terms (thy, types, sorts) used freeze sTs;
wenzelm@16425
   324
    val cts = map (cterm_of thy) ts'
wenzelm@2979
   325
      handle TYPE (msg, _, _) => error msg
wenzelm@2386
   326
           | TERM (msg, _) => error msg;
nipkow@4281
   327
  in (cts, tye) end;
nipkow@4281
   328
nipkow@4281
   329
(*read term, infer types, certify term*)
nipkow@4281
   330
fun read_def_cterm args used freeze aT =
nipkow@4281
   331
  let val ([ct],tye) = read_def_cterms args used freeze [aT]
nipkow@4281
   332
  in (ct,tye) end;
lcp@229
   333
wenzelm@16425
   334
fun read_cterm thy = #1 o read_def_cterm (thy, K NONE, K NONE) [] true;
lcp@229
   335
wenzelm@250
   336
wenzelm@6089
   337
(*tags provide additional comment, apart from the axiom/theorem name*)
wenzelm@6089
   338
type tag = string * string list;
wenzelm@6089
   339
wenzelm@2509
   340
wenzelm@387
   341
(*** Meta theorems ***)
lcp@229
   342
berghofe@11518
   343
structure Pt = Proofterm;
berghofe@11518
   344
clasohm@0
   345
datatype thm = Thm of
wenzelm@16425
   346
 {thy_ref: theory_ref,         (*dynamic reference to theory*)
berghofe@11518
   347
  der: bool * Pt.proof,        (*derivation*)
wenzelm@3967
   348
  maxidx: int,                 (*maximum index of any Var or TVar*)
wenzelm@16601
   349
  shyps: sort list,            (*sort hypotheses as ordered list*)
wenzelm@16601
   350
  hyps: term list,             (*hypotheses as ordered list*)
berghofe@13658
   351
  tpairs: (term * term) list,  (*flex-flex pairs*)
wenzelm@3967
   352
  prop: term};                 (*conclusion*)
clasohm@0
   353
wenzelm@16725
   354
(*errors involving theorems*)
wenzelm@16725
   355
exception THM of string * int * thm list;
berghofe@13658
   356
wenzelm@16425
   357
fun rep_thm (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16425
   358
  let val thy = Theory.deref thy_ref in
wenzelm@16425
   359
   {thy = thy, sign = thy, der = der, maxidx = maxidx,
wenzelm@16425
   360
    shyps = shyps, hyps = hyps, tpairs = tpairs, prop = prop}
wenzelm@16425
   361
  end;
clasohm@0
   362
wenzelm@16425
   363
(*version of rep_thm returning cterms instead of terms*)
wenzelm@16425
   364
fun crep_thm (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16425
   365
  let
wenzelm@16425
   366
    val thy = Theory.deref thy_ref;
wenzelm@16601
   367
    fun cterm max t = Cterm {thy_ref = thy_ref, t = t, T = propT, maxidx = max, sorts = shyps};
wenzelm@16425
   368
  in
wenzelm@16425
   369
   {thy = thy, sign = thy, der = der, maxidx = maxidx, shyps = shyps,
wenzelm@16425
   370
    hyps = map (cterm ~1) hyps,
wenzelm@16425
   371
    tpairs = map (pairself (cterm maxidx)) tpairs,
wenzelm@16425
   372
    prop = cterm maxidx prop}
clasohm@1517
   373
  end;
clasohm@1517
   374
wenzelm@16725
   375
fun terms_of_tpairs tpairs = fold_rev (fn (t, u) => cons t o cons u) tpairs [];
wenzelm@16725
   376
wenzelm@16725
   377
fun eq_tpairs ((t, u), (t', u')) = t aconv t' andalso u aconv u';
wenzelm@16725
   378
val union_tpairs = gen_merge_lists eq_tpairs;
wenzelm@16884
   379
val maxidx_tpairs = fold (fn (t, u) => Term.maxidx_term t #> Term.maxidx_term u);
wenzelm@16725
   380
wenzelm@16725
   381
fun attach_tpairs tpairs prop =
wenzelm@16725
   382
  Logic.list_implies (map Logic.mk_equals tpairs, prop);
wenzelm@16725
   383
wenzelm@16725
   384
fun full_prop_of (Thm {tpairs, prop, ...}) = attach_tpairs tpairs prop;
wenzelm@16945
   385
wenzelm@16945
   386
wenzelm@16945
   387
(* merge theories of cterms/thms; raise exception if incompatible *)
wenzelm@16945
   388
wenzelm@16945
   389
fun merge_thys1 (Cterm {thy_ref = r1, ...}) (th as Thm {thy_ref = r2, ...}) =
wenzelm@16945
   390
  Theory.merge_refs (r1, r2) handle TERM (msg, _) => raise THM (msg, 0, [th]);
wenzelm@16945
   391
wenzelm@16945
   392
fun merge_thys2 (th1 as Thm {thy_ref = r1, ...}) (th2 as Thm {thy_ref = r2, ...}) =
wenzelm@16945
   393
  Theory.merge_refs (r1, r2) handle TERM (msg, _) => raise THM (msg, 0, [th1, th2]);
wenzelm@16945
   394
clasohm@0
   395
wenzelm@16425
   396
(*attributes subsume any kind of rules or context modifiers*)
wenzelm@6089
   397
type 'a attribute = 'a * thm -> 'a * thm;
wenzelm@16945
   398
  
wenzelm@6089
   399
fun no_attributes x = (x, []);
wenzelm@6089
   400
fun apply_attributes (x_th, atts) = Library.apply atts x_th;
wenzelm@6089
   401
fun applys_attributes (x_ths, atts) = foldl_map (Library.apply atts) x_ths;
wenzelm@6089
   402
wenzelm@16601
   403
wenzelm@16656
   404
(* hyps *)
wenzelm@16601
   405
wenzelm@16945
   406
val insert_hyps = OrdList.insert Term.fast_term_ord;
wenzelm@16679
   407
val remove_hyps = OrdList.remove Term.fast_term_ord;
wenzelm@16679
   408
val union_hyps = OrdList.union Term.fast_term_ord;
wenzelm@16679
   409
val eq_set_hyps = OrdList.eq_set Term.fast_term_ord;
wenzelm@16601
   410
wenzelm@16601
   411
wenzelm@16601
   412
(* eq_thm(s) *)
wenzelm@16601
   413
wenzelm@3994
   414
fun eq_thm (th1, th2) =
wenzelm@3994
   415
  let
wenzelm@16425
   416
    val {thy = thy1, shyps = shyps1, hyps = hyps1, tpairs = tpairs1, prop = prop1, ...} =
wenzelm@9031
   417
      rep_thm th1;
wenzelm@16425
   418
    val {thy = thy2, shyps = shyps2, hyps = hyps2, tpairs = tpairs2, prop = prop2, ...} =
wenzelm@9031
   419
      rep_thm th2;
wenzelm@3994
   420
  in
wenzelm@16601
   421
    Context.joinable (thy1, thy2) andalso
wenzelm@16601
   422
    Sorts.eq_set (shyps1, shyps2) andalso
wenzelm@16601
   423
    eq_set_hyps (hyps1, hyps2) andalso
wenzelm@16656
   424
    equal_lists eq_tpairs (tpairs1, tpairs2) andalso
wenzelm@3994
   425
    prop1 aconv prop2
wenzelm@3994
   426
  end;
wenzelm@387
   427
wenzelm@16135
   428
val eq_thms = Library.equal_lists eq_thm;
wenzelm@16135
   429
wenzelm@16425
   430
fun theory_of_thm (Thm {thy_ref, ...}) = Theory.deref thy_ref;
wenzelm@16425
   431
val sign_of_thm = theory_of_thm;
wenzelm@16425
   432
wenzelm@12803
   433
fun prop_of (Thm {prop, ...}) = prop;
wenzelm@13528
   434
fun proof_of (Thm {der = (_, proof), ...}) = proof;
wenzelm@16601
   435
fun tpairs_of (Thm {tpairs, ...}) = tpairs;
clasohm@0
   436
wenzelm@16601
   437
val concl_of = Logic.strip_imp_concl o prop_of;
wenzelm@16601
   438
val prems_of = Logic.strip_imp_prems o prop_of;
wenzelm@16601
   439
fun nprems_of th = Logic.count_prems (prop_of th, 0);
wenzelm@16601
   440
val no_prems = equal 0 o nprems_of;
wenzelm@16601
   441
wenzelm@16601
   442
fun major_prem_of th =
wenzelm@16601
   443
  (case prems_of th of
wenzelm@16601
   444
    prem :: _ => Logic.strip_assums_concl prem
wenzelm@16601
   445
  | [] => raise THM ("major_prem_of: rule with no premises", 0, [th]));
wenzelm@16601
   446
wenzelm@16601
   447
(*the statement of any thm is a cterm*)
wenzelm@16601
   448
fun cprop_of (Thm {thy_ref, maxidx, shyps, prop, ...}) =
wenzelm@16601
   449
  Cterm {thy_ref = thy_ref, maxidx = maxidx, T = propT, t = prop, sorts = shyps};
wenzelm@16601
   450
wenzelm@16656
   451
(*explicit transfer to a super theory*)
wenzelm@16425
   452
fun transfer thy' thm =
wenzelm@3895
   453
  let
wenzelm@16425
   454
    val Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop} = thm;
wenzelm@16425
   455
    val thy = Theory.deref thy_ref;
wenzelm@3895
   456
  in
wenzelm@16945
   457
    if not (subthy (thy, thy')) then
wenzelm@16945
   458
      raise THM ("transfer: not a super theory", 0, [thm])
wenzelm@16945
   459
    else if eq_thy (thy, thy') then thm
wenzelm@16945
   460
    else
wenzelm@16945
   461
      Thm {thy_ref = Theory.self_ref thy',
wenzelm@16945
   462
        der = der,
wenzelm@16945
   463
        maxidx = maxidx,
wenzelm@16945
   464
        shyps = shyps,
wenzelm@16945
   465
        hyps = hyps,
wenzelm@16945
   466
        tpairs = tpairs,
wenzelm@16945
   467
        prop = prop}
wenzelm@3895
   468
  end;
wenzelm@387
   469
wenzelm@16945
   470
(*explicit weakening: maps |- B to A |- B*)
wenzelm@16945
   471
fun weaken raw_ct th =
wenzelm@16945
   472
  let
wenzelm@16945
   473
    val ct as Cterm {t = A, T, sorts, maxidx = maxidxA, ...} = adjust_maxidx raw_ct;
wenzelm@16945
   474
    val Thm {der, maxidx, shyps, hyps, tpairs, prop, ...} = th;
wenzelm@16945
   475
  in
wenzelm@16945
   476
    if T <> propT then
wenzelm@16945
   477
      raise THM ("weaken: assumptions must have type prop", 0, [])
wenzelm@16945
   478
    else if maxidxA <> ~1 then
wenzelm@16945
   479
      raise THM ("weaken: assumptions may not contain schematic variables", maxidxA, [])
wenzelm@16945
   480
    else
wenzelm@16945
   481
      Thm {thy_ref = merge_thys1 ct th,
wenzelm@16945
   482
        der = der,
wenzelm@16945
   483
        maxidx = maxidx,
wenzelm@16945
   484
        shyps = Sorts.union sorts shyps,
wenzelm@16945
   485
        hyps = insert_hyps A hyps,
wenzelm@16945
   486
        tpairs = tpairs,
wenzelm@16945
   487
        prop = prop}
wenzelm@16945
   488
  end;
wenzelm@16656
   489
wenzelm@16656
   490
clasohm@0
   491
wenzelm@1238
   492
(** sort contexts of theorems **)
wenzelm@1238
   493
wenzelm@16656
   494
fun present_sorts (Thm {hyps, tpairs, prop, ...}) =
wenzelm@16656
   495
  fold (fn (t, u) => Sorts.insert_term t o Sorts.insert_term u) tpairs
wenzelm@16656
   496
    (Sorts.insert_terms hyps (Sorts.insert_term prop []));
wenzelm@1238
   497
wenzelm@7642
   498
(*remove extra sorts that are non-empty by virtue of type signature information*)
wenzelm@7642
   499
fun strip_shyps (thm as Thm {shyps = [], ...}) = thm
wenzelm@16425
   500
  | strip_shyps (thm as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@7642
   501
      let
wenzelm@16425
   502
        val thy = Theory.deref thy_ref;
wenzelm@16656
   503
        val shyps' =
wenzelm@16656
   504
          if Sign.all_sorts_nonempty thy then []
wenzelm@16656
   505
          else
wenzelm@16656
   506
            let
wenzelm@16656
   507
              val present = present_sorts thm;
wenzelm@16656
   508
              val extra = Sorts.subtract present shyps;
wenzelm@16656
   509
              val witnessed = map #2 (Sign.witness_sorts thy present extra);
wenzelm@16656
   510
            in Sorts.subtract witnessed shyps end;
wenzelm@7642
   511
      in
wenzelm@16425
   512
        Thm {thy_ref = thy_ref, der = der, maxidx = maxidx,
wenzelm@16656
   513
          shyps = shyps', hyps = hyps, tpairs = tpairs, prop = prop}
wenzelm@7642
   514
      end;
wenzelm@1238
   515
wenzelm@16656
   516
(*dangling sort constraints of a thm*)
wenzelm@16656
   517
fun extra_shyps (th as Thm {shyps, ...}) = Sorts.subtract (present_sorts th) shyps;
wenzelm@16656
   518
wenzelm@1238
   519
wenzelm@1238
   520
paulson@1529
   521
(** Axioms **)
wenzelm@387
   522
wenzelm@16425
   523
(*look up the named axiom in the theory or its ancestors*)
wenzelm@15672
   524
fun get_axiom_i theory name =
wenzelm@387
   525
  let
wenzelm@16425
   526
    fun get_ax thy =
wenzelm@16425
   527
      Symtab.lookup (#2 (#axioms (Theory.rep_theory thy)), name)
wenzelm@16601
   528
      |> Option.map (fn prop =>
wenzelm@16601
   529
          Thm {thy_ref = Theory.self_ref thy,
wenzelm@16601
   530
            der = Pt.infer_derivs' I (false, Pt.axm_proof name prop),
wenzelm@16601
   531
            maxidx = maxidx_of_term prop,
wenzelm@16656
   532
            shyps = may_insert_term_sorts thy prop [],
wenzelm@16601
   533
            hyps = [],
wenzelm@16601
   534
            tpairs = [],
wenzelm@16601
   535
            prop = prop});
wenzelm@387
   536
  in
wenzelm@16425
   537
    (case get_first get_ax (theory :: Theory.ancestors_of theory) of
skalberg@15531
   538
      SOME thm => thm
skalberg@15531
   539
    | NONE => raise THEORY ("No axiom " ^ quote name, [theory]))
wenzelm@387
   540
  end;
wenzelm@387
   541
wenzelm@16352
   542
fun get_axiom thy =
wenzelm@16425
   543
  get_axiom_i thy o NameSpace.intern (Theory.axiom_space thy);
wenzelm@15672
   544
wenzelm@6368
   545
fun def_name name = name ^ "_def";
wenzelm@6368
   546
fun get_def thy = get_axiom thy o def_name;
wenzelm@4847
   547
paulson@1529
   548
wenzelm@776
   549
(*return additional axioms of this theory node*)
wenzelm@776
   550
fun axioms_of thy =
wenzelm@776
   551
  map (fn (s, _) => (s, get_axiom thy s))
wenzelm@16352
   552
    (Symtab.dest (#2 (#axioms (Theory.rep_theory thy))));
wenzelm@776
   553
wenzelm@6089
   554
wenzelm@6089
   555
(* name and tags -- make proof objects more readable *)
wenzelm@6089
   556
wenzelm@12923
   557
fun get_name_tags (Thm {hyps, prop, der = (_, prf), ...}) =
wenzelm@12923
   558
  Pt.get_name_tags hyps prop prf;
wenzelm@4018
   559
wenzelm@16425
   560
fun put_name_tags x (Thm {thy_ref, der = (ora, prf), maxidx,
wenzelm@16425
   561
      shyps, hyps, tpairs = [], prop}) = Thm {thy_ref = thy_ref,
wenzelm@16425
   562
        der = (ora, Pt.thm_proof (Theory.deref thy_ref) x hyps prop prf),
berghofe@13658
   563
        maxidx = maxidx, shyps = shyps, hyps = hyps, tpairs = [], prop = prop}
berghofe@13658
   564
  | put_name_tags _ thm =
berghofe@13658
   565
      raise THM ("put_name_tags: unsolved flex-flex constraints", 0, [thm]);
wenzelm@6089
   566
wenzelm@6089
   567
val name_of_thm = #1 o get_name_tags;
wenzelm@6089
   568
val tags_of_thm = #2 o get_name_tags;
wenzelm@6089
   569
wenzelm@6089
   570
fun name_thm (name, thm) = put_name_tags (name, tags_of_thm thm) thm;
clasohm@0
   571
clasohm@0
   572
paulson@1529
   573
(*Compression of theorems -- a separate rule, not integrated with the others,
paulson@1529
   574
  as it could be slow.*)
wenzelm@16425
   575
fun compress (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16945
   576
  Thm {thy_ref = thy_ref,
wenzelm@16945
   577
    der = der,
wenzelm@16945
   578
    maxidx = maxidx,
wenzelm@16945
   579
    shyps = shyps,
wenzelm@16945
   580
    hyps = map Term.compress_term hyps,
wenzelm@16945
   581
    tpairs = map (pairself Term.compress_term) tpairs,
wenzelm@16945
   582
    prop = Term.compress_term prop};
wenzelm@16945
   583
wenzelm@16945
   584
fun adjust_maxidx_thm (Thm {thy_ref, der, shyps, hyps, tpairs, prop, ...}) =
wenzelm@16945
   585
  Thm {thy_ref = thy_ref,
wenzelm@16945
   586
    der = der,
wenzelm@16945
   587
    maxidx = maxidx_tpairs tpairs (maxidx_of_term prop),
wenzelm@16945
   588
    shyps = shyps,
wenzelm@16945
   589
    hyps = hyps,
wenzelm@16945
   590
    tpairs = tpairs,
wenzelm@16945
   591
    prop = prop};
wenzelm@564
   592
wenzelm@387
   593
wenzelm@2509
   594
paulson@1529
   595
(*** Meta rules ***)
clasohm@0
   596
wenzelm@16601
   597
(** primitive rules **)
clasohm@0
   598
wenzelm@16656
   599
(*The assumption rule A |- A*)
wenzelm@16601
   600
fun assume raw_ct =
wenzelm@16601
   601
  let val Cterm {thy_ref, t = prop, T, maxidx, sorts} = adjust_maxidx raw_ct in
wenzelm@16601
   602
    if T <> propT then
wenzelm@16601
   603
      raise THM ("assume: assumptions must have type prop", 0, [])
wenzelm@16601
   604
    else if maxidx <> ~1 then
wenzelm@16601
   605
      raise THM ("assume: assumptions may not contain schematic variables", maxidx, [])
wenzelm@16601
   606
    else Thm {thy_ref = thy_ref,
wenzelm@16601
   607
      der = Pt.infer_derivs' I (false, Pt.Hyp prop),
wenzelm@16601
   608
      maxidx = ~1,
wenzelm@16601
   609
      shyps = sorts,
wenzelm@16601
   610
      hyps = [prop],
wenzelm@16601
   611
      tpairs = [],
wenzelm@16601
   612
      prop = prop}
clasohm@0
   613
  end;
clasohm@0
   614
wenzelm@1220
   615
(*Implication introduction
wenzelm@3529
   616
    [A]
wenzelm@3529
   617
     :
wenzelm@3529
   618
     B
wenzelm@1220
   619
  -------
wenzelm@1220
   620
  A ==> B
wenzelm@1220
   621
*)
wenzelm@16601
   622
fun implies_intr
wenzelm@16679
   623
    (ct as Cterm {t = A, T, maxidx = maxidxA, sorts, ...})
wenzelm@16679
   624
    (th as Thm {der, maxidx, hyps, shyps, tpairs, prop, ...}) =
wenzelm@16601
   625
  if T <> propT then
wenzelm@16601
   626
    raise THM ("implies_intr: assumptions must have type prop", 0, [th])
wenzelm@16601
   627
  else
wenzelm@16601
   628
    Thm {thy_ref = merge_thys1 ct th,
wenzelm@16601
   629
      der = Pt.infer_derivs' (Pt.implies_intr_proof A) der,
wenzelm@16601
   630
      maxidx = Int.max (maxidxA, maxidx),
wenzelm@16601
   631
      shyps = Sorts.union sorts shyps,
wenzelm@16601
   632
      hyps = remove_hyps A hyps,
wenzelm@16601
   633
      tpairs = tpairs,
wenzelm@16601
   634
      prop = implies $ A $ prop};
clasohm@0
   635
paulson@1529
   636
wenzelm@1220
   637
(*Implication elimination
wenzelm@1220
   638
  A ==> B    A
wenzelm@1220
   639
  ------------
wenzelm@1220
   640
        B
wenzelm@1220
   641
*)
wenzelm@16601
   642
fun implies_elim thAB thA =
wenzelm@16601
   643
  let
wenzelm@16601
   644
    val Thm {maxidx = maxA, der = derA, hyps = hypsA, shyps = shypsA, tpairs = tpairsA,
wenzelm@16601
   645
      prop = propA, ...} = thA
wenzelm@16601
   646
    and Thm {der, maxidx, hyps, shyps, tpairs, prop, ...} = thAB;
wenzelm@16601
   647
    fun err () = raise THM ("implies_elim: major premise", 0, [thAB, thA]);
wenzelm@16601
   648
  in
wenzelm@16601
   649
    case prop of
wenzelm@16601
   650
      imp $ A $ B =>
wenzelm@16601
   651
        if imp = Term.implies andalso A aconv propA then
wenzelm@16656
   652
          Thm {thy_ref = merge_thys2 thAB thA,
wenzelm@16601
   653
            der = Pt.infer_derivs (curry Pt.%%) der derA,
wenzelm@16601
   654
            maxidx = Int.max (maxA, maxidx),
wenzelm@16601
   655
            shyps = Sorts.union shypsA shyps,
wenzelm@16601
   656
            hyps = union_hyps hypsA hyps,
wenzelm@16601
   657
            tpairs = union_tpairs tpairsA tpairs,
wenzelm@16601
   658
            prop = B}
wenzelm@16601
   659
        else err ()
wenzelm@16601
   660
    | _ => err ()
wenzelm@16601
   661
  end;
wenzelm@250
   662
wenzelm@1220
   663
(*Forall introduction.  The Free or Var x must not be free in the hypotheses.
wenzelm@16656
   664
    [x]
wenzelm@16656
   665
     :
wenzelm@16656
   666
     A
wenzelm@16656
   667
  ------
wenzelm@16656
   668
  !!x. A
wenzelm@1220
   669
*)
wenzelm@16601
   670
fun forall_intr
wenzelm@16601
   671
    (ct as Cterm {t = x, T, sorts, ...})
wenzelm@16679
   672
    (th as Thm {der, maxidx, shyps, hyps, tpairs, prop, ...}) =
wenzelm@16601
   673
  let
wenzelm@16601
   674
    fun result a =
wenzelm@16601
   675
      Thm {thy_ref = merge_thys1 ct th,
wenzelm@16601
   676
        der = Pt.infer_derivs' (Pt.forall_intr_proof x a) der,
wenzelm@16601
   677
        maxidx = maxidx,
wenzelm@16601
   678
        shyps = Sorts.union sorts shyps,
wenzelm@16601
   679
        hyps = hyps,
wenzelm@16601
   680
        tpairs = tpairs,
wenzelm@16601
   681
        prop = all T $ Abs (a, T, abstract_over (x, prop))};
wenzelm@16601
   682
    fun check_occs x ts =
wenzelm@16847
   683
      if exists (fn t => Logic.occs (x, t)) ts then
wenzelm@16601
   684
        raise THM("forall_intr: variable free in assumptions", 0, [th])
wenzelm@16601
   685
      else ();
wenzelm@16601
   686
  in
wenzelm@16601
   687
    case x of
wenzelm@16601
   688
      Free (a, _) => (check_occs x hyps; check_occs x (terms_of_tpairs tpairs); result a)
wenzelm@16601
   689
    | Var ((a, _), _) => (check_occs x (terms_of_tpairs tpairs); result a)
wenzelm@16601
   690
    | _ => raise THM ("forall_intr: not a variable", 0, [th])
clasohm@0
   691
  end;
clasohm@0
   692
wenzelm@1220
   693
(*Forall elimination
wenzelm@16656
   694
  !!x. A
wenzelm@1220
   695
  ------
wenzelm@1220
   696
  A[t/x]
wenzelm@1220
   697
*)
wenzelm@16601
   698
fun forall_elim
wenzelm@16601
   699
    (ct as Cterm {t, T, maxidx = maxt, sorts, ...})
wenzelm@16601
   700
    (th as Thm {der, maxidx, shyps, hyps, tpairs, prop, ...}) =
wenzelm@16601
   701
  (case prop of
wenzelm@16601
   702
    Const ("all", Type ("fun", [Type ("fun", [qary, _]), _])) $ A =>
wenzelm@16601
   703
      if T <> qary then
wenzelm@16601
   704
        raise THM ("forall_elim: type mismatch", 0, [th])
wenzelm@16601
   705
      else
wenzelm@16601
   706
        Thm {thy_ref = merge_thys1 ct th,
wenzelm@16601
   707
          der = Pt.infer_derivs' (Pt.% o rpair (SOME t)) der,
wenzelm@16601
   708
          maxidx = Int.max (maxidx, maxt),
wenzelm@16601
   709
          shyps = Sorts.union sorts shyps,
wenzelm@16601
   710
          hyps = hyps,
wenzelm@16601
   711
          tpairs = tpairs,
wenzelm@16601
   712
          prop = Term.betapply (A, t)}
wenzelm@16601
   713
  | _ => raise THM ("forall_elim: not quantified", 0, [th]));
clasohm@0
   714
clasohm@0
   715
wenzelm@1220
   716
(* Equality *)
clasohm@0
   717
wenzelm@16601
   718
(*Reflexivity
wenzelm@16601
   719
  t == t
wenzelm@16601
   720
*)
wenzelm@16601
   721
fun reflexive (ct as Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16656
   722
  Thm {thy_ref = thy_ref,
wenzelm@16601
   723
    der = Pt.infer_derivs' I (false, Pt.reflexive),
wenzelm@16601
   724
    maxidx = maxidx,
wenzelm@16601
   725
    shyps = sorts,
wenzelm@16601
   726
    hyps = [],
wenzelm@16601
   727
    tpairs = [],
wenzelm@16601
   728
    prop = Logic.mk_equals (t, t)};
clasohm@0
   729
wenzelm@16601
   730
(*Symmetry
wenzelm@16601
   731
  t == u
wenzelm@16601
   732
  ------
wenzelm@16601
   733
  u == t
wenzelm@1220
   734
*)
wenzelm@16601
   735
fun symmetric (th as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16601
   736
  (case prop of
wenzelm@16601
   737
    (eq as Const ("==", Type (_, [T, _]))) $ t $ u =>
wenzelm@16601
   738
      Thm {thy_ref = thy_ref,
wenzelm@16601
   739
        der = Pt.infer_derivs' Pt.symmetric der,
wenzelm@16601
   740
        maxidx = maxidx,
wenzelm@16601
   741
        shyps = shyps,
wenzelm@16601
   742
        hyps = hyps,
wenzelm@16601
   743
        tpairs = tpairs,
wenzelm@16601
   744
        prop = eq $ u $ t}
wenzelm@16601
   745
    | _ => raise THM ("symmetric", 0, [th]));
clasohm@0
   746
wenzelm@16601
   747
(*Transitivity
wenzelm@16601
   748
  t1 == u    u == t2
wenzelm@16601
   749
  ------------------
wenzelm@16601
   750
       t1 == t2
wenzelm@1220
   751
*)
clasohm@0
   752
fun transitive th1 th2 =
wenzelm@16601
   753
  let
wenzelm@16601
   754
    val Thm {der = der1, maxidx = max1, hyps = hyps1, shyps = shyps1, tpairs = tpairs1,
wenzelm@16601
   755
      prop = prop1, ...} = th1
wenzelm@16601
   756
    and Thm {der = der2, maxidx = max2, hyps = hyps2, shyps = shyps2, tpairs = tpairs2,
wenzelm@16601
   757
      prop = prop2, ...} = th2;
wenzelm@16601
   758
    fun err msg = raise THM ("transitive: " ^ msg, 0, [th1, th2]);
wenzelm@16601
   759
  in
wenzelm@16601
   760
    case (prop1, prop2) of
wenzelm@16601
   761
      ((eq as Const ("==", Type (_, [T, _]))) $ t1 $ u, Const ("==", _) $ u' $ t2) =>
wenzelm@16601
   762
        if not (u aconv u') then err "middle term"
wenzelm@16601
   763
        else
wenzelm@16656
   764
          Thm {thy_ref = merge_thys2 th1 th2,
wenzelm@16601
   765
            der = Pt.infer_derivs (Pt.transitive u T) der1 der2,
wenzelm@16601
   766
            maxidx = Int.max (max1, max2),
wenzelm@16601
   767
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
   768
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
   769
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@16601
   770
            prop = eq $ t1 $ t2}
wenzelm@16601
   771
     | _ =>  err "premises"
clasohm@0
   772
  end;
clasohm@0
   773
wenzelm@16601
   774
(*Beta-conversion
wenzelm@16656
   775
  (%x. t)(u) == t[u/x]
wenzelm@16601
   776
  fully beta-reduces the term if full = true
berghofe@10416
   777
*)
wenzelm@16601
   778
fun beta_conversion full (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16601
   779
  let val t' =
wenzelm@16601
   780
    if full then Envir.beta_norm t
wenzelm@16601
   781
    else
wenzelm@16601
   782
      (case t of Abs (_, _, bodt) $ u => subst_bound (u, bodt)
wenzelm@16601
   783
      | _ => raise THM ("beta_conversion: not a redex", 0, []));
wenzelm@16601
   784
  in
wenzelm@16601
   785
    Thm {thy_ref = thy_ref,
wenzelm@16601
   786
      der = Pt.infer_derivs' I (false, Pt.reflexive),
wenzelm@16601
   787
      maxidx = maxidx,
wenzelm@16601
   788
      shyps = sorts,
wenzelm@16601
   789
      hyps = [],
wenzelm@16601
   790
      tpairs = [],
wenzelm@16601
   791
      prop = Logic.mk_equals (t, t')}
berghofe@10416
   792
  end;
berghofe@10416
   793
wenzelm@16601
   794
fun eta_conversion (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16601
   795
  Thm {thy_ref = thy_ref,
wenzelm@16601
   796
    der = Pt.infer_derivs' I (false, Pt.reflexive),
wenzelm@16601
   797
    maxidx = maxidx,
wenzelm@16601
   798
    shyps = sorts,
wenzelm@16601
   799
    hyps = [],
wenzelm@16601
   800
    tpairs = [],
wenzelm@16601
   801
    prop = Logic.mk_equals (t, Pattern.eta_contract t)};
clasohm@0
   802
clasohm@0
   803
(*The abstraction rule.  The Free or Var x must not be free in the hypotheses.
clasohm@0
   804
  The bound variable will be named "a" (since x will be something like x320)
wenzelm@16601
   805
      t == u
wenzelm@16601
   806
  --------------
wenzelm@16601
   807
  %x. t == %x. u
wenzelm@1220
   808
*)
wenzelm@16601
   809
fun abstract_rule a
wenzelm@16601
   810
    (Cterm {t = x, T, sorts, ...})
wenzelm@16601
   811
    (th as Thm {thy_ref, der, maxidx, hyps, shyps, tpairs, prop}) =
wenzelm@16601
   812
  let
wenzelm@16601
   813
    val (t, u) = Logic.dest_equals prop
wenzelm@16601
   814
      handle TERM _ => raise THM ("abstract_rule: premise not an equality", 0, [th]);
wenzelm@16601
   815
    val result =
wenzelm@16601
   816
      Thm {thy_ref = thy_ref,
wenzelm@16601
   817
        der = Pt.infer_derivs' (Pt.abstract_rule x a) der,
wenzelm@16601
   818
        maxidx = maxidx,
wenzelm@16601
   819
        shyps = Sorts.union sorts shyps,
wenzelm@16601
   820
        hyps = hyps,
wenzelm@16601
   821
        tpairs = tpairs,
wenzelm@16601
   822
        prop = Logic.mk_equals
wenzelm@16601
   823
          (Abs (a, T, abstract_over (x, t)), Abs (a, T, abstract_over (x, u)))};
wenzelm@16601
   824
    fun check_occs x ts =
wenzelm@16847
   825
      if exists (fn t => Logic.occs (x, t)) ts then
wenzelm@16601
   826
        raise THM ("abstract_rule: variable free in assumptions", 0, [th])
wenzelm@16601
   827
      else ();
wenzelm@16601
   828
  in
wenzelm@16601
   829
    case x of
wenzelm@16601
   830
      Free _ => (check_occs x hyps; check_occs x (terms_of_tpairs tpairs); result)
wenzelm@16601
   831
    | Var _ => (check_occs x (terms_of_tpairs tpairs); result)
wenzelm@16601
   832
    | _ => raise THM ("abstract_rule: not a variable", 0, [th])
clasohm@0
   833
  end;
clasohm@0
   834
clasohm@0
   835
(*The combination rule
wenzelm@3529
   836
  f == g  t == u
wenzelm@3529
   837
  --------------
wenzelm@16601
   838
    f t == g u
wenzelm@1220
   839
*)
clasohm@0
   840
fun combination th1 th2 =
wenzelm@16601
   841
  let
wenzelm@16601
   842
    val Thm {der = der1, maxidx = max1, shyps = shyps1, hyps = hyps1, tpairs = tpairs1,
wenzelm@16601
   843
      prop = prop1, ...} = th1
wenzelm@16601
   844
    and Thm {der = der2, maxidx = max2, shyps = shyps2, hyps = hyps2, tpairs = tpairs2,
wenzelm@16601
   845
      prop = prop2, ...} = th2;
wenzelm@16601
   846
    fun chktypes fT tT =
wenzelm@16601
   847
      (case fT of
wenzelm@16601
   848
        Type ("fun", [T1, T2]) =>
wenzelm@16601
   849
          if T1 <> tT then
wenzelm@16601
   850
            raise THM ("combination: types", 0, [th1, th2])
wenzelm@16601
   851
          else ()
wenzelm@16601
   852
      | _ => raise THM ("combination: not function type", 0, [th1, th2]));
wenzelm@16601
   853
  in
wenzelm@16601
   854
    case (prop1, prop2) of
wenzelm@16601
   855
      (Const ("==", Type ("fun", [fT, _])) $ f $ g,
wenzelm@16601
   856
       Const ("==", Type ("fun", [tT, _])) $ t $ u) =>
wenzelm@16601
   857
        (chktypes fT tT;
wenzelm@16601
   858
          Thm {thy_ref = merge_thys2 th1 th2,
wenzelm@16601
   859
            der = Pt.infer_derivs (Pt.combination f g t u fT) der1 der2,
wenzelm@16601
   860
            maxidx = Int.max (max1, max2),
wenzelm@16601
   861
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
   862
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
   863
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@16601
   864
            prop = Logic.mk_equals (f $ t, g $ u)})
wenzelm@16601
   865
     | _ => raise THM ("combination: premises", 0, [th1, th2])
clasohm@0
   866
  end;
clasohm@0
   867
wenzelm@16601
   868
(*Equality introduction
wenzelm@3529
   869
  A ==> B  B ==> A
wenzelm@3529
   870
  ----------------
wenzelm@3529
   871
       A == B
wenzelm@1220
   872
*)
clasohm@0
   873
fun equal_intr th1 th2 =
wenzelm@16601
   874
  let
wenzelm@16601
   875
    val Thm {der = der1, maxidx = max1, shyps = shyps1, hyps = hyps1, tpairs = tpairs1,
wenzelm@16601
   876
      prop = prop1, ...} = th1
wenzelm@16601
   877
    and Thm {der = der2, maxidx = max2, shyps = shyps2, hyps = hyps2, tpairs = tpairs2,
wenzelm@16601
   878
      prop = prop2, ...} = th2;
wenzelm@16601
   879
    fun err msg = raise THM ("equal_intr: " ^ msg, 0, [th1, th2]);
wenzelm@16601
   880
  in
wenzelm@16601
   881
    case (prop1, prop2) of
wenzelm@16601
   882
      (Const("==>", _) $ A $ B, Const("==>", _) $ B' $ A') =>
wenzelm@16601
   883
        if A aconv A' andalso B aconv B' then
wenzelm@16601
   884
          Thm {thy_ref = merge_thys2 th1 th2,
wenzelm@16601
   885
            der = Pt.infer_derivs (Pt.equal_intr A B) der1 der2,
wenzelm@16601
   886
            maxidx = Int.max (max1, max2),
wenzelm@16601
   887
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
   888
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
   889
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@16601
   890
            prop = Logic.mk_equals (A, B)}
wenzelm@16601
   891
        else err "not equal"
wenzelm@16601
   892
    | _ =>  err "premises"
paulson@1529
   893
  end;
paulson@1529
   894
paulson@1529
   895
(*The equal propositions rule
wenzelm@3529
   896
  A == B  A
paulson@1529
   897
  ---------
paulson@1529
   898
      B
paulson@1529
   899
*)
paulson@1529
   900
fun equal_elim th1 th2 =
wenzelm@16601
   901
  let
wenzelm@16601
   902
    val Thm {der = der1, maxidx = max1, shyps = shyps1, hyps = hyps1,
wenzelm@16601
   903
      tpairs = tpairs1, prop = prop1, ...} = th1
wenzelm@16601
   904
    and Thm {der = der2, maxidx = max2, shyps = shyps2, hyps = hyps2,
wenzelm@16601
   905
      tpairs = tpairs2, prop = prop2, ...} = th2;
wenzelm@16601
   906
    fun err msg = raise THM ("equal_elim: " ^ msg, 0, [th1, th2]);
wenzelm@16601
   907
  in
wenzelm@16601
   908
    case prop1 of
wenzelm@16601
   909
      Const ("==", _) $ A $ B =>
wenzelm@16601
   910
        if prop2 aconv A then
wenzelm@16601
   911
          Thm {thy_ref = merge_thys2 th1 th2,
wenzelm@16601
   912
            der = Pt.infer_derivs (Pt.equal_elim A B) der1 der2,
wenzelm@16601
   913
            maxidx = Int.max (max1, max2),
wenzelm@16601
   914
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
   915
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
   916
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@16601
   917
            prop = B}
wenzelm@16601
   918
        else err "not equal"
paulson@1529
   919
     | _ =>  err"major premise"
paulson@1529
   920
  end;
clasohm@0
   921
wenzelm@1220
   922
wenzelm@1220
   923
clasohm@0
   924
(**** Derived rules ****)
clasohm@0
   925
wenzelm@16601
   926
(*Smash unifies the list of term pairs leaving no flex-flex pairs.
wenzelm@250
   927
  Instantiates the theorem and deletes trivial tpairs.
clasohm@0
   928
  Resulting sequence may contain multiple elements if the tpairs are
clasohm@0
   929
    not all flex-flex. *)
wenzelm@16601
   930
fun flexflex_rule (th as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16601
   931
  Unify.smash_unifiers (Theory.deref thy_ref, Envir.empty maxidx, tpairs)
wenzelm@16601
   932
  |> Seq.map (fn env =>
wenzelm@16601
   933
      if Envir.is_empty env then th
wenzelm@16601
   934
      else
wenzelm@16601
   935
        let
wenzelm@16601
   936
          val tpairs' = tpairs |> map (pairself (Envir.norm_term env))
wenzelm@16601
   937
            (*remove trivial tpairs, of the form t==t*)
wenzelm@16884
   938
            |> filter_out (op aconv);
wenzelm@16601
   939
          val prop' = Envir.norm_term env prop;
wenzelm@16601
   940
        in
wenzelm@16601
   941
          Thm {thy_ref = thy_ref,
wenzelm@16601
   942
            der = Pt.infer_derivs' (Pt.norm_proof' env) der,
wenzelm@16711
   943
            maxidx = maxidx_tpairs tpairs' (maxidx_of_term prop'),
wenzelm@16656
   944
            shyps = may_insert_env_sorts (Theory.deref thy_ref) env shyps,
wenzelm@16601
   945
            hyps = hyps,
wenzelm@16601
   946
            tpairs = tpairs',
wenzelm@16601
   947
            prop = prop'}
wenzelm@16601
   948
        end);
wenzelm@16601
   949
clasohm@0
   950
clasohm@0
   951
(*Instantiation of Vars
wenzelm@16656
   952
           A
wenzelm@16656
   953
  --------------------
wenzelm@16656
   954
  A[t1/v1, ..., tn/vn]
wenzelm@1220
   955
*)
clasohm@0
   956
wenzelm@6928
   957
local
wenzelm@6928
   958
wenzelm@16425
   959
fun pretty_typing thy t T =
wenzelm@16425
   960
  Pretty.block [Sign.pretty_term thy t, Pretty.str " ::", Pretty.brk 1, Sign.pretty_typ thy T];
berghofe@15797
   961
wenzelm@16884
   962
fun add_inst (ct, cu) (thy_ref, sorts) =
wenzelm@6928
   963
  let
wenzelm@16884
   964
    val Cterm {t = t, T = T, ...} = ct
wenzelm@16884
   965
    and Cterm {t = u, T = U, sorts = sorts_u, ...} = cu;
wenzelm@16884
   966
    val thy_ref' = Theory.merge_refs (thy_ref, merge_thys0 ct cu);
wenzelm@16884
   967
    val sorts' = Sorts.union sorts_u sorts;
wenzelm@3967
   968
  in
wenzelm@16884
   969
    (case t of Var v =>
wenzelm@16884
   970
      if T = U then ((v, u), (thy_ref', sorts'))
wenzelm@16884
   971
      else raise TYPE (Pretty.string_of (Pretty.block
wenzelm@16884
   972
       [Pretty.str "instantiate: type conflict",
wenzelm@16884
   973
        Pretty.fbrk, pretty_typing (Theory.deref thy_ref') t T,
wenzelm@16884
   974
        Pretty.fbrk, pretty_typing (Theory.deref thy_ref') u U]), [T, U], [t, u])
wenzelm@16884
   975
    | _ => raise TYPE (Pretty.string_of (Pretty.block
wenzelm@16884
   976
       [Pretty.str "instantiate: not a variable",
wenzelm@16884
   977
        Pretty.fbrk, Sign.pretty_term (Theory.deref thy_ref') t]), [], [t]))
clasohm@0
   978
  end;
clasohm@0
   979
wenzelm@16884
   980
fun add_instT (cT, cU) (thy_ref, sorts) =
wenzelm@16656
   981
  let
wenzelm@16884
   982
    val Ctyp {T, thy_ref = thy_ref1, ...} = cT
wenzelm@16884
   983
    and Ctyp {T = U, thy_ref = thy_ref2, sorts = sorts_U, ...} = cU;
wenzelm@16884
   984
    val thy_ref' = Theory.merge_refs (thy_ref, Theory.merge_refs (thy_ref1, thy_ref2));
wenzelm@16884
   985
    val thy' = Theory.deref thy_ref';
wenzelm@16884
   986
    val sorts' = Sorts.union sorts_U sorts;
wenzelm@16656
   987
  in
wenzelm@16884
   988
    (case T of TVar (v as (_, S)) =>
wenzelm@16884
   989
      if Type.of_sort (Sign.tsig_of thy') (U, S) then ((v, U), (thy_ref', sorts'))
wenzelm@16656
   990
      else raise TYPE ("Type not of sort " ^ Sign.string_of_sort thy' S, [U], [])
wenzelm@16656
   991
    | _ => raise TYPE (Pretty.string_of (Pretty.block
berghofe@15797
   992
        [Pretty.str "instantiate: not a type variable",
wenzelm@16656
   993
         Pretty.fbrk, Sign.pretty_typ thy' T]), [T], []))
wenzelm@16656
   994
  end;
clasohm@0
   995
wenzelm@6928
   996
in
wenzelm@6928
   997
wenzelm@16601
   998
(*Left-to-right replacements: ctpairs = [..., (vi, ti), ...].
clasohm@0
   999
  Instantiates distinct Vars by terms of same type.
wenzelm@16601
  1000
  Does NOT normalize the resulting theorem!*)
paulson@1529
  1001
fun instantiate ([], []) th = th
wenzelm@16884
  1002
  | instantiate (instT, inst) th =
wenzelm@16656
  1003
      let
wenzelm@16884
  1004
        val Thm {thy_ref, der, hyps, shyps, tpairs, prop, ...} = th;
wenzelm@16884
  1005
        val (inst', (instT', (thy_ref', shyps'))) =
wenzelm@16884
  1006
          (thy_ref, shyps) |> fold_map add_inst inst ||> fold_map add_instT instT;
wenzelm@16884
  1007
        val subst = Term.instantiate (instT', inst');
wenzelm@16656
  1008
        val prop' = subst prop;
wenzelm@16884
  1009
        val tpairs' = map (pairself subst) tpairs;
wenzelm@16656
  1010
      in
wenzelm@16884
  1011
        if has_duplicates (fn ((v, _), (v', _)) => Term.eq_var (v, v')) inst' then
wenzelm@16656
  1012
          raise THM ("instantiate: variables not distinct", 0, [th])
wenzelm@16884
  1013
        else if has_duplicates (fn ((v, _), (v', _)) => Term.eq_tvar (v, v')) instT' then
wenzelm@16656
  1014
          raise THM ("instantiate: type variables not distinct", 0, [th])
wenzelm@16656
  1015
        else
wenzelm@16884
  1016
          Thm {thy_ref = thy_ref',
wenzelm@16884
  1017
            der = Pt.infer_derivs' (Pt.instantiate (instT', inst')) der,
wenzelm@16884
  1018
            maxidx = maxidx_tpairs tpairs' (maxidx_of_term prop'),
wenzelm@16656
  1019
            shyps = shyps',
wenzelm@16656
  1020
            hyps = hyps,
wenzelm@16884
  1021
            tpairs = tpairs',
wenzelm@16656
  1022
            prop = prop'}
wenzelm@16656
  1023
      end
wenzelm@16656
  1024
      handle TYPE (msg, _, _) => raise THM (msg, 0, [th]);
wenzelm@6928
  1025
wenzelm@6928
  1026
end;
wenzelm@6928
  1027
clasohm@0
  1028
wenzelm@16601
  1029
(*The trivial implication A ==> A, justified by assume and forall rules.
wenzelm@16601
  1030
  A can contain Vars, not so for assume!*)
wenzelm@16601
  1031
fun trivial (Cterm {thy_ref, t =A, T, maxidx, sorts}) =
wenzelm@16601
  1032
  if T <> propT then
wenzelm@16601
  1033
    raise THM ("trivial: the term must have type prop", 0, [])
wenzelm@16601
  1034
  else
wenzelm@16601
  1035
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1036
      der = Pt.infer_derivs' I (false, Pt.AbsP ("H", NONE, Pt.PBound 0)),
wenzelm@16601
  1037
      maxidx = maxidx,
wenzelm@16601
  1038
      shyps = sorts,
wenzelm@16601
  1039
      hyps = [],
wenzelm@16601
  1040
      tpairs = [],
wenzelm@16601
  1041
      prop = implies $ A $ A};
clasohm@0
  1042
paulson@1503
  1043
(*Axiom-scheme reflecting signature contents: "OFCLASS(?'a::c, c_class)" *)
wenzelm@16425
  1044
fun class_triv thy c =
wenzelm@16601
  1045
  let val Cterm {thy_ref, t, maxidx, sorts, ...} =
wenzelm@16425
  1046
    cterm_of thy (Logic.mk_inclass (TVar (("'a", 0), [c]), c))
wenzelm@6368
  1047
      handle TERM (msg, _) => raise THM ("class_triv: " ^ msg, 0, []);
wenzelm@399
  1048
  in
wenzelm@16601
  1049
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1050
      der = Pt.infer_derivs' I (false, Pt.PAxm ("ProtoPure.class_triv:" ^ c, t, SOME [])),
wenzelm@16601
  1051
      maxidx = maxidx,
wenzelm@16601
  1052
      shyps = sorts,
wenzelm@16601
  1053
      hyps = [],
wenzelm@16601
  1054
      tpairs = [],
wenzelm@16601
  1055
      prop = t}
wenzelm@399
  1056
  end;
wenzelm@399
  1057
wenzelm@399
  1058
wenzelm@6786
  1059
(* Replace all TFrees not fixed or in the hyps by new TVars *)
wenzelm@16601
  1060
fun varifyT' fixed (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@12500
  1061
  let
berghofe@15797
  1062
    val tfrees = foldr add_term_tfrees fixed hyps;
berghofe@13658
  1063
    val prop1 = attach_tpairs tpairs prop;
berghofe@13658
  1064
    val (prop2, al) = Type.varify (prop1, tfrees);
wenzelm@16601
  1065
    val (ts, prop3) = Logic.strip_prems (length tpairs, [], prop2);
wenzelm@16601
  1066
  in
wenzelm@16601
  1067
    (Thm {thy_ref = thy_ref,
wenzelm@16601
  1068
      der = Pt.infer_derivs' (Pt.varify_proof prop tfrees) der,
wenzelm@16601
  1069
      maxidx = Int.max (0, maxidx),
wenzelm@16601
  1070
      shyps = shyps,
wenzelm@16601
  1071
      hyps = hyps,
wenzelm@16601
  1072
      tpairs = rev (map Logic.dest_equals ts),
wenzelm@16601
  1073
      prop = prop3}, al)
clasohm@0
  1074
  end;
clasohm@0
  1075
wenzelm@12500
  1076
val varifyT = #1 o varifyT' [];
wenzelm@6786
  1077
clasohm@0
  1078
(* Replace all TVars by new TFrees *)
wenzelm@16601
  1079
fun freezeT (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
berghofe@13658
  1080
  let
berghofe@13658
  1081
    val prop1 = attach_tpairs tpairs prop;
wenzelm@16287
  1082
    val prop2 = Type.freeze prop1;
wenzelm@16601
  1083
    val (ts, prop3) = Logic.strip_prems (length tpairs, [], prop2);
wenzelm@16601
  1084
  in
wenzelm@16601
  1085
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1086
      der = Pt.infer_derivs' (Pt.freezeT prop1) der,
wenzelm@16601
  1087
      maxidx = maxidx_of_term prop2,
wenzelm@16601
  1088
      shyps = shyps,
wenzelm@16601
  1089
      hyps = hyps,
wenzelm@16601
  1090
      tpairs = rev (map Logic.dest_equals ts),
wenzelm@16601
  1091
      prop = prop3}
wenzelm@1220
  1092
  end;
clasohm@0
  1093
clasohm@0
  1094
clasohm@0
  1095
(*** Inference rules for tactics ***)
clasohm@0
  1096
clasohm@0
  1097
(*Destruct proof state into constraints, other goals, goal(i), rest *)
berghofe@13658
  1098
fun dest_state (state as Thm{prop,tpairs,...}, i) =
berghofe@13658
  1099
  (case  Logic.strip_prems(i, [], prop) of
berghofe@13658
  1100
      (B::rBs, C) => (tpairs, rev rBs, B, C)
berghofe@13658
  1101
    | _ => raise THM("dest_state", i, [state]))
clasohm@0
  1102
  handle TERM _ => raise THM("dest_state", i, [state]);
clasohm@0
  1103
lcp@309
  1104
(*Increment variables and parameters of orule as required for
clasohm@0
  1105
  resolution with goal i of state. *)
clasohm@0
  1106
fun lift_rule (state, i) orule =
wenzelm@16601
  1107
  let
wenzelm@16679
  1108
    val Thm {shyps = sshyps, prop = sprop, maxidx = smax, ...} = state;
wenzelm@16601
  1109
    val (Bi :: _, _) = Logic.strip_prems (i, [], sprop)
wenzelm@16601
  1110
      handle TERM _ => raise THM ("lift_rule", i, [orule, state]);
wenzelm@16601
  1111
    val (lift_abs, lift_all) = Logic.lift_fns (Bi, smax + 1);
wenzelm@16601
  1112
    val (Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) = orule;
wenzelm@16601
  1113
    val (As, B) = Logic.strip_horn prop;
wenzelm@16601
  1114
  in
wenzelm@16601
  1115
    Thm {thy_ref = merge_thys2 state orule,
wenzelm@16601
  1116
      der = Pt.infer_derivs' (Pt.lift_proof Bi (smax + 1) prop) der,
wenzelm@16601
  1117
      maxidx = maxidx + smax + 1,
wenzelm@16601
  1118
      shyps = Sorts.union sshyps shyps,
wenzelm@16601
  1119
      hyps = hyps,
wenzelm@16601
  1120
      tpairs = map (pairself lift_abs) tpairs,
wenzelm@16601
  1121
      prop = Logic.list_implies (map lift_all As, lift_all B)}
clasohm@0
  1122
  end;
clasohm@0
  1123
wenzelm@16425
  1124
fun incr_indexes i (thm as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@16601
  1125
  if i < 0 then raise THM ("negative increment", 0, [thm])
wenzelm@16601
  1126
  else if i = 0 then thm
wenzelm@16601
  1127
  else
wenzelm@16425
  1128
    Thm {thy_ref = thy_ref,
wenzelm@16884
  1129
      der = Pt.infer_derivs'
wenzelm@16884
  1130
        (Pt.map_proof_terms (Logic.incr_indexes ([], i)) (Logic.incr_tvar i)) der,
wenzelm@16601
  1131
      maxidx = maxidx + i,
wenzelm@16601
  1132
      shyps = shyps,
wenzelm@16601
  1133
      hyps = hyps,
wenzelm@16601
  1134
      tpairs = map (pairself (Logic.incr_indexes ([], i))) tpairs,
wenzelm@16601
  1135
      prop = Logic.incr_indexes ([], i) prop};
berghofe@10416
  1136
clasohm@0
  1137
(*Solve subgoal Bi of proof state B1...Bn/C by assumption. *)
clasohm@0
  1138
fun assumption i state =
wenzelm@16601
  1139
  let
wenzelm@16601
  1140
    val Thm {thy_ref, der, maxidx, shyps, hyps, prop, ...} = state;
wenzelm@16656
  1141
    val thy = Theory.deref thy_ref;
wenzelm@16601
  1142
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@16601
  1143
    fun newth n (env as Envir.Envir {maxidx, ...}, tpairs) =
wenzelm@16601
  1144
      Thm {thy_ref = thy_ref,
wenzelm@16601
  1145
        der = Pt.infer_derivs'
wenzelm@16601
  1146
          ((if Envir.is_empty env then I else (Pt.norm_proof' env)) o
wenzelm@16601
  1147
            Pt.assumption_proof Bs Bi n) der,
wenzelm@16601
  1148
        maxidx = maxidx,
wenzelm@16656
  1149
        shyps = may_insert_env_sorts thy env shyps,
wenzelm@16601
  1150
        hyps = hyps,
wenzelm@16601
  1151
        tpairs =
wenzelm@16601
  1152
          if Envir.is_empty env then tpairs
wenzelm@16601
  1153
          else map (pairself (Envir.norm_term env)) tpairs,
wenzelm@16601
  1154
        prop =
wenzelm@16601
  1155
          if Envir.is_empty env then (*avoid wasted normalizations*)
wenzelm@16601
  1156
            Logic.list_implies (Bs, C)
wenzelm@16601
  1157
          else (*normalize the new rule fully*)
wenzelm@16601
  1158
            Envir.norm_term env (Logic.list_implies (Bs, C))};
wenzelm@16601
  1159
    fun addprfs [] _ = Seq.empty
wenzelm@16601
  1160
      | addprfs ((t, u) :: apairs) n = Seq.make (fn () => Seq.pull
wenzelm@16601
  1161
          (Seq.mapp (newth n)
wenzelm@16656
  1162
            (Unify.unifiers (thy, Envir.empty maxidx, (t, u) :: tpairs))
wenzelm@16601
  1163
            (addprfs apairs (n + 1))))
wenzelm@16601
  1164
  in addprfs (Logic.assum_pairs (~1, Bi)) 1 end;
clasohm@0
  1165
wenzelm@250
  1166
(*Solve subgoal Bi of proof state B1...Bn/C by assumption.
clasohm@0
  1167
  Checks if Bi's conclusion is alpha-convertible to one of its assumptions*)
clasohm@0
  1168
fun eq_assumption i state =
wenzelm@16601
  1169
  let
wenzelm@16601
  1170
    val Thm {thy_ref, der, maxidx, shyps, hyps, prop, ...} = state;
wenzelm@16601
  1171
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@16601
  1172
  in
wenzelm@16601
  1173
    (case find_index (op aconv) (Logic.assum_pairs (~1, Bi)) of
wenzelm@16601
  1174
      ~1 => raise THM ("eq_assumption", 0, [state])
wenzelm@16601
  1175
    | n =>
wenzelm@16601
  1176
        Thm {thy_ref = thy_ref,
wenzelm@16601
  1177
          der = Pt.infer_derivs' (Pt.assumption_proof Bs Bi (n + 1)) der,
wenzelm@16601
  1178
          maxidx = maxidx,
wenzelm@16601
  1179
          shyps = shyps,
wenzelm@16601
  1180
          hyps = hyps,
wenzelm@16601
  1181
          tpairs = tpairs,
wenzelm@16601
  1182
          prop = Logic.list_implies (Bs, C)})
clasohm@0
  1183
  end;
clasohm@0
  1184
clasohm@0
  1185
paulson@2671
  1186
(*For rotate_tac: fast rotation of assumptions of subgoal i*)
paulson@2671
  1187
fun rotate_rule k i state =
wenzelm@16601
  1188
  let
wenzelm@16601
  1189
    val Thm {thy_ref, der, maxidx, shyps, hyps, prop, ...} = state;
wenzelm@16601
  1190
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@16601
  1191
    val params = Term.strip_all_vars Bi
wenzelm@16601
  1192
    and rest   = Term.strip_all_body Bi;
wenzelm@16601
  1193
    val asms   = Logic.strip_imp_prems rest
wenzelm@16601
  1194
    and concl  = Logic.strip_imp_concl rest;
wenzelm@16601
  1195
    val n = length asms;
wenzelm@16601
  1196
    val m = if k < 0 then n + k else k;
wenzelm@16601
  1197
    val Bi' =
wenzelm@16601
  1198
      if 0 = m orelse m = n then Bi
wenzelm@16601
  1199
      else if 0 < m andalso m < n then
wenzelm@16601
  1200
        let val (ps, qs) = splitAt (m, asms)
wenzelm@16601
  1201
        in list_all (params, Logic.list_implies (qs @ ps, concl)) end
wenzelm@16601
  1202
      else raise THM ("rotate_rule", k, [state]);
wenzelm@16601
  1203
  in
wenzelm@16601
  1204
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1205
      der = Pt.infer_derivs' (Pt.rotate_proof Bs Bi m) der,
wenzelm@16601
  1206
      maxidx = maxidx,
wenzelm@16601
  1207
      shyps = shyps,
wenzelm@16601
  1208
      hyps = hyps,
wenzelm@16601
  1209
      tpairs = tpairs,
wenzelm@16601
  1210
      prop = Logic.list_implies (Bs @ [Bi'], C)}
paulson@2671
  1211
  end;
paulson@2671
  1212
paulson@2671
  1213
paulson@7248
  1214
(*Rotates a rule's premises to the left by k, leaving the first j premises
paulson@7248
  1215
  unchanged.  Does nothing if k=0 or if k equals n-j, where n is the
wenzelm@16656
  1216
  number of premises.  Useful with etac and underlies defer_tac*)
paulson@7248
  1217
fun permute_prems j k rl =
wenzelm@16601
  1218
  let
wenzelm@16601
  1219
    val Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop} = rl;
wenzelm@16601
  1220
    val prems = Logic.strip_imp_prems prop
wenzelm@16601
  1221
    and concl = Logic.strip_imp_concl prop;
wenzelm@16601
  1222
    val moved_prems = List.drop (prems, j)
wenzelm@16601
  1223
    and fixed_prems = List.take (prems, j)
wenzelm@16601
  1224
      handle Subscript => raise THM ("permute_prems: j", j, [rl]);
wenzelm@16601
  1225
    val n_j = length moved_prems;
wenzelm@16601
  1226
    val m = if k < 0 then n_j + k else k;
wenzelm@16601
  1227
    val prop' =
wenzelm@16601
  1228
      if 0 = m orelse m = n_j then prop
wenzelm@16601
  1229
      else if 0 < m andalso m < n_j then
wenzelm@16601
  1230
        let val (ps, qs) = splitAt (m, moved_prems)
wenzelm@16601
  1231
        in Logic.list_implies (fixed_prems @ qs @ ps, concl) end
wenzelm@16725
  1232
      else raise THM ("permute_prems: k", k, [rl]);
wenzelm@16601
  1233
  in
wenzelm@16601
  1234
    Thm {thy_ref = thy_ref,
wenzelm@16601
  1235
      der = Pt.infer_derivs' (Pt.permute_prems_prf prems j m) der,
wenzelm@16601
  1236
      maxidx = maxidx,
wenzelm@16601
  1237
      shyps = shyps,
wenzelm@16601
  1238
      hyps = hyps,
wenzelm@16601
  1239
      tpairs = tpairs,
wenzelm@16601
  1240
      prop = prop'}
paulson@7248
  1241
  end;
paulson@7248
  1242
paulson@7248
  1243
clasohm@0
  1244
(** User renaming of parameters in a subgoal **)
clasohm@0
  1245
clasohm@0
  1246
(*Calls error rather than raising an exception because it is intended
clasohm@0
  1247
  for top-level use -- exception handling would not make sense here.
clasohm@0
  1248
  The names in cs, if distinct, are used for the innermost parameters;
clasohm@0
  1249
   preceding parameters may be renamed to make all params distinct.*)
clasohm@0
  1250
fun rename_params_rule (cs, i) state =
wenzelm@16601
  1251
  let
wenzelm@16601
  1252
    val Thm {thy_ref, der, maxidx, shyps, hyps, ...} = state;
wenzelm@16601
  1253
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@16601
  1254
    val iparams = map #1 (Logic.strip_params Bi);
wenzelm@16601
  1255
    val short = length iparams - length cs;
wenzelm@16601
  1256
    val newnames =
wenzelm@16601
  1257
      if short < 0 then error "More names than abstractions!"
wenzelm@16601
  1258
      else variantlist (Library.take (short, iparams), cs) @ cs;
wenzelm@16601
  1259
    val freenames = map (#1 o dest_Free) (term_frees Bi);
wenzelm@16601
  1260
    val newBi = Logic.list_rename_params (newnames, Bi);
wenzelm@250
  1261
  in
wenzelm@16601
  1262
    case findrep cs of
wenzelm@16601
  1263
      c :: _ => (warning ("Can't rename.  Bound variables not distinct: " ^ c); state)
wenzelm@16601
  1264
    | [] =>
wenzelm@16601
  1265
      (case cs inter_string freenames of
wenzelm@16601
  1266
        a :: _ => (warning ("Can't rename.  Bound/Free variable clash: " ^ a); state)
wenzelm@16601
  1267
      | [] =>
wenzelm@16601
  1268
        Thm {thy_ref = thy_ref,
wenzelm@16601
  1269
          der = der,
wenzelm@16601
  1270
          maxidx = maxidx,
wenzelm@16601
  1271
          shyps = shyps,
wenzelm@16601
  1272
          hyps = hyps,
wenzelm@16601
  1273
          tpairs = tpairs,
wenzelm@16601
  1274
          prop = Logic.list_implies (Bs @ [newBi], C)})
clasohm@0
  1275
  end;
clasohm@0
  1276
wenzelm@12982
  1277
clasohm@0
  1278
(*** Preservation of bound variable names ***)
clasohm@0
  1279
wenzelm@16601
  1280
fun rename_boundvars pat obj (thm as Thm {thy_ref, der, maxidx, shyps, hyps, tpairs, prop}) =
wenzelm@12982
  1281
  (case Term.rename_abs pat obj prop of
skalberg@15531
  1282
    NONE => thm
skalberg@15531
  1283
  | SOME prop' => Thm
wenzelm@16425
  1284
      {thy_ref = thy_ref,
wenzelm@12982
  1285
       der = der,
wenzelm@12982
  1286
       maxidx = maxidx,
wenzelm@12982
  1287
       hyps = hyps,
wenzelm@12982
  1288
       shyps = shyps,
berghofe@13658
  1289
       tpairs = tpairs,
wenzelm@12982
  1290
       prop = prop'});
berghofe@10416
  1291
clasohm@0
  1292
wenzelm@16656
  1293
(* strip_apply f (A, B) strips off all assumptions/parameters from A
clasohm@0
  1294
   introduced by lifting over B, and applies f to remaining part of A*)
clasohm@0
  1295
fun strip_apply f =
clasohm@0
  1296
  let fun strip(Const("==>",_)$ A1 $ B1,
wenzelm@250
  1297
                Const("==>",_)$ _  $ B2) = implies $ A1 $ strip(B1,B2)
wenzelm@250
  1298
        | strip((c as Const("all",_)) $ Abs(a,T,t1),
wenzelm@250
  1299
                      Const("all",_)  $ Abs(_,_,t2)) = c$Abs(a,T,strip(t1,t2))
wenzelm@250
  1300
        | strip(A,_) = f A
clasohm@0
  1301
  in strip end;
clasohm@0
  1302
clasohm@0
  1303
(*Use the alist to rename all bound variables and some unknowns in a term
clasohm@0
  1304
  dpairs = current disagreement pairs;  tpairs = permanent ones (flexflex);
clasohm@0
  1305
  Preserves unknowns in tpairs and on lhs of dpairs. *)
clasohm@0
  1306
fun rename_bvs([],_,_,_) = I
clasohm@0
  1307
  | rename_bvs(al,dpairs,tpairs,B) =
skalberg@15574
  1308
    let val vars = foldr add_term_vars []
skalberg@15574
  1309
                        (map fst dpairs @ map fst tpairs @ map snd tpairs)
wenzelm@250
  1310
        (*unknowns appearing elsewhere be preserved!*)
wenzelm@250
  1311
        val vids = map (#1 o #1 o dest_Var) vars;
wenzelm@250
  1312
        fun rename(t as Var((x,i),T)) =
wenzelm@250
  1313
                (case assoc(al,x) of
skalberg@15531
  1314
                   SOME(y) => if x mem_string vids orelse y mem_string vids then t
wenzelm@250
  1315
                              else Var((y,i),T)
skalberg@15531
  1316
                 | NONE=> t)
clasohm@0
  1317
          | rename(Abs(x,T,t)) =
wenzelm@16425
  1318
              Abs (if_none (assoc_string (al, x)) x, T, rename t)
clasohm@0
  1319
          | rename(f$t) = rename f $ rename t
clasohm@0
  1320
          | rename(t) = t;
wenzelm@250
  1321
        fun strip_ren Ai = strip_apply rename (Ai,B)
clasohm@0
  1322
    in strip_ren end;
clasohm@0
  1323
clasohm@0
  1324
(*Function to rename bounds/unknowns in the argument, lifted over B*)
clasohm@0
  1325
fun rename_bvars(dpairs, tpairs, B) =
skalberg@15574
  1326
        rename_bvs(foldr Term.match_bvars [] dpairs, dpairs, tpairs, B);
clasohm@0
  1327
clasohm@0
  1328
clasohm@0
  1329
(*** RESOLUTION ***)
clasohm@0
  1330
lcp@721
  1331
(** Lifting optimizations **)
lcp@721
  1332
clasohm@0
  1333
(*strip off pairs of assumptions/parameters in parallel -- they are
clasohm@0
  1334
  identical because of lifting*)
wenzelm@250
  1335
fun strip_assums2 (Const("==>", _) $ _ $ B1,
wenzelm@250
  1336
                   Const("==>", _) $ _ $ B2) = strip_assums2 (B1,B2)
clasohm@0
  1337
  | strip_assums2 (Const("all",_)$Abs(a,T,t1),
wenzelm@250
  1338
                   Const("all",_)$Abs(_,_,t2)) =
clasohm@0
  1339
      let val (B1,B2) = strip_assums2 (t1,t2)
clasohm@0
  1340
      in  (Abs(a,T,B1), Abs(a,T,B2))  end
clasohm@0
  1341
  | strip_assums2 BB = BB;
clasohm@0
  1342
clasohm@0
  1343
lcp@721
  1344
(*Faster normalization: skip assumptions that were lifted over*)
lcp@721
  1345
fun norm_term_skip env 0 t = Envir.norm_term env t
lcp@721
  1346
  | norm_term_skip env n (Const("all",_)$Abs(a,T,t)) =
lcp@721
  1347
        let val Envir.Envir{iTs, ...} = env
berghofe@15797
  1348
            val T' = Envir.typ_subst_TVars iTs T
wenzelm@1238
  1349
            (*Must instantiate types of parameters because they are flattened;
lcp@721
  1350
              this could be a NEW parameter*)
lcp@721
  1351
        in  all T' $ Abs(a, T', norm_term_skip env n t)  end
lcp@721
  1352
  | norm_term_skip env n (Const("==>", _) $ A $ B) =
wenzelm@1238
  1353
        implies $ A $ norm_term_skip env (n-1) B
lcp@721
  1354
  | norm_term_skip env n t = error"norm_term_skip: too few assumptions??";
lcp@721
  1355
lcp@721
  1356
clasohm@0
  1357
(*Composition of object rule r=(A1...Am/B) with proof state s=(B1...Bn/C)
wenzelm@250
  1358
  Unifies B with Bi, replacing subgoal i    (1 <= i <= n)
clasohm@0
  1359
  If match then forbid instantiations in proof state
clasohm@0
  1360
  If lifted then shorten the dpair using strip_assums2.
clasohm@0
  1361
  If eres_flg then simultaneously proves A1 by assumption.
wenzelm@250
  1362
  nsubgoal is the number of new subgoals (written m above).
clasohm@0
  1363
  Curried so that resolution calls dest_state only once.
clasohm@0
  1364
*)
wenzelm@4270
  1365
local exception COMPOSE
clasohm@0
  1366
in
wenzelm@250
  1367
fun bicompose_aux match (state, (stpairs, Bs, Bi, C), lifted)
clasohm@0
  1368
                        (eres_flg, orule, nsubgoal) =
paulson@1529
  1369
 let val Thm{der=sder, maxidx=smax, shyps=sshyps, hyps=shyps, ...} = state
wenzelm@16425
  1370
     and Thm{der=rder, maxidx=rmax, shyps=rshyps, hyps=rhyps,
berghofe@13658
  1371
             tpairs=rtpairs, prop=rprop,...} = orule
paulson@1529
  1372
         (*How many hyps to skip over during normalization*)
wenzelm@1238
  1373
     and nlift = Logic.count_prems(strip_all_body Bi,
wenzelm@1238
  1374
                                   if eres_flg then ~1 else 0)
wenzelm@16601
  1375
     val thy_ref = merge_thys2 state orule;
wenzelm@16425
  1376
     val thy = Theory.deref thy_ref;
clasohm@0
  1377
     (** Add new theorem with prop = '[| Bs; As |] ==> C' to thq **)
berghofe@11518
  1378
     fun addth A (As, oldAs, rder', n) ((env as Envir.Envir {maxidx, ...}, tpairs), thq) =
wenzelm@250
  1379
       let val normt = Envir.norm_term env;
wenzelm@250
  1380
           (*perform minimal copying here by examining env*)
berghofe@13658
  1381
           val (ntpairs, normp) =
berghofe@13658
  1382
             if Envir.is_empty env then (tpairs, (Bs @ As, C))
wenzelm@250
  1383
             else
wenzelm@250
  1384
             let val ntps = map (pairself normt) tpairs
paulson@2147
  1385
             in if Envir.above (smax, env) then
wenzelm@1238
  1386
                  (*no assignments in state; normalize the rule only*)
wenzelm@1238
  1387
                  if lifted
berghofe@13658
  1388
                  then (ntps, (Bs @ map (norm_term_skip env nlift) As, C))
berghofe@13658
  1389
                  else (ntps, (Bs @ map normt As, C))
paulson@1529
  1390
                else if match then raise COMPOSE
wenzelm@250
  1391
                else (*normalize the new rule fully*)
berghofe@13658
  1392
                  (ntps, (map normt (Bs @ As), normt C))
wenzelm@250
  1393
             end
wenzelm@16601
  1394
           val th =
wenzelm@16425
  1395
             Thm{thy_ref = thy_ref,
berghofe@11518
  1396
                 der = Pt.infer_derivs
berghofe@11518
  1397
                   ((if Envir.is_empty env then I
berghofe@11518
  1398
                     else if Envir.above (smax, env) then
berghofe@11518
  1399
                       (fn f => fn der => f (Pt.norm_proof' env der))
berghofe@11518
  1400
                     else
berghofe@11518
  1401
                       curry op oo (Pt.norm_proof' env))
berghofe@11518
  1402
                    (Pt.bicompose_proof Bs oldAs As A n)) rder' sder,
wenzelm@2386
  1403
                 maxidx = maxidx,
wenzelm@16656
  1404
                 shyps = may_insert_env_sorts thy env (Sorts.union rshyps sshyps),
wenzelm@16601
  1405
                 hyps = union_hyps rhyps shyps,
berghofe@13658
  1406
                 tpairs = ntpairs,
berghofe@13658
  1407
                 prop = Logic.list_implies normp}
berghofe@11518
  1408
        in  Seq.cons(th, thq)  end  handle COMPOSE => thq;
berghofe@13658
  1409
     val (rAs,B) = Logic.strip_prems(nsubgoal, [], rprop)
clasohm@0
  1410
       handle TERM _ => raise THM("bicompose: rule", 0, [orule,state]);
clasohm@0
  1411
     (*Modify assumptions, deleting n-th if n>0 for e-resolution*)
clasohm@0
  1412
     fun newAs(As0, n, dpairs, tpairs) =
berghofe@11518
  1413
       let val (As1, rder') =
berghofe@11518
  1414
         if !Logic.auto_rename orelse not lifted then (As0, rder)
berghofe@11518
  1415
         else (map (rename_bvars(dpairs,tpairs,B)) As0,
berghofe@11518
  1416
           Pt.infer_derivs' (Pt.map_proof_terms
berghofe@11518
  1417
             (rename_bvars (dpairs, tpairs, Bound 0)) I) rder);
berghofe@11518
  1418
       in (map (Logic.flatten_params n) As1, As1, rder', n)
wenzelm@250
  1419
          handle TERM _ =>
wenzelm@250
  1420
          raise THM("bicompose: 1st premise", 0, [orule])
clasohm@0
  1421
       end;
paulson@2147
  1422
     val env = Envir.empty(Int.max(rmax,smax));
clasohm@0
  1423
     val BBi = if lifted then strip_assums2(B,Bi) else (B,Bi);
clasohm@0
  1424
     val dpairs = BBi :: (rtpairs@stpairs);
clasohm@0
  1425
     (*elim-resolution: try each assumption in turn.  Initially n=1*)
berghofe@11518
  1426
     fun tryasms (_, _, _, []) = Seq.empty
berghofe@11518
  1427
       | tryasms (A, As, n, (t,u)::apairs) =
wenzelm@16425
  1428
          (case Seq.pull(Unify.unifiers(thy, env, (t,u)::dpairs))  of
wenzelm@16425
  1429
              NONE                   => tryasms (A, As, n+1, apairs)
wenzelm@16425
  1430
            | cell as SOME((_,tpairs),_) =>
wenzelm@16425
  1431
                Seq.it_right (addth A (newAs(As, n, [BBi,(u,t)], tpairs)))
wenzelm@16425
  1432
                    (Seq.make(fn()=> cell),
wenzelm@16425
  1433
                     Seq.make(fn()=> Seq.pull (tryasms(A, As, n+1, apairs)))))
clasohm@0
  1434
     fun eres [] = raise THM("bicompose: no premises", 0, [orule,state])
skalberg@15531
  1435
       | eres (A1::As) = tryasms(SOME A1, As, 1, Logic.assum_pairs(nlift+1,A1))
clasohm@0
  1436
     (*ordinary resolution*)
skalberg@15531
  1437
     fun res(NONE) = Seq.empty
skalberg@15531
  1438
       | res(cell as SOME((_,tpairs),_)) =
skalberg@15531
  1439
             Seq.it_right (addth NONE (newAs(rev rAs, 0, [BBi], tpairs)))
wenzelm@4270
  1440
                       (Seq.make (fn()=> cell), Seq.empty)
clasohm@0
  1441
 in  if eres_flg then eres(rev rAs)
wenzelm@16425
  1442
     else res(Seq.pull(Unify.unifiers(thy, env, dpairs)))
clasohm@0
  1443
 end;
wenzelm@7528
  1444
end;
clasohm@0
  1445
clasohm@0
  1446
clasohm@0
  1447
fun bicompose match arg i state =
clasohm@0
  1448
    bicompose_aux match (state, dest_state(state,i), false) arg;
clasohm@0
  1449
clasohm@0
  1450
(*Quick test whether rule is resolvable with the subgoal with hyps Hs
clasohm@0
  1451
  and conclusion B.  If eres_flg then checks 1st premise of rule also*)
clasohm@0
  1452
fun could_bires (Hs, B, eres_flg, rule) =
wenzelm@16847
  1453
    let fun could_reshyp (A1::_) = exists (fn H => could_unify (A1, H)) Hs
wenzelm@250
  1454
          | could_reshyp [] = false;  (*no premise -- illegal*)
wenzelm@250
  1455
    in  could_unify(concl_of rule, B) andalso
wenzelm@250
  1456
        (not eres_flg  orelse  could_reshyp (prems_of rule))
clasohm@0
  1457
    end;
clasohm@0
  1458
clasohm@0
  1459
(*Bi-resolution of a state with a list of (flag,rule) pairs.
clasohm@0
  1460
  Puts the rule above:  rule/state.  Renames vars in the rules. *)
wenzelm@250
  1461
fun biresolution match brules i state =
clasohm@0
  1462
    let val lift = lift_rule(state, i);
wenzelm@250
  1463
        val (stpairs, Bs, Bi, C) = dest_state(state,i)
wenzelm@250
  1464
        val B = Logic.strip_assums_concl Bi;
wenzelm@250
  1465
        val Hs = Logic.strip_assums_hyp Bi;
wenzelm@250
  1466
        val comp = bicompose_aux match (state, (stpairs, Bs, Bi, C), true);
wenzelm@4270
  1467
        fun res [] = Seq.empty
wenzelm@250
  1468
          | res ((eres_flg, rule)::brules) =
nipkow@13642
  1469
              if !Pattern.trace_unify_fail orelse
nipkow@13642
  1470
                 could_bires (Hs, B, eres_flg, rule)
wenzelm@4270
  1471
              then Seq.make (*delay processing remainder till needed*)
skalberg@15531
  1472
                  (fn()=> SOME(comp (eres_flg, lift rule, nprems_of rule),
wenzelm@250
  1473
                               res brules))
wenzelm@250
  1474
              else res brules
wenzelm@4270
  1475
    in  Seq.flat (res brules)  end;
clasohm@0
  1476
clasohm@0
  1477
wenzelm@2509
  1478
(*** Oracles ***)
wenzelm@2509
  1479
wenzelm@16425
  1480
fun invoke_oracle_i thy1 name =
wenzelm@3812
  1481
  let
wenzelm@3812
  1482
    val oracle =
wenzelm@16425
  1483
      (case Symtab.lookup (#2 (#oracles (Theory.rep_theory thy1)), name) of
skalberg@15531
  1484
        NONE => raise THM ("Unknown oracle: " ^ name, 0, [])
skalberg@15531
  1485
      | SOME (f, _) => f);
wenzelm@16847
  1486
    val thy_ref1 = Theory.self_ref thy1;
wenzelm@3812
  1487
  in
wenzelm@16425
  1488
    fn (thy2, data) =>
wenzelm@3812
  1489
      let
wenzelm@16847
  1490
        val thy' = Theory.merge (Theory.deref thy_ref1, thy2);
wenzelm@14828
  1491
        val (prop, T, maxidx) =
wenzelm@16425
  1492
          Sign.certify_term (Sign.pp thy') thy' (oracle (thy', data));
wenzelm@3812
  1493
      in
wenzelm@3812
  1494
        if T <> propT then
wenzelm@3812
  1495
          raise THM ("Oracle's result must have type prop: " ^ name, 0, [])
wenzelm@16601
  1496
        else
wenzelm@16601
  1497
          Thm {thy_ref = Theory.self_ref thy',
berghofe@11518
  1498
            der = (true, Pt.oracle_proof name prop),
wenzelm@3812
  1499
            maxidx = maxidx,
wenzelm@16656
  1500
            shyps = may_insert_term_sorts thy' prop [],
wenzelm@16425
  1501
            hyps = [],
berghofe@13658
  1502
            tpairs = [],
wenzelm@16601
  1503
            prop = prop}
wenzelm@3812
  1504
      end
wenzelm@3812
  1505
  end;
wenzelm@3812
  1506
wenzelm@15672
  1507
fun invoke_oracle thy =
wenzelm@16425
  1508
  invoke_oracle_i thy o NameSpace.intern (Theory.oracle_space thy);
wenzelm@15672
  1509
clasohm@0
  1510
end;
paulson@1503
  1511
wenzelm@6089
  1512
structure BasicThm: BASIC_THM = Thm;
wenzelm@6089
  1513
open BasicThm;