src/HOL/WF.ML
author clasohm
Tue Jan 30 15:24:36 1996 +0100 (1996-01-30)
changeset 1465 5d7a7e439cec
parent 1264 3eb91524b938
child 1475 7f5a4cd08209
permissions -rw-r--r--
expanded tabs
clasohm@1465
     1
(*  Title:      HOL/WF.ML
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Tobias Nipkow
clasohm@923
     4
    Copyright   1992  University of Cambridge
clasohm@923
     5
clasohm@1465
     6
For WF.thy.  Well-founded Recursion
clasohm@923
     7
*)
clasohm@923
     8
clasohm@923
     9
open WF;
clasohm@923
    10
nipkow@950
    11
val H_cong = read_instantiate [("f","H")] (standard(refl RS cong RS cong));
clasohm@923
    12
val H_cong1 = refl RS H_cong;
clasohm@923
    13
clasohm@923
    14
(*Restriction to domain A.  If r is well-founded over A then wf(r)*)
clasohm@923
    15
val [prem1,prem2] = goalw WF.thy [wf_def]
clasohm@923
    16
 "[| r <= Sigma A (%u.A);  \
clasohm@972
    17
\    !!x P. [| ! x. (! y. (y,x) : r --> P(y)) --> P(x);  x:A |] ==> P(x) |]  \
clasohm@923
    18
\ ==>  wf(r)";
clasohm@923
    19
by (strip_tac 1);
clasohm@923
    20
by (rtac allE 1);
clasohm@923
    21
by (assume_tac 1);
clasohm@923
    22
by (best_tac (HOL_cs addSEs [prem1 RS subsetD RS SigmaE2] addIs [prem2]) 1);
clasohm@923
    23
qed "wfI";
clasohm@923
    24
clasohm@923
    25
val major::prems = goalw WF.thy [wf_def]
clasohm@923
    26
    "[| wf(r);          \
clasohm@972
    27
\       !!x.[| ! y. (y,x): r --> P(y) |] ==> P(x) \
clasohm@923
    28
\    |]  ==>  P(a)";
clasohm@923
    29
by (rtac (major RS spec RS mp RS spec) 1);
clasohm@923
    30
by (fast_tac (HOL_cs addEs prems) 1);
clasohm@923
    31
qed "wf_induct";
clasohm@923
    32
clasohm@923
    33
(*Perform induction on i, then prove the wf(r) subgoal using prems. *)
clasohm@923
    34
fun wf_ind_tac a prems i = 
clasohm@923
    35
    EVERY [res_inst_tac [("a",a)] wf_induct i,
clasohm@1465
    36
           rename_last_tac a ["1"] (i+1),
clasohm@1465
    37
           ares_tac prems i];
clasohm@923
    38
clasohm@972
    39
val prems = goal WF.thy "[| wf(r);  (a,x):r;  (x,a):r |] ==> P";
clasohm@972
    40
by (subgoal_tac "! x. (a,x):r --> (x,a):r --> P" 1);
clasohm@923
    41
by (fast_tac (HOL_cs addIs prems) 1);
clasohm@923
    42
by (wf_ind_tac "a" prems 1);
clasohm@923
    43
by (fast_tac set_cs 1);
clasohm@923
    44
qed "wf_asym";
clasohm@923
    45
clasohm@972
    46
val prems = goal WF.thy "[| wf(r);  (a,a): r |] ==> P";
clasohm@923
    47
by (rtac wf_asym 1);
clasohm@923
    48
by (REPEAT (resolve_tac prems 1));
clasohm@923
    49
qed "wf_anti_refl";
clasohm@923
    50
clasohm@923
    51
(*transitive closure of a WF relation is WF!*)
clasohm@923
    52
val [prem] = goal WF.thy "wf(r) ==> wf(r^+)";
clasohm@923
    53
by (rewtac wf_def);
clasohm@923
    54
by (strip_tac 1);
clasohm@923
    55
(*must retain the universal formula for later use!*)
clasohm@923
    56
by (rtac allE 1 THEN assume_tac 1);
clasohm@923
    57
by (etac mp 1);
clasohm@923
    58
by (res_inst_tac [("a","x")] (prem RS wf_induct) 1);
clasohm@923
    59
by (rtac (impI RS allI) 1);
clasohm@923
    60
by (etac tranclE 1);
clasohm@923
    61
by (fast_tac HOL_cs 1);
clasohm@923
    62
by (fast_tac HOL_cs 1);
clasohm@923
    63
qed "wf_trancl";
clasohm@923
    64
clasohm@923
    65
clasohm@923
    66
(** cut **)
clasohm@923
    67
clasohm@923
    68
(*This rewrite rule works upon formulae; thus it requires explicit use of
clasohm@923
    69
  H_cong to expose the equality*)
clasohm@923
    70
goalw WF.thy [cut_def]
clasohm@972
    71
    "(cut f r x = cut g r x) = (!y. (y,x):r --> f(y)=g(y))";
clasohm@1264
    72
by(simp_tac (!simpset addsimps [expand_fun_eq]
clasohm@1264
    73
                        setloop (split_tac [expand_if])) 1);
clasohm@923
    74
qed "cut_cut_eq";
clasohm@923
    75
clasohm@972
    76
goalw WF.thy [cut_def] "!!x. (x,a):r ==> (cut f r a)(x) = f(x)";
clasohm@1264
    77
by(Asm_simp_tac 1);
clasohm@923
    78
qed "cut_apply";
clasohm@923
    79
clasohm@923
    80
clasohm@923
    81
(*** is_recfun ***)
clasohm@923
    82
clasohm@923
    83
goalw WF.thy [is_recfun_def,cut_def]
clasohm@972
    84
    "!!f. [| is_recfun r a H f;  ~(b,a):r |] ==> f(b) = (@z.True)";
clasohm@923
    85
by (etac ssubst 1);
clasohm@1264
    86
by(Asm_simp_tac 1);
clasohm@923
    87
qed "is_recfun_undef";
clasohm@923
    88
clasohm@972
    89
(*eresolve_tac transD solves (a,b):r using transitivity AT MOST ONCE
clasohm@923
    90
  mp amd allE  instantiate induction hypotheses*)
clasohm@923
    91
fun indhyp_tac hyps =
clasohm@923
    92
    ares_tac (TrueI::hyps) ORELSE' 
clasohm@923
    93
    (cut_facts_tac hyps THEN'
clasohm@923
    94
       DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE'
clasohm@1465
    95
                        eresolve_tac [transD, mp, allE]));
clasohm@923
    96
clasohm@923
    97
(*** NOTE! some simplifications need a different finish_tac!! ***)
clasohm@923
    98
fun indhyp_tac hyps =
clasohm@923
    99
    resolve_tac (TrueI::refl::hyps) ORELSE' 
clasohm@923
   100
    (cut_facts_tac hyps THEN'
clasohm@923
   101
       DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE'
clasohm@1465
   102
                        eresolve_tac [transD, mp, allE]));
clasohm@1264
   103
val wf_super_ss = !simpset setsolver indhyp_tac;
clasohm@923
   104
clasohm@923
   105
val prems = goalw WF.thy [is_recfun_def,cut_def]
clasohm@923
   106
    "[| wf(r);  trans(r);  is_recfun r a H f;  is_recfun r b H g |] ==> \
clasohm@972
   107
    \ (x,a):r --> (x,b):r --> f(x)=g(x)";
clasohm@923
   108
by (cut_facts_tac prems 1);
clasohm@923
   109
by (etac wf_induct 1);
clasohm@923
   110
by (REPEAT (rtac impI 1 ORELSE etac ssubst 1));
clasohm@923
   111
by (asm_simp_tac (wf_super_ss addcongs [if_cong]) 1);
clasohm@923
   112
qed "is_recfun_equal_lemma";
clasohm@923
   113
bind_thm ("is_recfun_equal", (is_recfun_equal_lemma RS mp RS mp));
clasohm@923
   114
clasohm@923
   115
clasohm@923
   116
val prems as [wfr,transr,recfa,recgb,_] = goalw WF.thy [cut_def]
clasohm@923
   117
    "[| wf(r);  trans(r); \
clasohm@972
   118
\       is_recfun r a H f;  is_recfun r b H g;  (b,a):r |] ==> \
clasohm@923
   119
\    cut f r b = g";
clasohm@923
   120
val gundef = recgb RS is_recfun_undef
clasohm@923
   121
and fisg   = recgb RS (recfa RS (transr RS (wfr RS is_recfun_equal)));
clasohm@923
   122
by (cut_facts_tac prems 1);
clasohm@923
   123
by (rtac ext 1);
clasohm@923
   124
by (asm_simp_tac (wf_super_ss addsimps [gundef,fisg]
clasohm@923
   125
                              setloop (split_tac [expand_if])) 1);
clasohm@923
   126
qed "is_recfun_cut";
clasohm@923
   127
clasohm@923
   128
(*** Main Existence Lemma -- Basic Properties of the_recfun ***)
clasohm@923
   129
clasohm@923
   130
val prems = goalw WF.thy [the_recfun_def]
clasohm@923
   131
    "is_recfun r a H f ==> is_recfun r a H (the_recfun r a H)";
clasohm@923
   132
by (res_inst_tac [("P", "is_recfun r a H")] selectI 1);
clasohm@923
   133
by (resolve_tac prems 1);
clasohm@923
   134
qed "is_the_recfun";
clasohm@923
   135
clasohm@923
   136
val prems = goal WF.thy
clasohm@923
   137
    "[| wf(r);  trans(r) |] ==> is_recfun r a H (the_recfun r a H)";
clasohm@923
   138
by (cut_facts_tac prems 1);
clasohm@923
   139
by (wf_ind_tac "a" prems 1);
clasohm@923
   140
by (res_inst_tac [("f", "cut (%y. wftrec r y H) r a1")] is_the_recfun 1);
clasohm@923
   141
by (rewrite_goals_tac [is_recfun_def, wftrec_def]);
clasohm@923
   142
by (rtac (cut_cut_eq RS ssubst) 1);
clasohm@923
   143
(*Applying the substitution: must keep the quantified assumption!!*)
clasohm@923
   144
by (EVERY1 [strip_tac, rtac H_cong1, rtac allE, atac,
clasohm@923
   145
            etac (mp RS ssubst), atac]);
clasohm@923
   146
by (fold_tac [is_recfun_def]);
clasohm@923
   147
by (asm_simp_tac (wf_super_ss addsimps[cut_apply,is_recfun_cut,cut_cut_eq]) 1);
clasohm@923
   148
qed "unfold_the_recfun";
clasohm@923
   149
clasohm@923
   150
clasohm@923
   151
(*Beware incompleteness of unification!*)
clasohm@923
   152
val prems = goal WF.thy
clasohm@972
   153
    "[| wf(r);  trans(r);  (c,a):r;  (c,b):r |] \
clasohm@923
   154
\    ==> the_recfun r a H c = the_recfun r b H c";
clasohm@923
   155
by (DEPTH_SOLVE (ares_tac (prems@[is_recfun_equal,unfold_the_recfun]) 1));
clasohm@923
   156
qed "the_recfun_equal";
clasohm@923
   157
clasohm@923
   158
val prems = goal WF.thy
clasohm@972
   159
    "[| wf(r); trans(r); (b,a):r |] \
clasohm@923
   160
\    ==> cut (the_recfun r a H) r b = the_recfun r b H";
clasohm@923
   161
by (REPEAT (ares_tac (prems@[is_recfun_cut,unfold_the_recfun]) 1));
clasohm@923
   162
qed "the_recfun_cut";
clasohm@923
   163
clasohm@923
   164
(*** Unfolding wftrec ***)
clasohm@923
   165
clasohm@923
   166
goalw WF.thy [wftrec_def]
clasohm@923
   167
    "!!r. [| wf(r);  trans(r) |] ==> \
clasohm@923
   168
\    wftrec r a H = H a (cut (%x.wftrec r x H) r a)";
clasohm@923
   169
by (EVERY1 [stac (rewrite_rule [is_recfun_def] unfold_the_recfun),
clasohm@1465
   170
            REPEAT o atac, rtac H_cong1]);
clasohm@1264
   171
by (asm_simp_tac (!simpset addsimps [cut_cut_eq,the_recfun_cut]) 1);
clasohm@923
   172
qed "wftrec";
clasohm@923
   173
clasohm@923
   174
(*Unused but perhaps interesting*)
clasohm@923
   175
val prems = goal WF.thy
clasohm@923
   176
    "[| wf(r);  trans(r);  !!f x. H x (cut f r x) = H x f |] ==> \
clasohm@1465
   177
\               wftrec r a H = H a (%x.wftrec r x H)";
clasohm@923
   178
by (rtac (wftrec RS trans) 1);
clasohm@923
   179
by (REPEAT (resolve_tac prems 1));
clasohm@923
   180
qed "wftrec2";
clasohm@923
   181
clasohm@923
   182
(** Removal of the premise trans(r) **)
clasohm@923
   183
clasohm@923
   184
goalw WF.thy [wfrec_def]
clasohm@923
   185
    "!!r. wf(r) ==> wfrec r a H = H a (cut (%x.wfrec r x H) r a)";
clasohm@923
   186
by (etac (wf_trancl RS wftrec RS ssubst) 1);
clasohm@923
   187
by (rtac trans_trancl 1);
clasohm@923
   188
by (rtac (refl RS H_cong) 1);    (*expose the equality of cuts*)
clasohm@1264
   189
by (simp_tac (!simpset addsimps [cut_cut_eq, cut_apply, r_into_trancl]) 1);
clasohm@923
   190
qed "wfrec";
clasohm@923
   191
clasohm@923
   192
(*This form avoids giant explosions in proofs.  NOTE USE OF == *)
clasohm@923
   193
val rew::prems = goal WF.thy
clasohm@923
   194
    "[| !!x. f(x)==wfrec r x H;  wf(r) |] ==> f(a) = H a (cut (%x.f(x)) r a)";
clasohm@923
   195
by (rewtac rew);
clasohm@923
   196
by (REPEAT (resolve_tac (prems@[wfrec]) 1));
clasohm@923
   197
qed "def_wfrec";