src/Pure/drule.ML
author wenzelm
Tue Nov 17 14:05:47 1998 +0100 (1998-11-17)
changeset 5903 5d9beee36fbe
parent 5688 7f582495967c
child 6086 8cd4190e633a
permissions -rw-r--r--
export vars_of and friends;
open BasicDrule only;
wenzelm@252
     1
(*  Title:      Pure/drule.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@252
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
wenzelm@3766
     6
Derived rules and other operations on theorems.
clasohm@0
     7
*)
clasohm@0
     8
lcp@11
     9
infix 0 RS RSN RL RLN MRS MRL COMP;
clasohm@0
    10
wenzelm@5903
    11
signature BASIC_DRULE =
wenzelm@3766
    12
sig
wenzelm@4285
    13
  val dest_implies      : cterm -> cterm * cterm
wenzelm@4285
    14
  val skip_flexpairs	: cterm -> cterm
wenzelm@4285
    15
  val strip_imp_prems	: cterm -> cterm list
clasohm@1460
    16
  val cprems_of		: thm -> cterm list
wenzelm@4285
    17
  val read_insts	:
wenzelm@4285
    18
          Sign.sg -> (indexname -> typ option) * (indexname -> sort option)
wenzelm@4285
    19
                  -> (indexname -> typ option) * (indexname -> sort option)
wenzelm@4285
    20
                  -> string list -> (string*string)list
wenzelm@4285
    21
                  -> (indexname*ctyp)list * (cterm*cterm)list
wenzelm@4285
    22
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
clasohm@1460
    23
  val forall_intr_list	: cterm list -> thm -> thm
clasohm@1460
    24
  val forall_intr_frees	: thm -> thm
clasohm@1460
    25
  val forall_intr_vars	: thm -> thm
clasohm@1460
    26
  val forall_elim_list	: cterm list -> thm -> thm
clasohm@1460
    27
  val forall_elim_var	: int -> thm -> thm
clasohm@1460
    28
  val forall_elim_vars	: int -> thm -> thm
paulson@4610
    29
  val freeze_thaw	: thm -> thm * (thm -> thm)
clasohm@1460
    30
  val implies_elim_list	: thm -> thm list -> thm
clasohm@1460
    31
  val implies_intr_list	: cterm list -> thm -> thm
wenzelm@4285
    32
  val zero_var_indexes	: thm -> thm
wenzelm@4285
    33
  val standard		: thm -> thm
paulson@4610
    34
  val rotate_prems      : int -> thm -> thm
wenzelm@4285
    35
  val assume_ax		: theory -> string -> thm
wenzelm@4285
    36
  val RSN		: thm * (int * thm) -> thm
wenzelm@4285
    37
  val RS		: thm * thm -> thm
wenzelm@4285
    38
  val RLN		: thm list * (int * thm list) -> thm list
wenzelm@4285
    39
  val RL		: thm list * thm list -> thm list
wenzelm@4285
    40
  val MRS		: thm list * thm -> thm
clasohm@1460
    41
  val MRL		: thm list list * thm list -> thm list
wenzelm@4285
    42
  val compose		: thm * int * thm -> thm list
wenzelm@4285
    43
  val COMP		: thm * thm -> thm
clasohm@0
    44
  val read_instantiate_sg: Sign.sg -> (string*string)list -> thm -> thm
wenzelm@4285
    45
  val read_instantiate	: (string*string)list -> thm -> thm
wenzelm@4285
    46
  val cterm_instantiate	: (cterm*cterm)list -> thm -> thm
wenzelm@4285
    47
  val weak_eq_thm	: thm * thm -> bool
wenzelm@4285
    48
  val eq_thm_sg		: thm * thm -> bool
wenzelm@4285
    49
  val size_of_thm	: thm -> int
clasohm@1460
    50
  val reflexive_thm	: thm
wenzelm@4285
    51
  val symmetric_thm	: thm
wenzelm@4285
    52
  val transitive_thm	: thm
paulson@2004
    53
  val refl_implies      : thm
nipkow@4679
    54
  val symmetric_fun     : thm -> thm
wenzelm@3575
    55
  val rewrite_rule_aux	: (meta_simpset -> thm -> thm option) -> thm list -> thm -> thm
nipkow@4713
    56
  val rewrite_thm	: bool * bool * bool
nipkow@4713
    57
                          -> (meta_simpset -> thm -> thm option)
nipkow@4713
    58
                          -> meta_simpset -> thm -> thm
wenzelm@5079
    59
  val rewrite_cterm	: bool * bool * bool
wenzelm@5079
    60
                          -> (meta_simpset -> thm -> thm option)
wenzelm@5079
    61
                          -> meta_simpset -> cterm -> thm
wenzelm@4285
    62
  val rewrite_goals_rule_aux: (meta_simpset -> thm -> thm option) -> thm list -> thm -> thm
nipkow@4713
    63
  val rewrite_goal_rule	: bool* bool * bool
nipkow@4713
    64
                          -> (meta_simpset -> thm -> thm option)
nipkow@4713
    65
                          -> meta_simpset -> int -> thm -> thm
wenzelm@4285
    66
  val equal_abs_elim	: cterm  -> thm -> thm
wenzelm@4285
    67
  val equal_abs_elim_list: cterm list -> thm -> thm
wenzelm@4285
    68
  val flexpair_abs_elim_list: cterm list -> thm -> thm
wenzelm@4285
    69
  val asm_rl		: thm
wenzelm@4285
    70
  val cut_rl		: thm
wenzelm@4285
    71
  val revcut_rl		: thm
wenzelm@4285
    72
  val thin_rl		: thm
wenzelm@4285
    73
  val triv_forall_equality: thm
nipkow@1756
    74
  val swap_prems_rl     : thm
wenzelm@4285
    75
  val equal_intr_rule   : thm
wenzelm@5903
    76
  val instantiate'	: ctyp option list -> cterm option list -> thm -> thm
wenzelm@5903
    77
end;
wenzelm@5903
    78
wenzelm@5903
    79
signature DRULE =
wenzelm@5903
    80
sig
wenzelm@5903
    81
  include BASIC_DRULE
paulson@5311
    82
  val triv_goal		: thm
paulson@5311
    83
  val rev_triv_goal	: thm
paulson@5311
    84
  val mk_triv_goal      : cterm -> thm
wenzelm@5903
    85
  val tvars_of_terms	: term list -> (indexname * sort) list
wenzelm@5903
    86
  val vars_of_terms	: term list -> (indexname * typ) list
wenzelm@5903
    87
  val tvars_of		: thm -> (indexname * sort) list
wenzelm@5903
    88
  val vars_of		: thm -> (indexname * typ) list
wenzelm@5688
    89
  val unvarifyT		: thm -> thm
wenzelm@5688
    90
  val unvarify		: thm -> thm
wenzelm@3766
    91
end;
clasohm@0
    92
wenzelm@5903
    93
structure Drule: DRULE =
clasohm@0
    94
struct
clasohm@0
    95
wenzelm@3991
    96
lcp@708
    97
(** some cterm->cterm operations: much faster than calling cterm_of! **)
lcp@708
    98
paulson@2004
    99
(** SAME NAMES as in structure Logic: use compound identifiers! **)
paulson@2004
   100
clasohm@1703
   101
(*dest_implies for cterms. Note T=prop below*)
paulson@2004
   102
fun dest_implies ct =
paulson@2004
   103
    case term_of ct of 
paulson@2004
   104
	(Const("==>", _) $ _ $ _) => 
paulson@2004
   105
	    let val (ct1,ct2) = dest_comb ct
paulson@2004
   106
	    in  (#2 (dest_comb ct1), ct2)  end	     
paulson@2004
   107
      | _ => raise TERM ("dest_implies", [term_of ct]) ;
clasohm@1703
   108
clasohm@1703
   109
lcp@708
   110
(*Discard flexflex pairs; return a cterm*)
paulson@2004
   111
fun skip_flexpairs ct =
lcp@708
   112
    case term_of ct of
clasohm@1460
   113
	(Const("==>", _) $ (Const("=?=",_)$_$_) $ _) =>
paulson@2004
   114
	    skip_flexpairs (#2 (dest_implies ct))
lcp@708
   115
      | _ => ct;
lcp@708
   116
lcp@708
   117
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   118
fun strip_imp_prems ct =
paulson@2004
   119
    let val (cA,cB) = dest_implies ct
paulson@2004
   120
    in  cA :: strip_imp_prems cB  end
lcp@708
   121
    handle TERM _ => [];
lcp@708
   122
paulson@2004
   123
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   124
fun strip_imp_concl ct =
paulson@2004
   125
    case term_of ct of (Const("==>", _) $ _ $ _) => 
paulson@2004
   126
	strip_imp_concl (#2 (dest_comb ct))
paulson@2004
   127
  | _ => ct;
paulson@2004
   128
lcp@708
   129
(*The premises of a theorem, as a cterm list*)
paulson@2004
   130
val cprems_of = strip_imp_prems o skip_flexpairs o cprop_of;
lcp@708
   131
lcp@708
   132
lcp@229
   133
(** reading of instantiations **)
lcp@229
   134
lcp@229
   135
fun absent ixn =
lcp@229
   136
  error("No such variable in term: " ^ Syntax.string_of_vname ixn);
lcp@229
   137
lcp@229
   138
fun inst_failure ixn =
lcp@229
   139
  error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
lcp@229
   140
nipkow@4281
   141
fun read_insts sign (rtypes,rsorts) (types,sorts) used insts =
nipkow@4281
   142
let val {tsig,...} = Sign.rep_sg sign
nipkow@4281
   143
    fun split([],tvs,vs) = (tvs,vs)
wenzelm@4691
   144
      | split((sv,st)::l,tvs,vs) = (case Symbol.explode sv of
wenzelm@4691
   145
                  "'"::cs => split(l,(Syntax.indexname cs,st)::tvs,vs)
wenzelm@4691
   146
                | cs => split(l,tvs,(Syntax.indexname cs,st)::vs));
nipkow@4281
   147
    val (tvs,vs) = split(insts,[],[]);
nipkow@4281
   148
    fun readT((a,i),st) =
nipkow@4281
   149
        let val ixn = ("'" ^ a,i);
nipkow@4281
   150
            val S = case rsorts ixn of Some S => S | None => absent ixn;
nipkow@4281
   151
            val T = Sign.read_typ (sign,sorts) st;
nipkow@4281
   152
        in if Type.typ_instance(tsig,T,TVar(ixn,S)) then (ixn,T)
nipkow@4281
   153
           else inst_failure ixn
nipkow@4281
   154
        end
nipkow@4281
   155
    val tye = map readT tvs;
nipkow@4281
   156
    fun mkty(ixn,st) = (case rtypes ixn of
nipkow@4281
   157
                          Some T => (ixn,(st,typ_subst_TVars tye T))
nipkow@4281
   158
                        | None => absent ixn);
nipkow@4281
   159
    val ixnsTs = map mkty vs;
nipkow@4281
   160
    val ixns = map fst ixnsTs
nipkow@4281
   161
    and sTs  = map snd ixnsTs
nipkow@4281
   162
    val (cts,tye2) = read_def_cterms(sign,types,sorts) used false sTs;
nipkow@4281
   163
    fun mkcVar(ixn,T) =
nipkow@4281
   164
        let val U = typ_subst_TVars tye2 T
nipkow@4281
   165
        in cterm_of sign (Var(ixn,U)) end
nipkow@4281
   166
    val ixnTs = ListPair.zip(ixns, map snd sTs)
nipkow@4281
   167
in (map (fn (ixn,T) => (ixn,ctyp_of sign T)) (tye2 @ tye),
nipkow@4281
   168
    ListPair.zip(map mkcVar ixnTs,cts))
nipkow@4281
   169
end;
lcp@229
   170
lcp@229
   171
wenzelm@252
   172
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   173
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   174
     type variables) when reading another term.
clasohm@0
   175
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   176
***)
clasohm@0
   177
clasohm@0
   178
fun types_sorts thm =
clasohm@0
   179
    let val {prop,hyps,...} = rep_thm thm;
wenzelm@252
   180
        val big = list_comb(prop,hyps); (* bogus term! *)
wenzelm@252
   181
        val vars = map dest_Var (term_vars big);
wenzelm@252
   182
        val frees = map dest_Free (term_frees big);
wenzelm@252
   183
        val tvars = term_tvars big;
wenzelm@252
   184
        val tfrees = term_tfrees big;
wenzelm@252
   185
        fun typ(a,i) = if i<0 then assoc(frees,a) else assoc(vars,(a,i));
wenzelm@252
   186
        fun sort(a,i) = if i<0 then assoc(tfrees,a) else assoc(tvars,(a,i));
clasohm@0
   187
    in (typ,sort) end;
clasohm@0
   188
clasohm@0
   189
(** Standardization of rules **)
clasohm@0
   190
clasohm@0
   191
(*Generalization over a list of variables, IGNORING bad ones*)
clasohm@0
   192
fun forall_intr_list [] th = th
clasohm@0
   193
  | forall_intr_list (y::ys) th =
wenzelm@252
   194
        let val gth = forall_intr_list ys th
wenzelm@252
   195
        in  forall_intr y gth   handle THM _ =>  gth  end;
clasohm@0
   196
clasohm@0
   197
(*Generalization over all suitable Free variables*)
clasohm@0
   198
fun forall_intr_frees th =
clasohm@0
   199
    let val {prop,sign,...} = rep_thm th
clasohm@0
   200
    in  forall_intr_list
wenzelm@4440
   201
         (map (cterm_of sign) (sort (make_ord atless) (term_frees prop)))
clasohm@0
   202
         th
clasohm@0
   203
    end;
clasohm@0
   204
clasohm@0
   205
(*Replace outermost quantified variable by Var of given index.
clasohm@0
   206
    Could clash with Vars already present.*)
wenzelm@252
   207
fun forall_elim_var i th =
clasohm@0
   208
    let val {prop,sign,...} = rep_thm th
clasohm@0
   209
    in case prop of
wenzelm@252
   210
          Const("all",_) $ Abs(a,T,_) =>
wenzelm@252
   211
              forall_elim (cterm_of sign (Var((a,i), T)))  th
wenzelm@252
   212
        | _ => raise THM("forall_elim_var", i, [th])
clasohm@0
   213
    end;
clasohm@0
   214
clasohm@0
   215
(*Repeat forall_elim_var until all outer quantifiers are removed*)
wenzelm@252
   216
fun forall_elim_vars i th =
clasohm@0
   217
    forall_elim_vars i (forall_elim_var i th)
wenzelm@252
   218
        handle THM _ => th;
clasohm@0
   219
clasohm@0
   220
(*Specialization over a list of cterms*)
clasohm@0
   221
fun forall_elim_list cts th = foldr (uncurry forall_elim) (rev cts, th);
clasohm@0
   222
clasohm@0
   223
(* maps [A1,...,An], B   to   [| A1;...;An |] ==> B  *)
clasohm@0
   224
fun implies_intr_list cAs th = foldr (uncurry implies_intr) (cAs,th);
clasohm@0
   225
clasohm@0
   226
(* maps [| A1;...;An |] ==> B and [A1,...,An]   to   B *)
clasohm@0
   227
fun implies_elim_list impth ths = foldl (uncurry implies_elim) (impth,ths);
clasohm@0
   228
clasohm@0
   229
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@252
   230
fun zero_var_indexes th =
clasohm@0
   231
    let val {prop,sign,...} = rep_thm th;
clasohm@0
   232
        val vars = term_vars prop
clasohm@0
   233
        val bs = foldl add_new_id ([], map (fn Var((a,_),_)=>a) vars)
wenzelm@252
   234
        val inrs = add_term_tvars(prop,[]);
wenzelm@252
   235
        val nms' = rev(foldl add_new_id ([], map (#1 o #1) inrs));
paulson@2266
   236
        val tye = ListPair.map (fn ((v,rs),a) => (v, TVar((a,0),rs)))
paulson@2266
   237
	             (inrs, nms')
wenzelm@252
   238
        val ctye = map (fn (v,T) => (v,ctyp_of sign T)) tye;
wenzelm@252
   239
        fun varpairs([],[]) = []
wenzelm@252
   240
          | varpairs((var as Var(v,T)) :: vars, b::bs) =
wenzelm@252
   241
                let val T' = typ_subst_TVars tye T
wenzelm@252
   242
                in (cterm_of sign (Var(v,T')),
wenzelm@252
   243
                    cterm_of sign (Var((b,0),T'))) :: varpairs(vars,bs)
wenzelm@252
   244
                end
wenzelm@252
   245
          | varpairs _ = raise TERM("varpairs", []);
clasohm@0
   246
    in instantiate (ctye, varpairs(vars,rev bs)) th end;
clasohm@0
   247
clasohm@0
   248
clasohm@0
   249
(*Standard form of object-rule: no hypotheses, Frees, or outer quantifiers;
clasohm@0
   250
    all generality expressed by Vars having index 0.*)
clasohm@0
   251
fun standard th =
wenzelm@1218
   252
  let val {maxidx,...} = rep_thm th
wenzelm@1237
   253
  in
wenzelm@1218
   254
    th |> implies_intr_hyps
paulson@1412
   255
       |> forall_intr_frees |> forall_elim_vars (maxidx + 1)
wenzelm@1439
   256
       |> Thm.strip_shyps |> Thm.implies_intr_shyps
paulson@1412
   257
       |> zero_var_indexes |> Thm.varifyT |> Thm.compress
wenzelm@1218
   258
  end;
wenzelm@1218
   259
clasohm@0
   260
paulson@4610
   261
(*Convert all Vars in a theorem to Frees.  Also return a function for 
paulson@4610
   262
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@4610
   263
  Similar code in type/freeze_thaw*)
paulson@4610
   264
fun freeze_thaw th =
paulson@4610
   265
  let val fth = freezeT th
paulson@4610
   266
      val {prop,sign,...} = rep_thm fth
paulson@4610
   267
      val used = add_term_names (prop, [])
paulson@4610
   268
      and vars = term_vars prop
paulson@4610
   269
      fun newName (Var(ix,_), (pairs,used)) = 
paulson@4610
   270
	    let val v = variant used (string_of_indexname ix)
paulson@4610
   271
	    in  ((ix,v)::pairs, v::used)  end;
paulson@4610
   272
      val (alist, _) = foldr newName (vars, ([], used))
paulson@4610
   273
      fun mk_inst (Var(v,T)) = 
paulson@4610
   274
	  (cterm_of sign (Var(v,T)),
paulson@4610
   275
	   cterm_of sign (Free(the (assoc(alist,v)), T)))
paulson@4610
   276
      val insts = map mk_inst vars
paulson@4610
   277
      fun thaw th' = 
paulson@4610
   278
	  th' |> forall_intr_list (map #2 insts)
paulson@4610
   279
	      |> forall_elim_list (map #1 insts)
paulson@4610
   280
  in  (instantiate ([],insts) fth, thaw)  end;
paulson@4610
   281
paulson@4610
   282
paulson@4610
   283
(*Rotates a rule's premises to the left by k.  Does nothing if k=0 or
paulson@4610
   284
  if k equals the number of premises.  Useful, for instance, with etac.
paulson@4610
   285
  Similar to tactic/defer_tac*)
paulson@4610
   286
fun rotate_prems k rl = 
paulson@4610
   287
    let val (rl',thaw) = freeze_thaw rl
paulson@4610
   288
	val hyps = strip_imp_prems (adjust_maxidx (cprop_of rl'))
paulson@4610
   289
	val hyps' = List.drop(hyps, k)
paulson@4610
   290
    in  implies_elim_list rl' (map assume hyps)
paulson@4610
   291
        |> implies_intr_list (hyps' @ List.take(hyps, k))
paulson@4610
   292
        |> thaw |> varifyT
paulson@4610
   293
    end;
paulson@4610
   294
paulson@4610
   295
wenzelm@252
   296
(*Assume a new formula, read following the same conventions as axioms.
clasohm@0
   297
  Generalizes over Free variables,
clasohm@0
   298
  creates the assumption, and then strips quantifiers.
clasohm@0
   299
  Example is [| ALL x:?A. ?P(x) |] ==> [| ?P(?a) |]
wenzelm@252
   300
             [ !(A,P,a)[| ALL x:A. P(x) |] ==> [| P(a) |] ]    *)
clasohm@0
   301
fun assume_ax thy sP =
clasohm@0
   302
    let val sign = sign_of thy
paulson@4610
   303
        val prop = Logic.close_form (term_of (read_cterm sign (sP, propT)))
lcp@229
   304
    in forall_elim_vars 0 (assume (cterm_of sign prop))  end;
clasohm@0
   305
wenzelm@252
   306
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   307
fun tha RSN (i,thb) =
wenzelm@4270
   308
  case Seq.chop (2, biresolution false [(false,tha)] i thb) of
clasohm@0
   309
      ([th],_) => th
clasohm@0
   310
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   311
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   312
clasohm@0
   313
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   314
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   315
clasohm@0
   316
(*For joining lists of rules*)
wenzelm@252
   317
fun thas RLN (i,thbs) =
clasohm@0
   318
  let val resolve = biresolution false (map (pair false) thas) i
wenzelm@4270
   319
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
paulson@2672
   320
  in  List.concat (map resb thbs)  end;
clasohm@0
   321
clasohm@0
   322
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   323
lcp@11
   324
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   325
  makes proof trees*)
wenzelm@252
   326
fun rls MRS bottom_rl =
lcp@11
   327
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   328
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   329
  in  rs_aux 1 rls  end;
lcp@11
   330
lcp@11
   331
(*As above, but for rule lists*)
wenzelm@252
   332
fun rlss MRL bottom_rls =
lcp@11
   333
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   334
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   335
  in  rs_aux 1 rlss  end;
lcp@11
   336
wenzelm@252
   337
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   338
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   339
  ALWAYS deletes premise i *)
wenzelm@252
   340
fun compose(tha,i,thb) =
wenzelm@4270
   341
    Seq.list_of (bicompose false (false,tha,0) i thb);
clasohm@0
   342
clasohm@0
   343
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   344
fun tha COMP thb =
clasohm@0
   345
    case compose(tha,1,thb) of
wenzelm@252
   346
        [th] => th
clasohm@0
   347
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   348
clasohm@0
   349
(*Instantiate theorem th, reading instantiations under signature sg*)
clasohm@0
   350
fun read_instantiate_sg sg sinsts th =
clasohm@0
   351
    let val ts = types_sorts th;
nipkow@952
   352
        val used = add_term_tvarnames(#prop(rep_thm th),[]);
nipkow@952
   353
    in  instantiate (read_insts sg ts ts used sinsts) th  end;
clasohm@0
   354
clasohm@0
   355
(*Instantiate theorem th, reading instantiations under theory of th*)
clasohm@0
   356
fun read_instantiate sinsts th =
clasohm@0
   357
    read_instantiate_sg (#sign (rep_thm th)) sinsts th;
clasohm@0
   358
clasohm@0
   359
clasohm@0
   360
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
clasohm@0
   361
  Instantiates distinct Vars by terms, inferring type instantiations. *)
clasohm@0
   362
local
nipkow@1435
   363
  fun add_types ((ct,cu), (sign,tye,maxidx)) =
paulson@2152
   364
    let val {sign=signt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
paulson@2152
   365
        and {sign=signu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
paulson@2152
   366
        val maxi = Int.max(maxidx, Int.max(maxt, maxu));
clasohm@0
   367
        val sign' = Sign.merge(sign, Sign.merge(signt, signu))
nipkow@1435
   368
        val (tye',maxi') = Type.unify (#tsig(Sign.rep_sg sign')) maxi tye (T,U)
wenzelm@252
   369
          handle Type.TUNIFY => raise TYPE("add_types", [T,U], [t,u])
nipkow@1435
   370
    in  (sign', tye', maxi')  end;
clasohm@0
   371
in
wenzelm@252
   372
fun cterm_instantiate ctpairs0 th =
nipkow@1435
   373
  let val (sign,tye,_) = foldr add_types (ctpairs0, (#sign(rep_thm th),[],0))
clasohm@0
   374
      val tsig = #tsig(Sign.rep_sg sign);
clasohm@0
   375
      fun instT(ct,cu) = let val inst = subst_TVars tye
wenzelm@252
   376
                         in (cterm_fun inst ct, cterm_fun inst cu) end
lcp@229
   377
      fun ctyp2 (ix,T) = (ix, ctyp_of sign T)
clasohm@0
   378
  in  instantiate (map ctyp2 tye, map instT ctpairs0) th  end
wenzelm@252
   379
  handle TERM _ =>
clasohm@0
   380
           raise THM("cterm_instantiate: incompatible signatures",0,[th])
wenzelm@4057
   381
       | TYPE (msg, _, _) => raise THM("cterm_instantiate: " ^ msg, 0, [th])
clasohm@0
   382
end;
clasohm@0
   383
clasohm@0
   384
wenzelm@4016
   385
(** theorem equality **)
clasohm@0
   386
clasohm@0
   387
(*Do the two theorems have the same signature?*)
wenzelm@252
   388
fun eq_thm_sg (th1,th2) = Sign.eq_sg(#sign(rep_thm th1), #sign(rep_thm th2));
clasohm@0
   389
clasohm@0
   390
(*Useful "distance" function for BEST_FIRST*)
clasohm@0
   391
val size_of_thm = size_of_term o #prop o rep_thm;
clasohm@0
   392
clasohm@0
   393
lcp@1194
   394
(** Mark Staples's weaker version of eq_thm: ignores variable renaming and
lcp@1194
   395
    (some) type variable renaming **)
lcp@1194
   396
lcp@1194
   397
 (* Can't use term_vars, because it sorts the resulting list of variable names.
lcp@1194
   398
    We instead need the unique list noramlised by the order of appearance
lcp@1194
   399
    in the term. *)
lcp@1194
   400
fun term_vars' (t as Var(v,T)) = [t]
lcp@1194
   401
  | term_vars' (Abs(_,_,b)) = term_vars' b
lcp@1194
   402
  | term_vars' (f$a) = (term_vars' f) @ (term_vars' a)
lcp@1194
   403
  | term_vars' _ = [];
lcp@1194
   404
lcp@1194
   405
fun forall_intr_vars th =
lcp@1194
   406
  let val {prop,sign,...} = rep_thm th;
lcp@1194
   407
      val vars = distinct (term_vars' prop);
lcp@1194
   408
  in forall_intr_list (map (cterm_of sign) vars) th end;
lcp@1194
   409
wenzelm@1237
   410
fun weak_eq_thm (tha,thb) =
lcp@1194
   411
    eq_thm(forall_intr_vars (freezeT tha), forall_intr_vars (freezeT thb));
lcp@1194
   412
lcp@1194
   413
lcp@1194
   414
clasohm@0
   415
(*** Meta-Rewriting Rules ***)
clasohm@0
   416
paulson@4610
   417
val proto_sign = sign_of ProtoPure.thy;
paulson@4610
   418
paulson@4610
   419
fun read_prop s = read_cterm proto_sign (s, propT);
paulson@4610
   420
wenzelm@4016
   421
fun store_thm name thm = PureThy.smart_store_thm (name, standard thm);
wenzelm@4016
   422
clasohm@0
   423
val reflexive_thm =
paulson@4610
   424
  let val cx = cterm_of proto_sign (Var(("x",0),TVar(("'a",0),logicS)))
wenzelm@4016
   425
  in store_thm "reflexive" (Thm.reflexive cx) end;
clasohm@0
   426
clasohm@0
   427
val symmetric_thm =
paulson@4610
   428
  let val xy = read_prop "x::'a::logic == y"
paulson@4610
   429
  in store_thm "symmetric" 
paulson@4610
   430
      (Thm.implies_intr_hyps(Thm.symmetric(Thm.assume xy)))
paulson@4610
   431
   end;
clasohm@0
   432
clasohm@0
   433
val transitive_thm =
paulson@4610
   434
  let val xy = read_prop "x::'a::logic == y"
paulson@4610
   435
      val yz = read_prop "y::'a::logic == z"
clasohm@0
   436
      val xythm = Thm.assume xy and yzthm = Thm.assume yz
paulson@4610
   437
  in store_thm "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm))
paulson@4610
   438
  end;
clasohm@0
   439
nipkow@4679
   440
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   441
lcp@229
   442
(** Below, a "conversion" has type cterm -> thm **)
lcp@229
   443
paulson@4610
   444
val refl_implies = reflexive (cterm_of proto_sign implies);
clasohm@0
   445
clasohm@0
   446
(*In [A1,...,An]==>B, rewrite the selected A's only -- for rewrite_goals_tac*)
nipkow@214
   447
(*Do not rewrite flex-flex pairs*)
wenzelm@252
   448
fun goals_conv pred cv =
lcp@229
   449
  let fun gconv i ct =
paulson@2004
   450
        let val (A,B) = dest_implies ct
lcp@229
   451
            val (thA,j) = case term_of A of
lcp@229
   452
                  Const("=?=",_)$_$_ => (reflexive A, i)
lcp@229
   453
                | _ => (if pred i then cv A else reflexive A, i+1)
paulson@2004
   454
        in  combination (combination refl_implies thA) (gconv j B) end
lcp@229
   455
        handle TERM _ => reflexive ct
clasohm@0
   456
  in gconv 1 end;
clasohm@0
   457
clasohm@0
   458
(*Use a conversion to transform a theorem*)
lcp@229
   459
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
clasohm@0
   460
clasohm@0
   461
(*rewriting conversion*)
lcp@229
   462
fun rew_conv mode prover mss = rewrite_cterm mode mss prover;
clasohm@0
   463
clasohm@0
   464
(*Rewrite a theorem*)
wenzelm@3575
   465
fun rewrite_rule_aux _ []   th = th
wenzelm@3575
   466
  | rewrite_rule_aux prover thms th =
nipkow@4713
   467
      fconv_rule (rew_conv (true,false,false) prover (Thm.mss_of thms)) th;
clasohm@0
   468
wenzelm@3555
   469
fun rewrite_thm mode prover mss = fconv_rule (rew_conv mode prover mss);
wenzelm@5079
   470
fun rewrite_cterm mode prover mss = Thm.rewrite_cterm mode mss prover;
wenzelm@3555
   471
clasohm@0
   472
(*Rewrite the subgoals of a proof state (represented by a theorem) *)
wenzelm@3575
   473
fun rewrite_goals_rule_aux _ []   th = th
wenzelm@3575
   474
  | rewrite_goals_rule_aux prover thms th =
nipkow@4713
   475
      fconv_rule (goals_conv (K true) (rew_conv (true, true, false) prover
wenzelm@3575
   476
        (Thm.mss_of thms))) th;
clasohm@0
   477
clasohm@0
   478
(*Rewrite the subgoal of a proof state (represented by a theorem) *)
nipkow@214
   479
fun rewrite_goal_rule mode prover mss i thm =
nipkow@214
   480
  if 0 < i  andalso  i <= nprems_of thm
nipkow@214
   481
  then fconv_rule (goals_conv (fn j => j=i) (rew_conv mode prover mss)) thm
nipkow@214
   482
  else raise THM("rewrite_goal_rule",i,[thm]);
clasohm@0
   483
clasohm@0
   484
clasohm@0
   485
(** Derived rules mainly for METAHYPS **)
clasohm@0
   486
clasohm@0
   487
(*Given the term "a", takes (%x.t)==(%x.u) to t[a/x]==u[a/x]*)
clasohm@0
   488
fun equal_abs_elim ca eqth =
lcp@229
   489
  let val {sign=signa, t=a, ...} = rep_cterm ca
clasohm@0
   490
      and combth = combination eqth (reflexive ca)
clasohm@0
   491
      val {sign,prop,...} = rep_thm eqth
clasohm@0
   492
      val (abst,absu) = Logic.dest_equals prop
lcp@229
   493
      val cterm = cterm_of (Sign.merge (sign,signa))
clasohm@0
   494
  in  transitive (symmetric (beta_conversion (cterm (abst$a))))
clasohm@0
   495
           (transitive combth (beta_conversion (cterm (absu$a))))
clasohm@0
   496
  end
clasohm@0
   497
  handle THM _ => raise THM("equal_abs_elim", 0, [eqth]);
clasohm@0
   498
clasohm@0
   499
(*Calling equal_abs_elim with multiple terms*)
clasohm@0
   500
fun equal_abs_elim_list cts th = foldr (uncurry equal_abs_elim) (rev cts, th);
clasohm@0
   501
clasohm@0
   502
local
clasohm@0
   503
  val alpha = TVar(("'a",0), [])     (*  type ?'a::{}  *)
clasohm@0
   504
  fun err th = raise THM("flexpair_inst: ", 0, [th])
clasohm@0
   505
  fun flexpair_inst def th =
clasohm@0
   506
    let val {prop = Const _ $ t $ u,  sign,...} = rep_thm th
wenzelm@252
   507
        val cterm = cterm_of sign
wenzelm@252
   508
        fun cvar a = cterm(Var((a,0),alpha))
wenzelm@252
   509
        val def' = cterm_instantiate [(cvar"t", cterm t), (cvar"u", cterm u)]
wenzelm@252
   510
                   def
clasohm@0
   511
    in  equal_elim def' th
clasohm@0
   512
    end
clasohm@0
   513
    handle THM _ => err th | bind => err th
clasohm@0
   514
in
wenzelm@3991
   515
val flexpair_intr = flexpair_inst (symmetric ProtoPure.flexpair_def)
wenzelm@3991
   516
and flexpair_elim = flexpair_inst ProtoPure.flexpair_def
clasohm@0
   517
end;
clasohm@0
   518
clasohm@0
   519
(*Version for flexflex pairs -- this supports lifting.*)
wenzelm@252
   520
fun flexpair_abs_elim_list cts =
clasohm@0
   521
    flexpair_intr o equal_abs_elim_list cts o flexpair_elim;
clasohm@0
   522
clasohm@0
   523
clasohm@0
   524
(*** Some useful meta-theorems ***)
clasohm@0
   525
clasohm@0
   526
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@4016
   527
val asm_rl =
paulson@4610
   528
  store_thm "asm_rl" (trivial(read_prop "PROP ?psi"));
clasohm@0
   529
clasohm@0
   530
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   531
val cut_rl =
wenzelm@4016
   532
  store_thm "cut_rl"
paulson@4610
   533
    (trivial(read_prop "PROP ?psi ==> PROP ?theta"));
clasohm@0
   534
wenzelm@252
   535
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   536
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   537
val revcut_rl =
paulson@4610
   538
  let val V = read_prop "PROP V"
paulson@4610
   539
      and VW = read_prop "PROP V ==> PROP W";
wenzelm@4016
   540
  in
wenzelm@4016
   541
    store_thm "revcut_rl"
wenzelm@4016
   542
      (implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
clasohm@0
   543
  end;
clasohm@0
   544
lcp@668
   545
(*for deleting an unwanted assumption*)
lcp@668
   546
val thin_rl =
paulson@4610
   547
  let val V = read_prop "PROP V"
paulson@4610
   548
      and W = read_prop "PROP W";
wenzelm@4016
   549
  in  store_thm "thin_rl" (implies_intr V (implies_intr W (assume W)))
lcp@668
   550
  end;
lcp@668
   551
clasohm@0
   552
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   553
val triv_forall_equality =
paulson@4610
   554
  let val V  = read_prop "PROP V"
paulson@4610
   555
      and QV = read_prop "!!x::'a. PROP V"
paulson@4610
   556
      and x  = read_cterm proto_sign ("x", TFree("'a",logicS));
wenzelm@4016
   557
  in
wenzelm@4016
   558
    store_thm "triv_forall_equality"
wenzelm@4016
   559
      (equal_intr (implies_intr QV (forall_elim x (assume QV)))
wenzelm@4016
   560
        (implies_intr V  (forall_intr x (assume V))))
clasohm@0
   561
  end;
clasohm@0
   562
nipkow@1756
   563
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   564
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   565
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   566
*)
nipkow@1756
   567
val swap_prems_rl =
paulson@4610
   568
  let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
nipkow@1756
   569
      val major = assume cmajor;
paulson@4610
   570
      val cminor1 = read_prop "PROP PhiA";
nipkow@1756
   571
      val minor1 = assume cminor1;
paulson@4610
   572
      val cminor2 = read_prop "PROP PhiB";
nipkow@1756
   573
      val minor2 = assume cminor2;
wenzelm@4016
   574
  in store_thm "swap_prems_rl"
nipkow@1756
   575
       (implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
nipkow@1756
   576
         (implies_elim (implies_elim major minor1) minor2))))
nipkow@1756
   577
  end;
nipkow@1756
   578
nipkow@3653
   579
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   580
   ==> PROP ?phi == PROP ?psi
paulson@4610
   581
   Introduction rule for == as a meta-theorem.  
nipkow@3653
   582
*)
nipkow@3653
   583
val equal_intr_rule =
paulson@4610
   584
  let val PQ = read_prop "PROP phi ==> PROP psi"
paulson@4610
   585
      and QP = read_prop "PROP psi ==> PROP phi"
wenzelm@4016
   586
  in
wenzelm@4016
   587
    store_thm "equal_intr_rule"
wenzelm@4016
   588
      (implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
nipkow@3653
   589
  end;
nipkow@3653
   590
wenzelm@4285
   591
wenzelm@4789
   592
(* GOAL (PROP A) <==> PROP A *)
wenzelm@4789
   593
wenzelm@4789
   594
local
wenzelm@4789
   595
  val A = read_prop "PROP A";
wenzelm@4789
   596
  val G = read_prop "GOAL (PROP A)";
wenzelm@4789
   597
  val (G_def, _) = freeze_thaw ProtoPure.Goal_def;
wenzelm@4789
   598
in
wenzelm@4789
   599
  val triv_goal = store_thm "triv_goal" (Thm.equal_elim (Thm.symmetric G_def) (Thm.assume A));
wenzelm@4789
   600
  val rev_triv_goal = store_thm "rev_triv_goal" (Thm.equal_elim G_def (Thm.assume G));
wenzelm@4789
   601
end;
wenzelm@4789
   602
wenzelm@4789
   603
wenzelm@4285
   604
wenzelm@5688
   605
(** variations on instantiate **)
wenzelm@4285
   606
wenzelm@4285
   607
(* collect vars *)
wenzelm@4285
   608
wenzelm@4285
   609
val add_tvarsT = foldl_atyps (fn (vs, TVar v) => v ins vs | (vs, _) => vs);
wenzelm@4285
   610
val add_tvars = foldl_types add_tvarsT;
wenzelm@4285
   611
val add_vars = foldl_aterms (fn (vs, Var v) => v ins vs | (vs, _) => vs);
wenzelm@4285
   612
wenzelm@5903
   613
fun tvars_of_terms ts = rev (foldl add_tvars ([], ts));
wenzelm@5903
   614
fun vars_of_terms ts = rev (foldl add_vars ([], ts));
wenzelm@5903
   615
wenzelm@5903
   616
fun tvars_of thm = tvars_of_terms [#prop (Thm.rep_thm thm)];
wenzelm@5903
   617
fun vars_of thm = vars_of_terms [#prop (Thm.rep_thm thm)];
wenzelm@4285
   618
wenzelm@4285
   619
wenzelm@4285
   620
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
   621
wenzelm@4285
   622
fun instantiate' cTs cts thm =
wenzelm@4285
   623
  let
wenzelm@4285
   624
    fun err msg =
wenzelm@4285
   625
      raise TYPE ("instantiate': " ^ msg,
wenzelm@4285
   626
        mapfilter (apsome Thm.typ_of) cTs,
wenzelm@4285
   627
        mapfilter (apsome Thm.term_of) cts);
wenzelm@4285
   628
wenzelm@4285
   629
    fun inst_of (v, ct) =
wenzelm@4285
   630
      (Thm.cterm_of (#sign (Thm.rep_cterm ct)) (Var v), ct)
wenzelm@4285
   631
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
   632
wenzelm@4285
   633
    fun zip_vars _ [] = []
wenzelm@4285
   634
      | zip_vars (_ :: vs) (None :: opt_ts) = zip_vars vs opt_ts
wenzelm@4285
   635
      | zip_vars (v :: vs) (Some t :: opt_ts) = (v, t) :: zip_vars vs opt_ts
wenzelm@4285
   636
      | zip_vars [] _ = err "more instantiations than variables in thm";
wenzelm@4285
   637
wenzelm@4285
   638
    (*instantiate types first!*)
wenzelm@4285
   639
    val thm' =
wenzelm@4285
   640
      if forall is_none cTs then thm
wenzelm@4285
   641
      else Thm.instantiate (zip_vars (map fst (tvars_of thm)) cTs, []) thm;
wenzelm@4285
   642
    in
wenzelm@4285
   643
      if forall is_none cts then thm'
wenzelm@4285
   644
      else Thm.instantiate ([], map inst_of (zip_vars (vars_of thm') cts)) thm'
wenzelm@4285
   645
    end;
wenzelm@4285
   646
wenzelm@4285
   647
wenzelm@5688
   648
(* unvarify(T) *)
wenzelm@5688
   649
wenzelm@5688
   650
(*assume thm in standard form, i.e. no frees, 0 var indexes*)
wenzelm@5688
   651
wenzelm@5688
   652
fun unvarifyT thm =
wenzelm@5688
   653
  let
wenzelm@5688
   654
    val cT = Thm.ctyp_of (Thm.sign_of_thm thm);
wenzelm@5688
   655
    val tfrees = map (fn ((x, _), S) => Some (cT (TFree (x, S)))) (tvars_of thm);
wenzelm@5688
   656
  in instantiate' tfrees [] thm end;
wenzelm@5688
   657
wenzelm@5688
   658
fun unvarify raw_thm =
wenzelm@5688
   659
  let
wenzelm@5688
   660
    val thm = unvarifyT raw_thm;
wenzelm@5688
   661
    val ct = Thm.cterm_of (Thm.sign_of_thm thm);
wenzelm@5688
   662
    val frees = map (fn ((x, _), T) => Some (ct (Free (x, T)))) (vars_of thm);
wenzelm@5688
   663
  in instantiate' [] frees thm end;
wenzelm@5688
   664
wenzelm@5688
   665
wenzelm@5688
   666
(* mk_triv_goal *)
wenzelm@5688
   667
wenzelm@5688
   668
(*make an initial proof state, "PROP A ==> (PROP A)" *)
paulson@5311
   669
fun mk_triv_goal ct = instantiate' [] [Some ct] triv_goal;
paulson@5311
   670
wenzelm@5688
   671
clasohm@0
   672
end;
wenzelm@252
   673
wenzelm@5903
   674
wenzelm@5903
   675
structure BasicDrule: BASIC_DRULE = Drule;
wenzelm@5903
   676
open BasicDrule;