src/HOLCF/Pcpodef.thy
author haftmann
Tue Sep 02 12:07:34 2008 +0200 (2008-09-02)
changeset 28073 5e9f00f4f209
parent 27296 eec7a1889ca5
child 29138 661a8db7e647
permissions -rw-r--r--
adapted to class instantiation compliance
huffman@16697
     1
(*  Title:      HOLCF/Pcpodef.thy
huffman@16697
     2
    ID:         $Id$
huffman@16697
     3
    Author:     Brian Huffman
huffman@16697
     4
*)
huffman@16697
     5
huffman@16697
     6
header {* Subtypes of pcpos *}
huffman@16697
     7
huffman@16697
     8
theory Pcpodef
huffman@16697
     9
imports Adm
wenzelm@23152
    10
uses ("Tools/pcpodef_package.ML")
huffman@16697
    11
begin
huffman@16697
    12
huffman@16697
    13
subsection {* Proving a subtype is a partial order *}
huffman@16697
    14
huffman@16697
    15
text {*
huffman@16697
    16
  A subtype of a partial order is itself a partial order,
huffman@16697
    17
  if the ordering is defined in the standard way.
huffman@16697
    18
*}
huffman@16697
    19
haftmann@28073
    20
setup {* Sign.add_const_constraint (@{const_name Porder.sq_le}, NONE) *}
haftmann@28073
    21
huffman@16697
    22
theorem typedef_po:
haftmann@28073
    23
  fixes Abs :: "'a::po \<Rightarrow> 'b::type"
huffman@16697
    24
  assumes type: "type_definition Rep Abs A"
huffman@16697
    25
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
huffman@16697
    26
  shows "OFCLASS('b, po_class)"
huffman@16697
    27
 apply (intro_classes, unfold less)
huffman@16697
    28
   apply (rule refl_less)
huffman@26420
    29
  apply (erule (1) trans_less)
huffman@26420
    30
 apply (rule type_definition.Rep_inject [OF type, THEN iffD1])
huffman@26420
    31
 apply (erule (1) antisym_less)
huffman@16697
    32
done
huffman@16697
    33
haftmann@28073
    34
setup {* Sign.add_const_constraint (@{const_name Porder.sq_le},
haftmann@28073
    35
  SOME @{typ "'a::sq_ord \<Rightarrow> 'a::sq_ord \<Rightarrow> bool"}) *}
haftmann@28073
    36
huffman@25827
    37
subsection {* Proving a subtype is finite *}
huffman@25827
    38
huffman@27296
    39
lemma typedef_finite_UNIV:
huffman@27296
    40
  fixes Abs :: "'a::type \<Rightarrow> 'b::type"
huffman@27296
    41
  assumes type: "type_definition Rep Abs A"
huffman@27296
    42
  shows "finite A \<Longrightarrow> finite (UNIV :: 'b set)"
huffman@25827
    43
proof -
huffman@25827
    44
  assume "finite A"
huffman@25827
    45
  hence "finite (Abs ` A)" by (rule finite_imageI)
huffman@27296
    46
  thus "finite (UNIV :: 'b set)"
huffman@27296
    47
    by (simp only: type_definition.Abs_image [OF type])
huffman@25827
    48
qed
huffman@25827
    49
huffman@25827
    50
theorem typedef_finite_po:
huffman@25827
    51
  fixes Abs :: "'a::finite_po \<Rightarrow> 'b::po"
huffman@25827
    52
  assumes type: "type_definition Rep Abs A"
huffman@25827
    53
  shows "OFCLASS('b, finite_po_class)"
huffman@25827
    54
 apply (intro_classes)
huffman@27296
    55
 apply (rule typedef_finite_UNIV [OF type])
huffman@25827
    56
 apply (rule finite)
huffman@25827
    57
done
huffman@25827
    58
huffman@17812
    59
subsection {* Proving a subtype is chain-finite *}
huffman@17812
    60
huffman@17812
    61
lemma monofun_Rep:
huffman@17812
    62
  assumes less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
huffman@17812
    63
  shows "monofun Rep"
huffman@17812
    64
by (rule monofunI, unfold less)
huffman@17812
    65
huffman@17812
    66
lemmas ch2ch_Rep = ch2ch_monofun [OF monofun_Rep]
huffman@17812
    67
lemmas ub2ub_Rep = ub2ub_monofun [OF monofun_Rep]
huffman@17812
    68
huffman@17812
    69
theorem typedef_chfin:
huffman@17812
    70
  fixes Abs :: "'a::chfin \<Rightarrow> 'b::po"
huffman@17812
    71
  assumes type: "type_definition Rep Abs A"
huffman@17812
    72
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
huffman@17812
    73
  shows "OFCLASS('b, chfin_class)"
huffman@25921
    74
 apply intro_classes
huffman@17812
    75
 apply (drule ch2ch_Rep [OF less])
huffman@25921
    76
 apply (drule chfin)
huffman@17812
    77
 apply (unfold max_in_chain_def)
huffman@17812
    78
 apply (simp add: type_definition.Rep_inject [OF type])
huffman@17812
    79
done
huffman@17812
    80
huffman@16697
    81
subsection {* Proving a subtype is complete *}
huffman@16697
    82
huffman@16697
    83
text {*
huffman@16697
    84
  A subtype of a cpo is itself a cpo if the ordering is
huffman@16697
    85
  defined in the standard way, and the defining subset
huffman@16697
    86
  is closed with respect to limits of chains.  A set is
huffman@16697
    87
  closed if and only if membership in the set is an
huffman@16697
    88
  admissible predicate.
huffman@16697
    89
*}
huffman@16697
    90
huffman@16918
    91
lemma Abs_inverse_lub_Rep:
huffman@16697
    92
  fixes Abs :: "'a::cpo \<Rightarrow> 'b::po"
huffman@16697
    93
  assumes type: "type_definition Rep Abs A"
huffman@16697
    94
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
huffman@16697
    95
    and adm:  "adm (\<lambda>x. x \<in> A)"
huffman@16918
    96
  shows "chain S \<Longrightarrow> Rep (Abs (\<Squnion>i. Rep (S i))) = (\<Squnion>i. Rep (S i))"
huffman@16918
    97
 apply (rule type_definition.Abs_inverse [OF type])
huffman@25925
    98
 apply (erule admD [OF adm ch2ch_Rep [OF less]])
huffman@16697
    99
 apply (rule type_definition.Rep [OF type])
huffman@16697
   100
done
huffman@16697
   101
huffman@16918
   102
theorem typedef_lub:
huffman@16697
   103
  fixes Abs :: "'a::cpo \<Rightarrow> 'b::po"
huffman@16697
   104
  assumes type: "type_definition Rep Abs A"
huffman@16697
   105
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
huffman@16697
   106
    and adm: "adm (\<lambda>x. x \<in> A)"
huffman@16918
   107
  shows "chain S \<Longrightarrow> range S <<| Abs (\<Squnion>i. Rep (S i))"
huffman@16918
   108
 apply (frule ch2ch_Rep [OF less])
huffman@16697
   109
 apply (rule is_lubI)
huffman@16697
   110
  apply (rule ub_rangeI)
huffman@16918
   111
  apply (simp only: less Abs_inverse_lub_Rep [OF type less adm])
huffman@16918
   112
  apply (erule is_ub_thelub)
huffman@16918
   113
 apply (simp only: less Abs_inverse_lub_Rep [OF type less adm])
huffman@16918
   114
 apply (erule is_lub_thelub)
huffman@16918
   115
 apply (erule ub2ub_Rep [OF less])
huffman@16697
   116
done
huffman@16697
   117
huffman@16918
   118
lemmas typedef_thelub = typedef_lub [THEN thelubI, standard]
huffman@16918
   119
huffman@16697
   120
theorem typedef_cpo:
huffman@16697
   121
  fixes Abs :: "'a::cpo \<Rightarrow> 'b::po"
huffman@16697
   122
  assumes type: "type_definition Rep Abs A"
huffman@16697
   123
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
huffman@16697
   124
    and adm: "adm (\<lambda>x. x \<in> A)"
huffman@16697
   125
  shows "OFCLASS('b, cpo_class)"
huffman@16918
   126
proof
huffman@16918
   127
  fix S::"nat \<Rightarrow> 'b" assume "chain S"
huffman@16918
   128
  hence "range S <<| Abs (\<Squnion>i. Rep (S i))"
huffman@16918
   129
    by (rule typedef_lub [OF type less adm])
huffman@16918
   130
  thus "\<exists>x. range S <<| x" ..
huffman@16918
   131
qed
huffman@16697
   132
huffman@16697
   133
subsubsection {* Continuity of @{term Rep} and @{term Abs} *}
huffman@16697
   134
huffman@16697
   135
text {* For any sub-cpo, the @{term Rep} function is continuous. *}
huffman@16697
   136
huffman@16697
   137
theorem typedef_cont_Rep:
huffman@16697
   138
  fixes Abs :: "'a::cpo \<Rightarrow> 'b::cpo"
huffman@16697
   139
  assumes type: "type_definition Rep Abs A"
huffman@16697
   140
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
huffman@16697
   141
    and adm: "adm (\<lambda>x. x \<in> A)"
huffman@16697
   142
  shows "cont Rep"
huffman@16697
   143
 apply (rule contI)
huffman@16918
   144
 apply (simp only: typedef_thelub [OF type less adm])
huffman@16918
   145
 apply (simp only: Abs_inverse_lub_Rep [OF type less adm])
huffman@26027
   146
 apply (rule cpo_lubI)
huffman@16918
   147
 apply (erule ch2ch_Rep [OF less])
huffman@16697
   148
done
huffman@16697
   149
huffman@16697
   150
text {*
huffman@16697
   151
  For a sub-cpo, we can make the @{term Abs} function continuous
huffman@16697
   152
  only if we restrict its domain to the defining subset by
huffman@16697
   153
  composing it with another continuous function.
huffman@16697
   154
*}
huffman@16697
   155
huffman@16918
   156
theorem typedef_is_lubI:
huffman@16918
   157
  assumes less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
huffman@16918
   158
  shows "range (\<lambda>i. Rep (S i)) <<| Rep x \<Longrightarrow> range S <<| x"
huffman@16918
   159
 apply (rule is_lubI)
huffman@16918
   160
  apply (rule ub_rangeI)
huffman@16918
   161
  apply (subst less)
huffman@16918
   162
  apply (erule is_ub_lub)
huffman@16918
   163
 apply (subst less)
huffman@16918
   164
 apply (erule is_lub_lub)
huffman@16918
   165
 apply (erule ub2ub_Rep [OF less])
huffman@16918
   166
done
huffman@16918
   167
huffman@16697
   168
theorem typedef_cont_Abs:
huffman@16697
   169
  fixes Abs :: "'a::cpo \<Rightarrow> 'b::cpo"
huffman@16697
   170
  fixes f :: "'c::cpo \<Rightarrow> 'a::cpo"
huffman@16697
   171
  assumes type: "type_definition Rep Abs A"
huffman@16697
   172
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
huffman@16918
   173
    and adm: "adm (\<lambda>x. x \<in> A)" (* not used *)
huffman@16697
   174
    and f_in_A: "\<And>x. f x \<in> A"
huffman@16697
   175
    and cont_f: "cont f"
huffman@16697
   176
  shows "cont (\<lambda>x. Abs (f x))"
huffman@16697
   177
 apply (rule contI)
huffman@16918
   178
 apply (rule typedef_is_lubI [OF less])
huffman@16918
   179
 apply (simp only: type_definition.Abs_inverse [OF type f_in_A])
huffman@16918
   180
 apply (erule cont_f [THEN contE])
huffman@16697
   181
done
huffman@16697
   182
huffman@17833
   183
subsection {* Proving subtype elements are compact *}
huffman@17833
   184
huffman@17833
   185
theorem typedef_compact:
huffman@17833
   186
  fixes Abs :: "'a::cpo \<Rightarrow> 'b::cpo"
huffman@17833
   187
  assumes type: "type_definition Rep Abs A"
huffman@17833
   188
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
huffman@17833
   189
    and adm: "adm (\<lambda>x. x \<in> A)"
huffman@17833
   190
  shows "compact (Rep k) \<Longrightarrow> compact k"
huffman@17833
   191
proof (unfold compact_def)
huffman@17833
   192
  have cont_Rep: "cont Rep"
huffman@17833
   193
    by (rule typedef_cont_Rep [OF type less adm])
huffman@17833
   194
  assume "adm (\<lambda>x. \<not> Rep k \<sqsubseteq> x)"
huffman@17833
   195
  with cont_Rep have "adm (\<lambda>x. \<not> Rep k \<sqsubseteq> Rep x)" by (rule adm_subst)
huffman@17833
   196
  thus "adm (\<lambda>x. \<not> k \<sqsubseteq> x)" by (unfold less)
huffman@17833
   197
qed
huffman@17833
   198
huffman@16697
   199
subsection {* Proving a subtype is pointed *}
huffman@16697
   200
huffman@16697
   201
text {*
huffman@16697
   202
  A subtype of a cpo has a least element if and only if
huffman@16697
   203
  the defining subset has a least element.
huffman@16697
   204
*}
huffman@16697
   205
huffman@16918
   206
theorem typedef_pcpo_generic:
huffman@16697
   207
  fixes Abs :: "'a::cpo \<Rightarrow> 'b::cpo"
huffman@16697
   208
  assumes type: "type_definition Rep Abs A"
huffman@16697
   209
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
huffman@16697
   210
    and z_in_A: "z \<in> A"
huffman@16697
   211
    and z_least: "\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x"
huffman@16697
   212
  shows "OFCLASS('b, pcpo_class)"
huffman@16697
   213
 apply (intro_classes)
huffman@16697
   214
 apply (rule_tac x="Abs z" in exI, rule allI)
huffman@16697
   215
 apply (unfold less)
huffman@16697
   216
 apply (subst type_definition.Abs_inverse [OF type z_in_A])
huffman@16697
   217
 apply (rule z_least [OF type_definition.Rep [OF type]])
huffman@16697
   218
done
huffman@16697
   219
huffman@16697
   220
text {*
huffman@16697
   221
  As a special case, a subtype of a pcpo has a least element
huffman@16697
   222
  if the defining subset contains @{term \<bottom>}.
huffman@16697
   223
*}
huffman@16697
   224
huffman@16918
   225
theorem typedef_pcpo:
huffman@16697
   226
  fixes Abs :: "'a::pcpo \<Rightarrow> 'b::cpo"
huffman@16697
   227
  assumes type: "type_definition Rep Abs A"
huffman@16697
   228
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
huffman@16697
   229
    and UU_in_A: "\<bottom> \<in> A"
huffman@16697
   230
  shows "OFCLASS('b, pcpo_class)"
huffman@16918
   231
by (rule typedef_pcpo_generic [OF type less UU_in_A], rule minimal)
huffman@16697
   232
huffman@16697
   233
subsubsection {* Strictness of @{term Rep} and @{term Abs} *}
huffman@16697
   234
huffman@16697
   235
text {*
huffman@16697
   236
  For a sub-pcpo where @{term \<bottom>} is a member of the defining
huffman@16697
   237
  subset, @{term Rep} and @{term Abs} are both strict.
huffman@16697
   238
*}
huffman@16697
   239
huffman@16697
   240
theorem typedef_Abs_strict:
huffman@16697
   241
  assumes type: "type_definition Rep Abs A"
huffman@16697
   242
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
huffman@16697
   243
    and UU_in_A: "\<bottom> \<in> A"
huffman@16697
   244
  shows "Abs \<bottom> = \<bottom>"
huffman@16697
   245
 apply (rule UU_I, unfold less)
huffman@16697
   246
 apply (simp add: type_definition.Abs_inverse [OF type UU_in_A])
huffman@16697
   247
done
huffman@16697
   248
huffman@16697
   249
theorem typedef_Rep_strict:
huffman@16697
   250
  assumes type: "type_definition Rep Abs A"
huffman@16697
   251
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
huffman@16697
   252
    and UU_in_A: "\<bottom> \<in> A"
huffman@16697
   253
  shows "Rep \<bottom> = \<bottom>"
huffman@16697
   254
 apply (rule typedef_Abs_strict [OF type less UU_in_A, THEN subst])
huffman@16697
   255
 apply (rule type_definition.Abs_inverse [OF type UU_in_A])
huffman@16697
   256
done
huffman@16697
   257
huffman@25926
   258
theorem typedef_Abs_strict_iff:
huffman@25926
   259
  assumes type: "type_definition Rep Abs A"
huffman@25926
   260
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
huffman@25926
   261
    and UU_in_A: "\<bottom> \<in> A"
huffman@25926
   262
  shows "x \<in> A \<Longrightarrow> (Abs x = \<bottom>) = (x = \<bottom>)"
huffman@25926
   263
 apply (rule typedef_Abs_strict [OF type less UU_in_A, THEN subst])
huffman@25926
   264
 apply (simp add: type_definition.Abs_inject [OF type] UU_in_A)
huffman@25926
   265
done
huffman@25926
   266
huffman@25926
   267
theorem typedef_Rep_strict_iff:
huffman@25926
   268
  assumes type: "type_definition Rep Abs A"
huffman@25926
   269
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
huffman@25926
   270
    and UU_in_A: "\<bottom> \<in> A"
huffman@25926
   271
  shows "(Rep x = \<bottom>) = (x = \<bottom>)"
huffman@25926
   272
 apply (rule typedef_Rep_strict [OF type less UU_in_A, THEN subst])
huffman@25926
   273
 apply (simp add: type_definition.Rep_inject [OF type])
huffman@25926
   274
done
huffman@25926
   275
huffman@16697
   276
theorem typedef_Abs_defined:
huffman@16697
   277
  assumes type: "type_definition Rep Abs A"
huffman@16697
   278
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
huffman@16697
   279
    and UU_in_A: "\<bottom> \<in> A"
huffman@16697
   280
  shows "\<lbrakk>x \<noteq> \<bottom>; x \<in> A\<rbrakk> \<Longrightarrow> Abs x \<noteq> \<bottom>"
huffman@25926
   281
by (simp add: typedef_Abs_strict_iff [OF type less UU_in_A])
huffman@16697
   282
huffman@16697
   283
theorem typedef_Rep_defined:
huffman@16697
   284
  assumes type: "type_definition Rep Abs A"
huffman@16697
   285
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
huffman@16697
   286
    and UU_in_A: "\<bottom> \<in> A"
huffman@16697
   287
  shows "x \<noteq> \<bottom> \<Longrightarrow> Rep x \<noteq> \<bottom>"
huffman@25926
   288
by (simp add: typedef_Rep_strict_iff [OF type less UU_in_A])
huffman@16697
   289
huffman@19519
   290
subsection {* Proving a subtype is flat *}
huffman@19519
   291
huffman@19519
   292
theorem typedef_flat:
huffman@19519
   293
  fixes Abs :: "'a::flat \<Rightarrow> 'b::pcpo"
huffman@19519
   294
  assumes type: "type_definition Rep Abs A"
huffman@19519
   295
    and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
huffman@19519
   296
    and UU_in_A: "\<bottom> \<in> A"
huffman@19519
   297
  shows "OFCLASS('b, flat_class)"
huffman@19519
   298
 apply (intro_classes)
huffman@19519
   299
 apply (unfold less)
huffman@19519
   300
 apply (simp add: type_definition.Rep_inject [OF type, symmetric])
huffman@19519
   301
 apply (simp add: typedef_Rep_strict [OF type less UU_in_A])
huffman@19519
   302
 apply (simp add: ax_flat)
huffman@19519
   303
done
huffman@19519
   304
huffman@16697
   305
subsection {* HOLCF type definition package *}
huffman@16697
   306
wenzelm@23152
   307
use "Tools/pcpodef_package.ML"
huffman@16697
   308
huffman@16697
   309
end